【文献】
SIEDOW, N. et al.,Shape Optimization of Flanges,Mathematical Simulation in Glass Technology,ドイツ,SPRINGER VERLAG,2002年,pp. 208-237
【文献】
NORBERT SIEDOW,SHAPE OPTIMIZATION OF FLANGES,MATHEMATICAL SIMULATION IN GLASS TECHNOLOGY,ドイツ,SPRINGER VERLAG,2002年,PAGE(S):208 - 237
(58)【調査した分野】(Int.Cl.,DB名)
前記フランジの面内で前記容器の中心線から延在し、該中心線に対して垂直な第1の線において、該第1の線が、前記第1のリングの前記第2の部分と交差せずに、前記第1のリングの前記第1の部分を横断することを特徴とする、請求項1〜5のいずれか一項に記載の装置。
前記第1のリングが、前記第1の部分と前記第2の部分との間に位置づけられ、前記第1の厚さおよび前記第2の厚さと異なる第3の厚さを含む、第3の部分をさらに含み、該第3の部分が、前記容器の全周にわたっては延在しないことを特徴とする、請求項1〜5のいずれか一項に記載の装置。
前記第1のリングが、前記第1及び第2の厚さとは異なる第3の厚さを含む第3の部分を含み、該第3の部分が、前記容器の全周にわたっては延在しないことを特徴とする、請求項9又は10に記載の装置。
前記第2のリングが、前記第1のリングの全周の周りで前記第1のリングと接触し、前記第1の部分及び前記第2の部分がいずれも前記第2のリングと接触することを特徴とする、請求項9〜11のいずれか一項に記載の装置。
電気フランジを備えた電気加熱式容器の製造方法であって、該電気フランジが、それに取り付けられた前記容器に電流を供給するように構成され、かつ、前記容器の中心線に対して略垂直な面内で前記容器を取り囲み、該方法が、
(a)前記電気フランジをパラメータ化する工程であって、該電気フランジが、第1の金属を含む第1のリングと、前記第1の金属とは異なる第2の金属を含む第2のリングとを含み、前記第1のリングが、前記フランジの面内に、異なる厚さの複数の部分をさらに含み、前記複数の部分が重なり合うエッジを含んでおり、前記複数の部分がいずれも前記容器の全周には延在せず、前記パラメータ化する工程が、前記複数の部分の厚さ、形状、及び位置を決定することを含む、工程;
(b)前記フランジを通じて前記容器に供給される所定の電流の合計について、第1の位置における前記第1のリングの電流密度を計算する工程;
(c)前記容器の頂部における前記フランジの前記電流密度間の差異が所定の値を超える場合に、前記複数の部分の前記厚さ、形状及び位置のうちの少なくとも1つを修正する工程;及び
(d)前記第1の位置における前記電流密度が前記所定の値未満になるまで、工程(b)及び(c)を繰り返す工程
を含む、方法。
工程(b)において、前記第1の位置における前記計算された電流密度を使用して、前記容器壁の温度を計算する工程をさらに含むことを特徴とする、請求項13に記載の方法。
【発明を実施するための形態】
【0026】
これより、装置及び方法を、本開示の例となる実施形態を示す添付の図面を参照しつつ、以下にさらに十分に説明する。できるかぎり、同一又は同様の部分についての参照には、図面全体を通じて同一の参照番号が用いられる。しかしながら、本開示は、多くの異なる形態で実施されて差し支えなく、本明細書に記載される実施形態に限定されると解釈されるべきではない。
【0027】
範囲は、本明細書では、「約」1つの特定の値から、及び/又は、「約」別の特定の値までと表されうる。このような範囲が表される場合、別の実施形態は、その1つの特定の値から、及び/又は、他の特定の値までを含む。同様に、値が先行詞「約」を用いて近似値で表される場合、その特定の値は別の実施形態を形成することが理解されよう。範囲の各々の端点は、他の端点に関連して及び他の端点とは独立しての両方において重要であることもさらに理解されよう。
【0028】
本明細書で用いられる方向についての用語、例えば、上、下、右、左、前、後、上部、底部などは、描かれる図に関してのみ用いられ、絶対的な方向を意味することは意図されていない。
【0029】
明示的に記載されない限り、本明細書に記載されるいかなる方法も、その工程が特定の順序で行われることを必要とすると解釈されることは全く意図されていない。したがって、方法の請求項がその工程が従うべき順序を実際に記載していない場合、あるいは、特許請求の範囲又は説明にその工程が特定の順序に限られることが明示的に記載されていない場合、いかなる点においても、順序が推定されることは全く意図されていない。これは、工程又は動作フローの配列に関する論理的事項;文法構成又は句読点から導かれる平明な意味;本明細書に記載される実施形態の数および種類を含む、解釈のためのどの可能性のある不明確な基準(non-express basis)にも当てはまる。
【0030】
本明細書で用いられる場合、名詞は、文脈が他のことを明確に指示しない限り、複数の指示対象を指す。よって、例えば、構成要素に対する言及は、文脈が他のことを明確に示さない限り、このような構成要素を2つ以上有する態様を含む。
【0031】
本開示の態様は、原料(すなわち、バッチ)を溶融ガラスへと処理するための装置、より詳細には、溶融ガラスを加工するための装置を含む。本開示の加熱炉は、気体、液体及び/又は固体を加熱するための幅広い用途に提供されうる。一例において、本開示の装置は、バッチを溶融ガラスへと溶融し、溶融ガラスを下流の処理設備へと搬送するように構成されたガラス溶融システムに関連して記載される。
【0032】
本開示の方法は、多種多様な方法で溶融ガラスを処理することができる。例えば、溶融ガラスは、初期温度より高い温度に溶融ガラスを加熱することによって処理されうる。さらなる例では、溶融ガラスは、該溶融ガラスの温度を維持することによって、あるいは、熱エネルギーを溶融ガラスに投入することにより、そうでなければ生じたであろう熱損失の比率を低下させ、それによって溶融ガラスの冷却速度を制御することによって、処理されうる。
【0033】
本開示の方法は、清澄容器又は、例えば攪拌容器などの混合容器を用いて、溶融ガラスを処理することができる。必要に応じて、装置は、熱管理デバイス、電子デバイス、電気機械デバイス、支持構造、又は、溶融ガラスを1つの場所から別の場所へと移送する搬送容器(導管)を備えたガラス製造装置の動作を促進するための他の構成要素など、1つ以上のさらなる構成要素を含みうる。
【0034】
例となるガラス製造装置10が
図1に示されている。幾つかの例では、ガラス製造装置10は、溶融容器14を備えていてもよいガラス溶融炉12を含みうる。溶融容器14に加えて、ガラス溶融炉12は、必要に応じて、バッチを加熱し、バッチを溶融ガラスに変換する、加熱要素(例えば、燃焼バーナ又は電極)など、1つ以上のさらなる構成要素を含みうる。さらなる例では、ガラス溶融炉12は、溶融ガラスの温度を制御するための熱管理デバイス(例えば、絶縁、加熱、及び/又は冷却構成要素)を含みうる。他のさらなる例では、ガラス溶融炉12は、ガラス溶融物へのバッチ材料の溶融を促進する電子デバイス及び/又は電気機械デバイスを含みうる。さらに別の例では、ガラス溶融炉12は、支持構造(例えば、支持シャーシ、支持部材等)又は他の構成要素を含みうる。
【0035】
ガラス溶融容器14は、典型的には、耐火セラミック材料などの耐火材料で構成される。幾つかの例では、ガラス溶融容器14は、例えばアルミナ又はジルコニアを含む耐火セラミックブリックなど、耐火セラミックブリックで構築されうる。
【0036】
幾つかの例では、ガラス溶融炉12は、ガラスリボンを製造するために用いられるガラス製造装置の構成要素として組み込まれうる。幾つかの例では、本開示のガラス溶融炉は、スロットドロー装置、フロートバス装置、フュージョンダウンドロー装置を含めたダウンドロー装置、アップドロー装置、圧延装置、チューブドロー装置又は他のガラスリボン製造装置を含めたガラス製造装置の構成要素として組み込まれうる。例として、
図1は、その後のガラスシートへの加工のためにガラスリボンを融着延伸するフュージョンダウンドロー装置10の構成要素としてのガラス溶融炉12を概略的に示している。
【0037】
ガラス製造装置(例えば、フュージョンダウンドロー装置10)は、必要に応じて、溶融ガラスの流れ方向に対してガラス溶融容器14の上流に位置付けられた、上流ガラス製造装置16を含みうる。幾つかの例では、上流ガラス製造装置16の一部分又は全体が、ガラス溶融炉12の一部として取り込まれうる。
【0038】
図示される例に示されるように、上流ガラス製造装置16は、バッチ貯蔵ビン18、バッチ送給デバイス20、及びバッチ送給デバイスに接続されたモータ22を含みうる。貯蔵ビン18は、矢印26によって示されるように、ガラス溶融炉12の溶融容器14内に供給されうる、ある量のバッチ24を貯蔵するのに用いられうる。幾つかの例では、バッチ送給デバイス20は、貯蔵ビン18から溶融容器14へと所定の量のバッチ24を送給するためのモータ22によって作動しうる。さらなる例では、モータ22は、バッチ送給デバイス20を作動させて、溶融容器14の下流の検知レベルの溶融ガラスに基づいた、制御された速度でバッチ材料24を導入することができる。溶融容器14内のバッチ24は、その後、加熱されて、溶融ガラス28を形成しうる。
【0039】
ガラス製造装置10はまた、必要に応じて、溶融ガラスの流れ方向に対してガラス溶融炉12の下流に位置付けられた下流ガラス製造装置30も含みうる。幾つかの例では、下流ガラス製造装置30の一部分は、ガラス溶融炉12の一部として取り込まれうる。例えば、以下に論じられる第1の結合導管32、又は下流ガラス製造装置30の他の部分が、ガラス溶融炉12の一部として取り込まれうる。第1の結合導管32を含む、下流ガラス製造装置の要素は、貴金属から形成されうる。適切な貴金属としては、白金、イリジウム、ロジウム、オスミウム、ルテニウム及びパラジウムからなる金属、及びそれらの合金の群から選択される、白金族金属が挙げられる。例えば、ガラス製造装置の下流の構成要素は、70〜90質量%の白金及び10〜30質量%のロジウムを含む、白金−ロジウム合金から形成されうる。
【0040】
下流ガラス製造装置30は、溶融容器14の下流に位置し、上述の第1の結合導管32によって溶融容器14に連結した、清澄容器34などの第1の調節容器を含みうる。幾つかの例では、溶融ガラス28は、第1の結合導管32によって、溶融容器14から清澄容器34へと重力供給されうる。例えば、重力によって、溶融ガラス28は、溶融容器14から清澄容器34へと第1の結合導管32の内部経路を通過しうる。
【0041】
清澄容器34内では、さまざまな技法によって、溶融ガラス28から気泡が除去されうる。例えば、バッチ24は、加熱したときに化学反応を被り、酸素を放出する、酸化スズなどの多価化合物(すなわち清澄剤)を含みうる。他の適切な清澄剤としては、限定されることなく、ヒ素、アンチモン、鉄及びセリウムが挙げられる。清澄容器34は、溶融容器温度より高い温度へと加熱され、それによって清澄剤を加熱する。清澄剤の温度誘発性の化学反応によって生成された酸素気泡は、清澄容器内の溶融ガラスを通じて上昇し、ここで、溶融炉内で生成した溶融物中のガスが、清澄剤によって生じた酸素の気泡と合体するか、又は酸素気泡内に拡散し、気泡を拡大させうる。拡大した気泡は、次に、清澄容器内の溶融ガラスの自由表面まで上昇し、その後、清澄容器から放出されうる。
【0042】
下流ガラス製造装置30は、清澄容器34の下流に位置しうる溶融ガラスを混合するための混合容器36などの第2の調節容器をさらに含みうる。ガラス溶融混合容器36は、均質なガラス溶融組成物を提供し、それによって、清澄容器から出る清澄された溶融ガラス内に存在したであろう不均質性を低減又は排除するために用いられうる。図示されるように、清澄容器34は、第2の結合導管38によって溶融ガラス混合容器36に連結されうる。幾つかの例では、溶融ガラス28は、第2の結合導管38によって清澄容器34から混合容器36へと重力供給されうる。例えば、重力により、溶融ガラス28は、清澄容器34から混合容器36へと第2の結合導管38の内部経路を通過しうる。
【0043】
下流ガラス製造装置30は、混合容器36の下流に位置した送給容器40などの別の調節容器をさらに含みうる。送給容器40は、下流の成形デバイス内に供給される溶融ガラス28を調節しうる。例えば、送給容器40は、出口導管44によって、一貫した流量の溶融ガラス28を調整し、成形本体42に供給するためのアキュムレータ及び/又は流量コントローラとして作用しうる。図示されるように、混合容器36は、第3の結合導管46によって送給容器40に連結されうる。幾つかの例では、溶融ガラス28は、第3の結合導管46によって混合容器36から送給容器40へと重力供給されうる。例えば、重力は、溶融ガラス28が、混合容器36から送給容器40へと第3の結合導管46の内部経路を通過するように駆動するように作用しうる。
【0044】
下流ガラス製造装置30は、入口導管50を備えた上述の成形本体42を含む、成形装置48をさらに含みうる。出口導管44は、送給容器40から成形装置48の入口導管50へと溶融ガラス28を送給するように位置付けられうる。溶融成形プロセスにおいて、成形本体42は、該成形本体の上面に位置付けられたトラフ52、及び、成形本体の底部エッジ(ルート)56に沿って収束する収束成形表面54を含みうる。送給容器40、出口導管44及び入口導管50を介して成形本体のトラフ52へと送給される溶融ガラスは、トラフの壁から溢れ出て、溶融ガラスの分離した流れとして収束成形表面54に沿って下降する。溶融ガラスの分離した流れは、ルート56の下でルート56に沿って融着(join)して、単一のガラスリボン58を生成し、該ガラスリボンは、重力及びプルロール(図示せず)などによってガラスリボンに張力を印加することによって、ルート56から延伸され、ガラスが冷えて溶融ガラスの粘度が増加するにつれて、ガラスリボン58が粘弾性転移を被り、ガラスリボン58に安定した寸法特性を与える機械的性質を有するように、ガラスリボンの寸法が制御される。ガラスリボンは、その後、ガラス分離装置(図示せず)によって、個別のガラスシートへと分離されうる。
【0045】
下流ガラス製造装置の他の構成要素とは異なり、成形本体42は、典型的には、アルミナ(酸化アルミニウム)又はジルコニア(酸化ジルコニウム)などの耐火セラミック材料から形成されるが、他の耐火材料も用いられうる。幾つかの例では、成形本体42は、静水圧プレス処理され、焼結され、次に、適切な形状へと機械加工された、セラミック材料のモノリスブロックである。他の例では、成形本体は、例えば耐火セラミック材料などの耐火材料の2つ以上のブロックを接合することによって形成されうる。成形本体42は、該成形本体を越える成形本体からの溶融ガラスの流れを導くように構成された1つ以上の貴金属構成要素を含みうる。
【0046】
溶融ガラス28が溶融容器14から成形本体42へと移動する際に、溶融ガラスは、その中を通って溶融ガラスが流れるさまざまな貴金属容器内で熱的に調節される。例えば、溶融ガラス28が第1の結合導管32を通って清澄容器34内へと移動する際に、溶融ガラスは、清澄プロセスを促進するために溶融容器内で溶融ガラスの温度より高い温度へと加熱されうる。溶融ガラス28は、該溶融ガラスが清澄容器の長さに沿って流れる際に、清澄容器内でさらに加熱されうる。先に述べたように、溶融容器と比べて清澄容器内の比較的高い温度は、清澄剤の化学反応を増進し、それによって清澄剤による酸素の放出を増加させ、かつ、溶融ガラスの粘度を低下させ、それによって、溶融ガラス内に混入した気泡の溶融ガラスの自由表面への上昇を促進する。したがって、第1の導管32及び清澄容器34は、第1の導管及び清澄容器の壁を通じて電流を誘導するためのフランジを含みうるが、このようなフランジの利益を享受しうるのは、下流ガラス製造装置の他の容器である。
【0047】
溶融ガラスが第2の導管38を通って清澄容器34から混合容器36へと搬送される際に、溶融ガラスの温度は、例えば混合容器内に回転可能に位置付けられたスターラーなどによって、溶融ガラスが容易に混合(均質化)されうる温度未満に低下することを防止しなければならない。混合容器内の溶融ガラスの温度により粘性になりすぎる場合には、混合効率に悪影響を及ぼしかねず、それによって溶融ガラスの均質化における混合プロセスの有効性が低下してしまう。したがって、清澄容器34と混合容器36との間に位置づけられた第2の結合導管38、及び混合容器自体は、第2の導管及び混合容器の壁を通して電流を誘導するフランジを含みうる。
【0048】
送給容器40によって成形本体42へと送給される溶融ガラス28は、ガラスリボンの成形を可能にするために適した粘度でなければならない。溶融ガラスの粘度が低すぎる場合には、ガラスリボンに適切な張力を印加することが困難又は不可能になる可能性がある。粘度が高すぎる場合には、厚さの制御が問題となりうる。さらには、成形本体42の成形表面54を越流する際の溶融ガラス28の温度は、溶融ガラス自体の結晶化(失透)と、溶融ガラスが成形本体の成形表面を越流する際に溶融ガラス内へと溶解しうる成形本体材料の結晶化及び沈殿との両方を防止するように制御されなければならない。溶融ガラスが成形本体42へと送給される際の溶融ガラス28の適正な温度及び粘度を実現するため、第3の結合導管46を通って移動する際の溶融ガラスからの正味の熱損失は十分に制御されなければならない。したがって、第3の結合導管46は、第3の導管の壁を通じて電流を誘導するフランジを含みうる。
【0049】
ガラス製造装置10の前述の構成要素のいずれか又はすべてが、1つ以上のフランジで構成されうる。フランジは、該フランジに供給される電流が、さまざまな温度帯を生成するように別々に制御可能になるように構成されうる。例えば、清澄容器34は、2つ以上のフランジからなる群が清澄容器に沿って異なる温度帯をもたらすように制御されうる、複数のフランジを含みうる。このような異なる温度帯は、下流ガラス製造装置の金属構成要素に沿った1つ以上の位置において確立されうることは明らかであろう。以下の説明は、構造及び動作を含めた、下流ガラス製造装置内などのガラス製造装置内での使用に適したフランジのさらに詳細な論考を提供する。
【0050】
本開示の実施形態に従った容器102に取り付けられた例となるフランジ100の断面側面図が
図2に示されている。容器102は、例えば、限定されることなく、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、溶融炉12と上述の成形本体42との間の下流ガラス製造装置30を構成する金属容器のいずれか1つ、あるいは、溶融ガラスを搬送し、ガラス製造装置10を構成しうる、いずれかの他の金属容器又は他の金属構成要素でありうる。容器102は、溶融ガラスの流れを受け入れ、かつ、容器の長さに沿って延びる長手方向中心軸108と長手方向軸108に対して垂直なフランジの面における断面形状とを含む内部容積106を取り囲む、壁104を備えている。長手方向軸108は、容器の断面の中心に位置し、容器の中心線108とも称されうる。容器102の断面形状は、容器の長さに沿った(長手方向軸108に沿った)位置の関数として、長手方向軸108に対して垂直な面における形状及び大きさの両方で変動しうるが、
図2の例では円形の断面として示されている。例えば、下流ガラス製造装置内のある特定の導管は、一の断面形状の導管から異なる断面形状を有する別の導管への移行部片を形成する、移行導管を含みうる。
【0051】
フランジ100は、第1のリング112、第2のリング114、及び、本体部分110の最も外側のリングに取り付けられた電極部分116を含む、本体部分110を備えている。第2のリング114は、幾つかの例では、最も外側のリングでありうる。電極部分116は、最も外側のリング、例えば
図2に示される第2のリング114に直接連結される。幾つかの例では、電極部分116は、最も外側のリングと一体化し、それを用いて形成されうる。他の例では、電極部分116は、別個に形成され、例えば第2のリング114などの最も外側のリングに溶接などによって取り付けられうる。本明細書で用いられる場合、第1のリング112は最も内側のリングであってよく、例えば、容器壁104に第1のリング112の内側エッジを溶接することなどによって、容器102に密着されうる。
【0052】
図2に示される実施形態では、第1のリング112は、第1のリング112が最も内側のリングである場合には、容器102と相容性であり、かつ、著しく劣化することなく、長期間、容器の外面(例えば、壁104)の高温環境を耐え抜くことができる、第1の金属を含む。例えば、第1のリング112は、白金族金属(白金、ロジウム、イリジウム、ルテニウム、パラジウム及びオスミウム)又はそれらの合金などの貴金属を含んでよく、幾つかの例では、容器102と同じ貴金属を含みうる。例えば、第1のリング112は、白金が合金の約70%〜約90%を構成し、ロジウムが合金の約20%〜約30%を構成する、白金−ロジウム合金を含みうる。第1のリング112はすべて、同じ金属で形成されてよく、あるいは、第1のリング112は、異なる金属を含んでいてもよい。例えば、第1のリング112は、異なるパーセンテージの組合せの白金−ロジウム合金を含んでよく、あるいは、第1のリングの電気抵抗を改変する他の合金化材料を含んでよく、それによって、第1のリングの強度又は硬度など、第1のリングの機械的特性を変化させるか、又は、必要とされうる、合金化によって達成可能な他の所望される特性を得てもよい。第1のリング112は、幅W1をさらに含み、円形のフランジでは、幅W1は、長手方向軸108から延び、かつ長手方向軸108に対して垂直な半径方向線に沿って、決定されうる。幾つかの実施形態では、幅W1は、第1のリングの周りの角度位置に関して変動しうる。例えば
図2に示される実施形態など、他の実施形態では、幅W1は、角度的に一定でありうる。
【0053】
第2のリング114は、容器102の壁104から離間しており、第1のリング112の周りの閉ループ内に位置付けられており、かつ、第1のリング112よりも容器壁104から遠くに離れており、したがって第1のリング112よりも低い温度に曝露され、所望される場合には、第1のリング112の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング112は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング114は、例えば及び限定はしないが、ニッケル、銅、モリブデン又はそれらの合金など、より安価及び/又は温度に対する耐久性が劣るが導電性の金属から形成されうる。しかしながら、上述のように、幾つかの例では、第2のリング114は、白金含有リングでありうる。第2のリング114は、長手方向軸108に対して垂直な線に沿ってフランジの面内で決定される、幅W2をさらに含む。幅W2は、容器102(例えば長手方向軸108)に対する角度位置の関数として変動してもよく、あるいは、幅W2は、容器102に対する角度位置の関数として実質的に一定であってもよい。幾つかの実施形態では、第2のリング114は、溶接などによって第1のリング112に直接、接合されうる。他の実施形態では、第2のリング114は、第1のリング112から離間され、第1のリング112とは直接、接触していなくてもよい。例えば、フランジ100は、第1のリング112と第2のリング114との間に1つ以上の中間リングを含んでもよい。
【0054】
幾つかの実施形態では、例えば、フランジ100の主面に対して垂直な方向(例えば長手方向軸108に対して平行な方向)における最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、若しくは、白金又はそれらの合金よりも安価かつ温度に対する耐久性が劣る他の金属から形成されてよく、ここで、電極部分116に隣接した最も外側のリングの領域は、最も外側のリングの他の領域より厚い。このようなより厚い部分は、電極部分116に隣接しうるが、電極部分116と第1のリング112の第1の部分118との間に直接隣接はしない(例えば
図6、7及び8参照)。例えば、より厚い部分は、他の部分より50%以上厚くなっていてよく、例えば、約30%〜約70%の範囲、約35%〜約60%の範囲又は約40%〜約55%の範囲など、約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分は、容器の円周の周辺のフランジに供給される電流の誘導に役立ち、かつ、電極部分116に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分116に隣接しているが、電極部分116と第1のリング112との間にはない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって、抵抗加熱に起因する電流密度の低下及び温度の低下を示す。よって、電極部分116に隣接した最も外側のリングの部分は、電極部分とは反対側の最も外側のリングの部分よりも厚くなりうる。上述のように、最も外側のリングは第2のリング114でありうる。しかしながら、他の実施形態では、第2のリング114は、最も外側のリングと第1のリング112との中間のリングであってもよい。
【0055】
先に述べたように、第1のリング112は、容器102の周りの閉ループ内に延在し、かつ、第1のリング112が最も内側のリングである事例では、第1のリング112は、第1のリング112の内側エッジに沿って、容器102の容器壁104の外周の周りに取り付けられうる。例えば、第1のリング112の内側エッジは、容器壁104の外面に溶接されうる。同様に、
図2に示されるような例では、第2のリング114の内側のエッジは、第1のリング112の外側のエッジに直接、取り付けられうる。他の例では、先に述べたように、介在する追加のリングは、第1のリング112と第2のリング114との間、すなわち、第2のリング114の内側のエッジと第1のリング112の外側のエッジとの間に位置づけられうる。このような介在する追加のリングは、白金族金属又はそれらの合金などの貴金属を含みうる。さらには、追加のリング、例えば最も外側のリングは、第2のリング114の外側に位置づけられうる。
【0056】
図2にさらに示されるように、第1のリング112は、第1の厚さT1を含む第1の部分118を含む。T1は、例えば、約40ミル(約0.1cm)〜約50ミル(約0.13cm)の範囲でありうる。第1の部分118は、幾つかの実施形態では、容器102の周りに全周の半分未満(180°未満)で延在しうる。幾つかの実施形態では、第1の部分118は、容器102の周りに全周の半分以上であるが、容器102の全周未満(180°以上であるが360°未満)で延在しうる。例えば、円形の断面を含む
図2に描かれる容器を考えると、該図には、容器102の頂部から垂直方向に離れて延在する電極部分116がさらに示されている。
図2は、容器102から離れる方向にフランジ100から延びる単一の電極部分116のみが示されているが、フランジ100は、2つ以上の電極部分を含んでいてもよい。さらには、電極部分116及び容器102を通ることを含めて、紙面(すなわち、フランジの面内)においてフランジ100を通って延びる、長手方向軸108に対して垂直な線120を考えると、容器102の第1の直径122は、線120上にある。線120に対して垂直であり、長手方向軸108を通って延在し、かつ長手方向軸108に対して垂直な第2の線124も考えると、容器102の第2の直径126は、線124上にある、。例証される実施形態では、線120は、水平であるように示されている線124に対して垂直かつ直交するように示されているが、垂直及び水平以外の方向も適用可能である。
図2に示される実施形態によれば、第1のリング112の第1の部分118は、水平線124に対して容器壁104の上半分全体を越えてその周りに延在する。これは、水平線124を越える(水平線124の下側の)容器壁104の周りに延在する第1の部分118によって示されている。
【0057】
前述の説明は、フランジ100の面内で長手方向軸(中心線)108に対して垂直かつ長手方向軸108から外側に無限に延びる2本の半径方向線、すなわち、第1の半径方向線130及び第2の半径方向線132を想像することによって、別の態様で見ることができ、ここで、第1の半径方向線130は、垂線120の一方の側の第1の部分118と単一点(点A)でのみ交差し、第2の半径方向線132は、垂線120の反対側の第1の部分118と異なる単一点(点B)で交差する。第1の部分118が容器102の周りに延在する領域にわたって第1の半径方向線130と第2の半径方向線132と間のそれらに囲まれた円弧は、360°−αの角度に対応する。この例では、角度αは180°未満でありうる。加えて、第1のリング112が最も内側のリングである
図2の例では、第1の部分118は、360°−αの角度にわたり、容器壁104と接触しうる。よって、角度αは、その周りに第1の部分118が延在しない、又は容器壁と接触しない、容器壁102の領域を表しうる。
【0058】
第1の部分118は、電極部分116に隣接しており、かつ、水平線124の電極部分116と同じ側にあることにも着目すべきである。この点の意義は、以下にさらに詳細に説明されよう。
【0059】
第1のリング112は、第2の厚さT2を含む第2の部分128をさらに含む。第2の厚さT2は、第1の厚さT1とは異なりうる。例えば、第2の厚さT2は、第1の厚さT1超でありうる。幾つかの実施形態では、T2は、約80ミル(約0.2cm)〜約100ミル(約0.25cm)の範囲でありうる。第2の部分128は、第1の部分118が例えば少なくともαの角度範囲には延在していない容器壁104の部分の周りに延在する。
図2に例証される実施形態では、第2の部分128は、αの角度範囲にわたって容器壁104と接触する。幾つかの実施形態では、第2の部分128は、αより大きい角度範囲にわたって容器壁104の周りに延在しうる。代替的な見方をすれば、フランジ100の面内で長手方向軸(中心線)108に対して垂直かつ長手方向軸108から外側に無限に延びる2本の追加的な半径方向線、すなわち、第3の半径方向線134及び第4の半径方向線136を想像すると、第3の半径方向線134は、第2の部分128と単一点(点C)でのみ交差し、第4の半径方向線136は、垂線120の反対側の第2の部分128と異なる単一点(点D)で交差する。
図2の例となるフランジでは、第3及び第4の半径方向線134、136は水平線124に対して概して上方向に延びるのに対し、第1及び第2の半径方向線130、132は、水平線124に対して下方向に延びていることに着目すべきである。第2の部分128が延在する領域の周りの第3の半径方向線134と第4の半径方向線136との間の円弧は、360°−βの角度に対応する。角度βは180度未満の角度でありえ、第2の部分128は、少なくとも、壁104の360°−βによって画成された部分の周りに延在する。
図2に示される実施形態では、角度βはまた、第1の部分112が例えば第2のリング114など外側方向に隣接したリングと接触する角度範囲も意味する。第2の部分128が容器102の周りに延在する角度範囲(360°−β)は180度を超えうるが、例証される実施形態では、第2の部分128と容器壁102との間の接触線は180度未満(角度α)に対応する。フランジ100の面内かつ容器102に関連して、第1の部分118と第2の部分128との間にはエッジ・トゥ・エッジの重なりが存在することもまた認識されよう。
図2によれば、重なりの領域は、第1の半径方向線130と第3の半径方向線134の間、及び/又は、第2の半径方向線132と第4の半径方向線136との間である。
図2に関して、重なりの少なくとも1つの領域の角度範囲は、垂線120の周りのフランジ100の右半分と左半分が対称であると仮定して、(360°−α−β)/2である。本文脈において、このような重なりとは、フランジ100の面内に存在し、かつ、長手方向軸108に対して垂直かつ長手方向軸108から外側に無限に延びる、少なくとも1つの任意の半径方向線138については、該線が、第1の部分118及び第2の部分128の両方の幅を横断して延びることを意味する。運動の観点から見ると、長手方向軸108から離れる方向に線138に沿って移動する場合、まず第1の部分118、次に第2の部分128を順に通過する。よって、任意の線138に沿って、第1の部分118は、第2の部分128と容器壁104との間に存在する。他の角度方向では、任意の線138などの任意の線は、第1の部分118のみを横断し、さらに他の角度方向では、線138は第2の部分128のみを横断しうることに留意すべきである。
【0060】
前述の説明をまとめると、第1のリング112は容器102の周りの閉ループ内に延在する。第1のリング112は、少なくとも2つの部分、すなわち第1の部分118及び第2の部分128を含み、該第1又は第2の部分のいずれも、独立して、容器102の周りに閉ループでは延在しない。第1の部分118及び第2の部分128は、第1のリング112内に少なくとも部分的に入れ子にされ、そこにはエッジ・トゥ・エッジの重なりの領域が存在し、ここで、第1の部分118の外側のエッジの全部ではないが少なくとも一部は、第2の部分128の内側のエッジの全部ではないが一部分と接触する。容器の中心線に関して、第1の部分118は、容器102の少なくとも一部の周りに延在し、かつ、長手方向軸108に対して180度を超えるが360°未満の角度にわたって延在しうる。同様に、第2の部分128は、容器102の少なくとも一部の周りに延在し、かつ、長手方向軸108に対して180度を超えるが360°未満の角度にわたって延在しうる。例となる実施形態では、第1の部分118の第1の厚さT1は、第2の部分128の第2の厚さT2より小さくなりうる。他の実施形態では、第1の部分118及び第2の部分128の材料は、異なる固有の電気抵抗をもたらすように選択されうる。
【0061】
第1のリング112については、第1の部分118のみを横断し、第2の部分128は横断しない、フランジ100の面内に存在し、かつ、長手方向軸108から外側に無限に延び、長手方向軸108に対して垂直な少なくとも1つの半径方向線150が存在することもまた、
図2及び前述の説明とともに、明白であろう。半径方向線150はさらに、電極部分116と交差しうる。同様に、第1のリング112については、第2の部分128のみを横断し、第1の部分118は横断せず、かつ電極部分とは交差しないであろう、フランジ100の面内に存在し、かつ、長手方向軸108から外側に無限に延び、長手方向軸108に対して垂直な、少なくとも1つの半径方向線152が存在する。
【0062】
第1の部分118は、概して、電極部分116に隣接しており、かつ、水平線124に対して容器102の電極部分116と同じ側にあることは、単一の電極部分116を示す
図2に関して先に述べた。第2の部分128は反対側に位置付けられている。論考の目的であって限定はしないが、
図3Aに示される例となる一般的フランジ140を考えると、フランジ140は、単一のリング及び単一の電極部分142のみを含み、便宜上及び参照目的で、電極部分142は、垂直に配向され、一般的容器144の頂部から離れる方向へと上方向に延びると仮定している。
図3Bに移ると、同一に配向され、その長手方向軸に沿って容器144上の第1のフランジ140から離間されている、第1のフランジ140と同一の第2のフランジ140についても考慮されている。最後に、電流が、容器144を通じて第1のフランジ140と第2のフランジ140との間に確立されるように、第1及び第2のフランジ140の各々が電源に接続されることを考えてみる。本例によれば、最大電流密度は、容器の頂部内へと第1のフランジの電極を通って下方向の線に沿っており、この線は電極と容器との間の最短経路を表し、
図3Aの矢印は電流を表し、矢印間の距離は電流密度を表す(ここで、より高密な間隔は、より大きい電流密度を意味する)。容器内では、最大電流密度は、フランジ140間の容器の頂部143に沿って見出だすことができ、これは、第1のフランジの頂部内側部分(フランジが容器と接合する箇所)と第2のフランジの頂部内側部分との間の最短経路を表す。第2のフランジでは、状況は、最大電流密度が、容器144の頂部からそれぞれのフランジの電極部分へと延びる線に沿って存在するという点において、第1のフランジと同じである。
【0063】
前述の現象により、容器のある特定の部分が容器の他の部分とは異なる電流密度を運ぶことから、容器を通って流れる溶融ガラスの不均一な加熱が生じうる。さらに重要なことには、電流のかなりの部分は、電極部分に沿った線及び容器の頂部に集中する。電極部分に最も近い容器壁に沿った線に沿った、この高度に集中した電流は、この線に沿った領域、特に、フランジと電極部分に最も近い容器の部分との接合近くの領域のフランジの過度の加熱を生じうる。フランジ及び/又は容器の選択部分の過度の加熱は、最悪の場合は、フランジ又は容器に熱損傷(例えば溶融)を生じうる。加えて、溶融ガラスの不均一な加熱は、その後、容器を通って流れる溶融ガラスの幾つかの領域が溶融ガラスの他の領域とは異なる粘度を示すような、不均一な粘度を生じうる。例えば、容器144がその中を通って流れる溶融ガラスで満たされる事例では、その断面において、溶融ガラスの流れの底部部分は、溶融ガラスの流れの頂部部分より冷たい(受け取る熱が少ない)場合があり、したがって、溶融ガラスの流れの頂部部分より大きい粘度を示す。これは、容器を通る溶融ガラスの流れを混乱させうるだけでなく、下流プロセスを中断させかねない。例えば、不均一な加熱が攪拌容器の上流及び該容器の近くで生じる場合、不均一な粘度が混合及び均質化を妨げうる。不均一な粘度が成形本体の上流及び成形本体の近くで生じる場合、不均一な粘度は、成形プロセスを妨げかねず、均一な厚さを有する品質ガラスシートの生産が阻まれうる。
【0064】
例えば溶融ガラスで完全には満たされない容器など、ある特定の容器タイプについては、前述の状況は特に問題となりうる。例えば、清澄容器は、動作の間に、溶融ガラスで不完全に満たされて差し支えなく、したがって、溶融ガラスは自由表面を含む。溶融ガラスを含んでいない清澄容器の容積は、溶融ガラスの自由表面と清澄容器の上部内面との間にガス雰囲気を含む。清澄容器内を流れる溶融ガラスは、ガス雰囲気より良好な熱伝導体でありえ、フランジの電極が上方向に垂直に配向される場合、最大量の抵抗加熱は、少なくとも前述の理由から容器の最小量の熱伝導を示す部分に生じうる。すなわち、容器の頂部は、高い電流密度によって生じる望ましくない高温、並びに、少なくともガス雰囲気の熱伝導が比較的乏しいことにより、電流経路に沿った容器が損傷を防ぐのに十分に熱を放射又は奪うことが同時にできないことによって、損傷されうる。
【0065】
電流のかなりの部分が電極部分116と容器との間の最短の導電路をたどることから、電流経路に関する前述の難しさは、フランジ自体が同様に経験しうるものであることにも注目すべきである。したがって、フランジ100は、電極部分と容器との間の線に沿った高い電流密度によってもたらされる熱損傷にも悩まされうる。したがって、幾つかの実施形態では、フランジ100は、典型的には最も外側のリングの周囲(例えば、外側エッジ)の周りに設置される、例えば空気又は水などの冷却流体を運搬するように構成された、冷却導管145を備えていてもよい。
【0066】
さらになお問題となるのは、装置内への溶融ガラスの導入前の導入準備のための下流製造装置の初期の予備加熱である。この動作の間には、溶融ガラスの流れの導入前に、装置構成要素の適切な加熱を達成するために、非常に高い電流が必要とされうる。これらの条件下では、容器全体がガス雰囲気で満たされうることから、容器壁のある特定の部分は、非常に高い電流密度に供され、その後、高温に供されうる。
【0067】
本明細書に記載されるフランジは、さまざまな実施形態において、電流が、例えば、上述の最短の導電路から離れて安全に分配されるように、電流を効果的に誘導することによって、上述のような問題を軽減又は回避する。例えば、上述のように最短の導電路上に存在する第1のリング112の第1の部分118が第1のリングの他の部分(例えば第2の部分128)より薄くなっている場合、より薄い第1の部分が示す、より高い電気抵抗により、第1の部分118から離れるように電流が効果的に誘導されることによって、電流のより均一な分布がもたらされる。これは、フランジ100に、より低い全体温度を生じうることとなり、よって、著しいホットスポットが回避される。これは、より大きい電流を供給する手段として、容器自体又は容器に直接取り付けられたフランジの部分のいずれかの、容器の全周の周りのより厚い領域を利用する通常のフランジ設計とは、明確に異なっている。したがって、
図2に関して記載されるように、第1のリング112は、電極部分116に近い第1の部分を少なくとも含み、したがって、電極部分116と容器102との間の最短の導電路において、第1の部分は第1のリングの残りの部分より薄い。さらには、モデル化は、第1及び第2の部分118、128のエッジ・トゥ・エッジの重なり合う構成は、電流を誘導してフランジ及び/又は容器の電極に近い部分における電流密度を低下させうるだけでなく、第1のリング112が取り付けられうる容器102のかなりの部分又は全体の周辺の電流の均一性にも寄与しうることを示している。第1のリング112の説明は、容器102に取り付けられた場合でさえも、第1のリング112と容器壁104の間に位置づけられうる溶接された材料の存在を考慮に入れないこと、及び、溶接された材料自体は、容器への電流分布に最小限の影響しか有しないことに留意すべきである。本明細書全体を通して、用語「リング」は、閉じた弧状の形状を表すことが意図されており、円形の形状である必要はないことにも留意すべきである。よって、用語「リング」とは、いずれかの閉じた形態のことを指して差し支えなく、前述の説明は、以下にさらに十分に論じられる非円形の容器及びフランジ設計に適用可能である。
【0068】
容器202に取り付けられた別の例となるフランジ200の断面正面図が
図4に示されている。容器202は、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、上述の下流ガラス製造装置30を構成する容器のいずれか1つ、又は、溶融ガラスを搬送し、ガラス製造装置10を構成しうる、いずれかの他の金属容器でありうる。容器202は、内部容積206を画成する壁204を含む。容器202は、その中心に容器の長さに沿って延びる長手方向軸208、並びに、長手方向軸208に対して垂直なフランジの面内の断面形状をさらに含む。断面形状は、容器の長さに沿った位置の関数として、形状及び大きさの両方において変動しうるが、
図4の例では楕円形の形状として示されている。楕円形の形状とは、長(主)軸210及び短(非主)軸212を含む、その両方が長手方向軸208に対して垂直な形状のことを意味し、ここで、主軸は非主軸よりも長い。楕円形の断面形状は、卵形、楕円形、矩形、若しくは、これら又は他の形状の組合せでありうる。例えば、
図4の例に示される楕円形の断面形状は、2つの半円形の末端部分など、2つの弧状の末端部分を伴った、概ね矩形の形状を含む。
【0069】
フランジ200は、フランジ100と同様に、第1のリング216、第2のリング218、及び最も外側のリングに取り付けられた電極部分220を含む、本体部分214を備えている。第2のリング218は、幾つかの例では、最も外側のリングであってよく、電極部分220は、図示されるように、第2のリング218に直接連結している。例えば、電極部分220は、第2のリング218と一体化し、それを用いて形成されうる。幾つかの例では、電極部分220は、別個に形成され、溶接などによって、例えば第2のリング218など、最も外側のリングに取り付けられうる。第1のリング216は、第2のリング218と容器202との間に位置づけられ、容器壁204に密着した最も内側のリングでありうる。例えば、第1のリング216は、第1のリング216の内側エッジの周りの容器壁204に溶接されうる。
【0070】
図4に示される実施形態では、第1のリング216は、特に最も内側のリングとして構成される場合には、容器202と相容性であり、かつ、著しく劣化することなく、長期間、容器の表面の高温環境を耐え抜くことができる、第1の金属を含みうる。例えば、第1のリング216は、先に述べたように、白金族金属又はそれらの合金などの貴金属を含んでよく、幾つかの例では、容器壁204と同じ貴金属を含みうる。第1のリング216はすべて、同じ金属で形成されてよく、あるいは、第1のリング216は、異なる金属を含んでいてもよい。このような異なる金属としては、同じ元素だが異なる比率の合金が挙げられうる。例えば、第1のリング216は、厚さの差異を伴って、あるいは伴わずに用いられうる方式で第1のリングの領域の抵抗性を調整するために、リングの異なる領域において異なる電気抵抗を有する金属を使用してもよい。例えば、第1のリング216は、高い電気抵抗を有する第1の金属の領域と、より低い電気抵抗を有する他の領域とを含みうる。第1のリング216は、滑らかに湾曲かつ連続した外周(エッジ)を含んでよく、幅W1をさらに含む。幅W1は、一定であってよく、あるいは、幅W1は、容器202の周りの角度位置の関数として変動してもよい。
【0071】
第2のリング218は、容器202の壁204から離間しており、かつ、第1のリング216の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング216は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング218は、例えば、限定はしないが、ニッケル、銅、モリブデン又はそれらの合金などのより安価な導電体から形成されうる。第2のリング218は、幅W2をさらに含む。幅W2は、一定であってよく、あるいは、幅W2は、容器202の周りの角度位置の関数として変動してもよい。
【0072】
第1のリング216が最も内側のリングであり、かつ容器壁104に接続されている事例では、第1のリング216の内側エッジは、容器壁204に取り付けられ、かつ容器202の周りの閉ループ内に延在しうる。例えば、第1のリング216の内側エッジは、容器壁204に溶接されうる。同様に、
図4に示される例では、第2のリング218の内側のエッジは、第1のリング216の外側のエッジに取り付けられうる。幾つかの例では、介在する追加のリングが、第1のリング216と第2のリング218の間に位置づけられうる。幾つかの例では、第2のリング218は、最も外側のリングでありうる。しかしながら、他の例では、追加のリングは、例えば最も外側のリングなど、第2のリング218の外側に位置づけられてよく、あるいは、追加のリングは、第1のリング216の内側の第1のリング216と容器壁204との間に位置づけられうる。
【0073】
幾つかの実施形態では、最も外側のリングの厚さは、最も外側のリングが第2のリング218であるか否かにかかわらず、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、電極部分220に隣接した最も外側のリングの領域は、最も外側のリングの他の領域より厚い。このようなより厚い部分は、電極部分220に隣接しうるが、電極部分220と第1のリング216の第1の部分222との間に直接隣接はしない(例えば、
図6、7及び8参照)。例えば、より厚い部分は、他の部分よりも50%以上厚くなっていてよく、例えば、約30%〜約70%の範囲、約35%〜約60%の範囲、又は約40%〜約55%の範囲など、約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分は、容器の円周の周りに電流を誘導するのに役立ち、かつ、電極部分220に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分220に隣接しているが、電極部分220と第1のリング216との間に直接隣接はしない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって、電流密度の低下がもたらされる。よって、電極部分220に隣接した最も外側のリングの部分は、最も外側のリングの電極部分とは反対側の部分など、最も外側のリングの他の部分より厚くなりうる。上述のように、最も外側のリングは、第2のリング218でありうる。しかしながら、他の実施形態では、第2のリング218は、最も外側のリングと第1のリング216との中間、又は最も外側のリングと容器壁204との中間のリングでありうる。
【0074】
図4によってさらに例証されるように、第1のリング216は、第1の厚さT1を含む第1の部分222を含む。第1の部分222は、壁204の一部分の周りに延在し、かつ、フランジの面内における容器202の全周の半分未満(180°未満)の円弧上に延在しうる。他の実施形態では、第1の部分222は、フランジの面内における容器202の全周の半分以上(180°以上)であるが、全周未満(360°未満)の壁204の一部分の周りに延在しうる。例えば、電極部分220が容器202から離れて垂直に延びる、
図4に示される楕円形の容器を考えてみる。電極部分220内に存在する、長手方向軸208を通って延び、長手方向軸208に対して垂直な、フランジ200の面内で無限に延びる垂線224についてもさらに考えてみる。例えば、電極部分220が垂直方向に延びる実施形態では、垂線220は、フランジ200及び容器202を、左右対称に2等分してよく、容器202の短(非主)軸212は垂線224上に存在する。フランジ200の面内に存在する無限に延びる水平線226についても考えてみると、該水平線226は、垂線224に対して垂直であり、長手方向軸208において垂線224と交差し、容器202の長(主)軸210は水平線226上に存在する。
図4に示される実施形態によれば、第1の部分222は、容器壁204周りに、その周囲の半分超であるが全周未満で延在しうる。例えば、第1の部分222は、容器壁204の周囲の半分超であるが全周未満と接触しうる。これは、第1の部分222が、容器壁204の周りに壁の上半分全体にわたって延在し、かつ、容器の左右両方の側に長軸を超えて壁上に下方向に延びる、例証される実施形態に示されている。
図4の実施形態に示されるように、第1のリング216は最も内側のリングであってよく、第1の部分222は、容器壁204と接触する、又は、容器壁204の周りに容器壁204の周囲の半分超であるが全周未満で延在する。これは、第1の部分222が180度を超える円弧上で容器壁204と接触(又はその周りに延在)しうることに着目することによって、別の見方をすることができる。第1の部分222が電極部分220に隣接し、かつ、水平線226の電極部分220と同じ側(頂部側と底部側の境界として水平線226を使用)にあることにも着目すべきである。しかしながら、幾つかの実施形態では、第1の部分222は、180度未満で容器202の周りに延在しうる。
【0075】
第1のリング216は、第2の厚さT2を含む第2の部分228をさらに含む。第2の厚さT2は、第1の厚さT1とは異なりうる。
図4の例証される実施形態では、第2の部分228は、第1の部分222と接触しない容器壁204の部分と接触しうる。代替的な見方をすれば、第1の部分222が、360°−αの角度範囲にわたって容器壁204と接触し、αが180度未満である場合、第2の部分228は、角度範囲αにわたって容器壁204と接触しうる。しかしながら、第2の部分228が第1の部分222と容器壁204との間の接触線を超えて容器202の周りに延在しうることも、
図4から明らかである。よって、第2の部分228と容器壁204との間の接触線は180度未満に対応するとしても、第2の部分228が容器202の周りに延在する角度範囲は、180度を超えうる。これは、フランジ200の面内の第1の部分222と第2の部分228との間にエッジ・トゥ・エッジの重なりを生じる。本文脈において、このような重なりは、フランジ200の面内に存在し、長手方向軸208から外側に無限に延びる少なくとも1つの任意半径方向線230について、該任意半径方向線230が、第1の部分222及び第2の部分228の両方を別々に横断して延びることを意味する。運動の観点から見た場合に、容器壁204から離れる方向に任意の線230に沿って移動する場合には、第1の部分222、次に第2の部分228を順に通過する。重なりの領域では、第1の部分222の外側のエッジの部分は、第1の部分222の部分が、第2の部分228の部分とフランジ200の面内の容器壁204との間になるように、第2の部分228の内側のエッジの部分と接触する。
【0076】
前述の説明から、第1のリング216は容器202の周りの閉ループ内に延在し、かつ、第1のリング216は少なくとも2つの部分222、228を含むことが分かる。部分222又は228はいずれも、容器の全周にわたっては延在しない。これらの部分222、228は、エッジ・トゥ・エッジの重なり領域が存在する入れ子になっており、第1の部分216の外側のエッジは、第2の部分228の内側のエッジと接触する。さらに別の見方をすれば、フランジ200の面内で、長手方向軸208に対して垂直及び長手方向軸208から外側に無限に延び、かつ、第1の部分222と単一点(点E)でのみ交差する、半径方向線232を考えてみる。長手方向軸208に対して垂直及び長手方向軸208から外側に無限に延び、かつ、垂線224の反対側の第1の部分222の別の単一点Fと交差する、半径方向線234についても考えてみる。第1及び第2の半径方向線232、234間の円弧は180度未満の角度αに対応してよく、第1の部分222は、少なくとも360°−αの角度だけ容器202の周りに延在する。同様に、長手方向軸208に対して垂直及び長手方向軸208から外側に無限に延び、かつ、第2の部分228と単一点Gでのみ交差する、半径方向線236を考えてみる。長手方向軸208に対して垂直及び長手方向軸208から外側に無限に延び、さらに、点Gとは異なる単一点Hでのみ第2の部分228と交差する、半径方向線238についても考えてみる。第3及び第4の半径方向線236及び238間の円弧は、180度未満の角度βに対応してよく、第2の部分228は、少なくとも360°−βの角度だけ容器202の周りに延在する。例となる実施形態では、第1の部分222の厚さT1は、第2の部分228の厚さT2未満でありうる。幾つかの実施形態では、第1の部分222及び第2の部分228の材料は、異なる固有の電気抵抗を提供するように選択されうる。例えば、第1の部分222の材料は、第2の部分228より大きい電気抵抗を有する第1の部分222をもたらすように選択されうる。あるいは、第2の部分228の材料は、第1の部分222より大きい電気抵抗を有する第2の部分228をもたらすように選択されうる。
【0077】
第1のリング216に関しては、第1の部分222のみを横断し第2の部分228を横断しない、フランジ200の面内に存在し、長手方向軸208から外側に無限に延び、かつ、長手方向軸208に対して垂直な少なくとも1つの半径方向線240が存在することは、
図4及び前述の説明とともに、明らかであろう。半径方向線240は、電極部分220とさらに交差しうる。同様に、第1のリング216に関して、第2の部分228のみを横断し第1の部分222を横断しない、フランジ200の面内に存在し、長手方向軸208から外側に無限に延び、かつ、長手方向軸208に対して垂直な少なくとも1つの半径方向線242が存在する。
【0078】
図5に例証されるさらに別の実施形態では、容器302に取り付けられた、別の例となるフランジ300が示されている。容器302は、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、上述の下流ガラス製造装置30を構成する容器のうちのいずれか1つ、又は、溶融ガラスを搬送し、ガラス製造装置10を構成する、いずれかの他の金属容器でありうる。容器302は、内部容積306を画成する壁304を含む。容器302は、容器の長さに沿って延びる長手方向中心軸308、及び、長手方向軸308に対して垂直なフランジの面内の断面形状をさらに含む。断面形状は、
図5の例では楕円形の形状として示されているが、容器の長さに沿った位置の関数として、形状及び大きさの両方において変動しうる。他の実施形態では、楕円形の断面形状は、卵形、楕円形、矩形、若しくは、これら又は他の形状の組合せでありうる。例えば、
図5に例証される楕円形の断面形状は、2つの半円形の末端部分など、2つの弧状の末端部分を有する、概ね矩形の形状を含む。
【0079】
フランジ100及び200と同様に、フランジ300は、第1のリング316、第2のリング318、及び、最も外側のリングに取り付けられた電極部分320を備えた、本体部分314を含む。第2のリング318は、幾つかの例では、最も外側のリングであってよく、ここで、電極部分320は、図示されるように、第2のリング318に直接連結されうる。例えば、電極部分320は、第2のリング318と一体化し、それを用いて形成されうる。幾つかの例では、電極部分320は、別個に形成されて、溶接などによって、例えば、第2のリング318などの最も外側のリングに取り付けられうる。第1のリング316は、幾つかの実施形態では、最も内側のリングであってよく、容器壁304に密着されうる。
【0080】
幾つかの実施形態では、最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、ここで、電極部分320に隣接した最も外側のリングの領域は、最も外側のリングの他の領域より厚い。このようなより厚い部分は、電極部分320に隣接しうるが、電極部分320と第1のリング316の第1の部分322との間に直接隣接はしない(例えば
図6、7及び8参照)。例えば、より厚い部分は、他の部分よりも50%以上厚くなっていてよく、例えば約30%〜約70%の範囲、約35%〜約60%の範囲、又は約40%〜約55%の範囲など、約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分は、容器の円周の周りに電流を誘導するのに役立ち、かつ、電極部分320に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分320に隣接しているが、電極部分320と第1のリング316との間に直接隣接はしない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって、電流密度の低下がもたらされる。よって、電極に隣接した最も外側のリングの部分は、例えば最も外側のリングの電極部分320とは反対側の部分など、最も外側のリングの他の部分より厚くなりうる。上述のように、最も外側のリングは、第2のリング318でありうる。しかしながら、他の実施形態では、第2のリング318は、最も外側のリングと第1のリング316との中間、又は最も外側のリングと容器壁304との中間のリングでありうる。
【0081】
図5に示される実施形態では、第1のリング316は、容器302と相容性であり、かつ、著しく劣化することなく、長期間、容器の表面の高温環境を耐え抜くことができる、第1の金属を含みうる。例えば、第1のリング316は、白金族金属又はそれらの合金などの貴金属を含んで差し支えなく、幾つかの例では、容器壁304と同じ貴金属を含みうる。第1のリング316はすべて、同じ金属で形成されてよく、あるいは、第1のリング316は、異なる金属を含んでいてもよい。このような異なる金属としては、同じ元素だが異なる比率の合金が挙げられうる。第1のリング316は、幅W1をさらに含む。幅W1は、一定であってよく、あるいは、W1は、容器302の周りの角度位置の関数として変動してもよい。第1のリング316は、幾つかの実施形態では、滑らかに湾曲かつ連続した外周を含みうる。
【0082】
第2のリング318は、容器302の壁304から離間しており、したがって、第2のリング318は、第1のリング316の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング316は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング318は、例えば、限定はしないが、ニッケル、銅、モリブデン又はそれらの合金などのより安価な導電体から形成されうる。第2のリング318は、幅W2をさらに含む。幅W2は、一定であってよく、あるいは、幅W2は、容器302の周りの角度位置の関数として変動してもよい。
【0083】
第1のリング316が最も内側のリングである事例では、第1のリング316の内側エッジは、容器302の周りの閉ループ内で容器壁304に取り付けられうる。例えば、第1のリング316の内側エッジは、容器壁304に溶接されうる。同様に、
図5に示される例では、第2のリング318の内側のエッジは、第1のリング316の外側のエッジに取り付けられうる。他の例では、介在する追加のリングが、第1のリング316と第2のリング318との間に位置づけられうる。さらには、最も外側のリングなどの追加のリングが、第2のリング318の外側、又は、第1のリング216と容器壁304との間など、第1のリング316の内側に位置づけられてもよい。
【0084】
図5によってさらに例証されるように、第1のリング316は、第1の厚さT1を含む第1の部分322を含む。第1の部分322は、フランジの面内で容器302の全周の半分未満(180°未満)で壁304の一部分の周りに延在しうる。他の実施形態では、第1の部分322は、フランジの面内で容器302の全周の半分以上(180°以上)であるが、全周未満(360°未満)で壁304の一部分の周りに延在しうる。例えば、電極部分320が容器302から離れて垂直に延びる、
図5に示される楕円形の容器を考えてみる。電極部分320を含むフランジ300及び容器302を左右対称に2等分する、無限に延びる垂線324であって、容器302の短(非主)軸312が垂線324上に存在する、垂線324をさらに考えてみる。垂線324に対して垂直な無限に延びる水平線326であって、容器302の長(主)軸310が水平線326上に存在する、水平線326についても考えてみる。
図5に示される実施形態によれば、第1の部分322は、フランジの面内で容器壁304の周囲の半分超(180°超)であるが全周未満(360°未満)の周りに延在しうる。例えば、第1の部分322は、容器壁304の周囲の半分超であるが全周未満と接触しうる。これは、第1の部分322が、壁の上半分全体にわたって容器壁304の周りに延在し、かつ、容器の左右両方の側に長軸を超えて壁の下方向に延びる、例証される実施形態に示されている。
図5の実施形態では、第1のリング316は最も内側のリングであり、第1の部分322は、容器壁304の周囲の半分超であるが全周未満で容器壁304と接触する。第1の部分322は、電極部分320と隣接しており、水平線326の電極部分320と同じ側にあることにも注目すべきである。
【0085】
第1のリング316は、第2の厚さT2を含む第2の部分328をさらに含む。第2の厚さT2は、第1の厚さT1と同じであっても異なっていてもよい。
図5の例証される実施形態では、第2の部分328は、フランジの面内の容器302の全周の半分未満(180°未満)で壁304の一部分の周りに延在しうる。他の実施形態では、第2の部分328は、フランジの面内の容器302の全周の半分以上(180°以上)であるが全周未満(360°未満)で壁304の一部分の周りに延在しうる。第2の部分328は、少なくとも、第1の部分322が接触していない容器壁304の一部分と接触しうる。代替的な見方をすれば、第1の部分322が、360°−αの角度範囲(ここで、αは180度未満である)にわたって容器壁304と接触する場合、第2の部分328は、α以下の角度範囲にわたって容器壁304と接触しうる。しかしながら、第2の部分328が、第1の部分322と容器壁304との間の接触線を越えて容器302の周りに延在しうることも、
図5の実施形態から明らかである。よって、第2の部分328と容器壁304との間の接触線が180度未満に対応するとしても、第2の部分328が容器302の周りに延在しうる角度範囲は、180度を超えうる。
【0086】
第1のリング316は、第1及び第2の部分322、328とは異なり、2つの別々のサブ部分であるサブ部分332a及びサブ部分332bに分けることができ、サブ部分332a及び332bの各々が、容器壁304の少なくとも一部の周りに延在し、各々が厚さT3を有する、第3の部分をさらに含みうる。2つのサブ部分332a及び332bは、垂線324の周りに、反対側にかつ対称的に位置付けられうる。幾つかの実施形態では、サブ部分332a及び332bは、第1の部分322と第2の部分328との間に位置づけられうる。第3の厚さT3は、第2の厚さT2より小さくてよいが、厚さT1より厚く、例えばT1<T3<T2である。
【0087】
幾つかの実施形態では、第1のリング316の内側エッジは、容器壁304に取り付けられ、かつ、容器302の周りの閉ループ内に延在しうる。例えば、第1のリング316の内側エッジは、容器壁304に溶接されうる。同様に、
図5に示される例では、第2のリング318の内側のエッジは、第1のリング316の外側のエッジに取り付けられうる。
【0088】
図5にも示されるように、フランジ300の面内の第1の部分322とサブ部分332a及び332bとの間にはエッジ・トゥ・エッジの重なりが存在する。このような重なりは、長手方向軸308から外側に無限に延び、かつ、長手方向軸308に対して垂直な、及びフランジ300の面内に存在する、少なくとも1つの任意の半径方向線330については、該任意の半径方向線330が、第1の部分322とサブ部分332a又はサブ部分332bのうちの少なくとも1つとの両方を別々に横断して延びることを意味する。加えて、半径方向線330が第2の部分328とサブ部分332a及び332bのうちの少なくとも1つとの両方を横断して延びるように、サブ部分332a及び332bと第2の部分328との間にエッジ・トゥ・エッジの重なりが存在する。最後に、第1の部分322と第2の部分328との間に、エッジ・トゥ・エッジの(接触する)重なりではないが、重なりが存在し、ここで、半径方向線330は、第1の部分322の幅と第2の部分328の幅とを横断して延びる。よって、半径方向線330は、第1のリング316の3つの部分のすべて、例えば322、328並びに332a及び/又は332bを横断する。
【0089】
さらに別の見方をすれば、フランジ300の面内で、長手方向軸308に対して垂直であり、長手方向軸308から外側に無限に延び、かつ、容器302に対して第1の部分322と単一点(点J)でのみ交差する、半径方向線336を考えてみる。長手方向軸308から外側に無限に延び、かつ、長手方向軸308に対して垂直であり、垂線324の反対側の第1の部分322と別の単一点(点K)で交差する、半径方向線338についても考えてみる。半径方向線336、338間の円弧は、180度未満の角度αに対応し、第1の部分322は、容器302の周りに少なくとも360°−αの角度だけ延在する。同様に、長手方向軸308に対して垂直及び長手方向軸308から外側に無限に延び、かつ、サブ部分332aと単一点(点L)でのみ交差する、半径方向線340について考えてみる。長手方向軸308に対して垂直及び長手方向軸308から外側に無限に延び、かつ、サブ部分332aとも単一点(点M)でのみ交差する、半径方向線342についても考えてみる。半径方向線340及び342間の円弧は、180度未満の角度Φに対応し、サブ部分332a(又は332b)の少なくとも一部は、第2の部分328と容器壁304の間に位置づけられうる。実際、サブ部分332aの少なくとも一部は、第2の部分328と第1の部分322の間に位置づけられうる。
【0090】
最後に、水平線326の同じ側だが垂線324の反対側のサブ部分332bと単一点(点N)でのみ交差する、追加的な半径方向線348について考えてみる。半径方向線342及び348間の円弧は、180度未満の角度Ψに対応し、第1の部分322が第2のリング318と接触する角度範囲を画定しうる。同様に、半径方向線340及び344間の円弧は180度未満の角度θに対応し、第2の部分328が容器壁304と接触する角度範囲を画定しうる。
【0091】
第1のリング316については、第1の部分322のみを横断し、第2の部分328もサブ部分332a又は332bも横断しない、フランジ300の面内に存在し、長手方向軸308から外側に無限に延び、長手方向軸308に対して垂直な、少なくとも1つの半径方向線350が存在することもまた、
図5及び前述の説明とともに明白であろう。半径方向線350は、電極部分320とさらに交差しうる。同様に、第1のリング316については、第2の部分328のみを横断し、第1の部分322もサブ部分332a又は332bも横断しない、フランジ300の面内に存在し、長手方向軸308から外側に無限に延び、かつ、長手方向軸308に対して垂直な、少なくとも1つの半径方向線352が存在する。
【0092】
図6に示されるさらに別の実施形態では、容器402に取り付けられた別の例となるフランジ400が示されている。容器402は、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、上述の下流ガラス製造装置30を構成する容器のうちのいずれか1つ、又は溶融ガラスを搬送し、ガラス製造装置10を構成する、いずれかの他の金属容器でありうる。容器402は、内部容積406を画成する壁404を含む。容器402は、容器の長さに沿って延びる長手方向中心軸408と、長手方向軸408に対して垂直な面内における断面形状とをさらに含む。断面形状は、容器の長さに沿った位置の関数として、形状及び大きさの両方において変動しうるが、
図6の例では楕円形の形状として示されている。
図6の断面形状は、長(主)軸410及び短(非主)軸412を含み、その両方が長手方向軸408に対して垂直かつ互いに垂直である。楕円形の断面形状は、卵形、楕円形、矩形、若しくは、これら又は他の形状の組合せでありうる。例えば、
図6に示される楕円形の断面形状は、2つの半円形の末端部分など、2つの弧状の末端部分を有する、概ね矩形の形状を含む。
【0093】
フランジ400は、フランジ100、200及び300と同様に、第1のリング416及び第2のリング418を含む本体部分414と、最も外側のリングに取り付けられた電極部分420とを含む。第2のリング418は、幾つかの例では、最も外側のリングであってよく、ここで、電極部分420は、図示されるように第2のリング418に直接連結しうる。例えば、電極部分420は、第2のリング418と一体化し、それを用いて形成されうる。幾つかの例では、電極部分420は、別個に形成されて、溶接などによって、例えば第2のリング418など、最も外側のリングに取り付けられうる。第1のリング416は、最も内側のリングであってよく、容器壁404に密着されうる。例えば、最も内側のリング416は、第1のリング416の内側エッジの周りの容器壁404に溶接されうる。
【0094】
幾つかの実施形態では、最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、ここで、電極部分420に隣接した最も外側のリングの領域は、最も外側のリングの他の領域より厚い。例えば、例証される実施形態では第2のリング418でもある、
図6の実施形態の最も外側のリングの一部分419a及び419bは、電極部分420と第1のリング416との間に直接的に隣接した最も外側のリングの部分421よりも厚くなりうる。例えば、部分419a及び419bは、部分421よりも50%以上厚くなっていてよく、例えば、約30%〜約70%の範囲、約35%〜約60%の範囲、又は約40%〜約55%の範囲など、約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分は、容器の円周の周りに電流を誘導するのに役立ち、かつ、電極部分420に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分420に隣接しているが、電極部分420と第1のリング416との間に直接隣接はしない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって、電流密度の低下がもたらされる。よって、電極部分420に隣接した最も外側のリングの部分は、例えば最も外側のリングの電極部分420とは反対側の部分421など、最も外側のリングの他の部分より厚くなりうる。上述のように、最も外側のリングは、第2のリング418でありうる。しかしながら、他の実施形態では、第2のリング418は、最も外側のリングと第1のリング416との中間、又は最も外側のリングと容器壁404との中間のリングでありうる。
【0095】
図6に示される実施形態では、第1のリング416は、容器402と相容性であり、かつ、著しく劣化することなく、長期間、容器の表面の高温環境を耐え抜くことができる、第1の金属を含みうる。例えば、第1のリング416は、白金族金属又はそれらの合金などの貴金属を含んで差し支えなく、幾つかの例では、容器壁404と同じ貴金属を含みうる。第1のリング416はすべて、同じ金属で形成されてよく、あるいは、第1のリング416は、異なる金属を含んでいてもよい。このような異なる金属としては、同じ元素だが異なる比率の合金が挙げられうる。第1のリング416は、幅W1をさらに含む。幅W1は、一定であってよく、あるいは、W1は、容器402の周りの角度位置の関数として変動してもよい。
図6に例証される実施形態では、W1は、容器402を中心とした角度位置の関数として変動する。第1のリング416は、滑らかに湾曲かつ連続した外周(エッジ)を含みうる。
【0096】
第2のリング418は、容器402の壁404から離間しており、第1のリング416の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング416は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング418は、例えば、限定はしないが、ニッケル、銅、モリブデン又はそれらの合金などのより安価な導電体から形成されうる。第2のリング418は、幅W2をさらに含む。幅W2は、一定であってよく、あるいは、幅W2は、容器402の周りの角度位置の関数として変動してもよい。
図6に示される実施形態では、W2は、容器402を中心とした角度位置の関数として変動する。
【0097】
図6に示されるフランジ400は、
図5が、第1の部分322によって生成される角度α(線336及び338の間の角度)が、線340及び342の間のサブ部分332a及びサブ部分332bの角度θより大きく、前述の線が、先の例のようにそれらのそれぞれのサブ部分と単一点でのみ接触する、フランジの実施形態を示していること以外は、
図5に示されるフランジ300と同一である。
図6は、第1のリング416の第1の部分422によって生成される角度α(半径方向線436と438の間の角度)が、長手方向軸408から外側に無限に延び、かつ、長手方向軸408に対して垂直な線440及び442の間の第1のリング416のサブ部分432a及び432bの間の角度θ未満であり、前述の線がそれらのそれぞれのサブ部分と単一点でのみ接触する実施形態を具体的に示している。したがって、
図5の実施形態では、サブ部分332a(及び332b)は容器壁304に接触するのに対して、
図6の実施形態では、サブ部分432a及び432bは容器402の壁404には接触しない。
【0098】
図7に示される別の実施形態では、容器502に取り付けられた別の例となるフランジ500が示されている。容器502は、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、上述の下流ガラス製造装置30を構成する容器のうちのいずれか1つ、又は溶融ガラスを搬送し、ガラス製造装置10を構成する、いずれかの他の金属容器でありうる。容器502は、内部容積506を画成する壁504を含む。容器502は、容器の長さに沿って延びる長手方向中心軸508、及び長手方向軸508に対して垂直なフランジの面内の断面形状をさらに含む。断面形状は、容器の長さに沿った位置の関数として、形状及び大きさの両方において変動しうるが、
図7の例では楕円形の形状として示されている。楕円形の断面形状は、卵形、楕円形、矩形、若しくは、これら又は他の形状の組合せでありうる。例えば、
図7に示される楕円形の断面形状は、2つの半円形の末端部分など、2つの弧状の末端部分を有する、概ね矩形の形状を含む。
【0099】
フランジ500は、フランジ100、200、300及び400と同様であり、第1のリング516及び第2のリング518、並びに、最も外側のリングに取り付けられた電極部分520を備えた、本体部分514を含む。したがって、それらの主要構成要素に関するフランジ200、300及び400の前述の説明は、フランジ500に適用可能である。第2のリング518は、幾つかの例では、図示されるように電極部分520が第2のリング518に直接連結しうる、最も外側のリングでありうる。例えば、電極部分520は、第2のリング518と一体化し、それを用いて形成されうる。幾つかの例では、電極部分520は、別個に形成されて、溶接などによって、例えば第2のリング518など、最も外側のリングに取り付けられうる。第1のリング516は、幾つかの実施形態では、最も内側のリングであってよく、容器壁504に密着されうる。
【0100】
図7に示される実施形態では、第1のリング516は、容器502と相容性であり、かつ、著しく劣化することなく、長期間、容器の表面の高温環境を耐え抜くことができる、第1の金属を含みうる。例えば、第1のリング516は、白金族金属又はそれらの合金などの貴金属を含んで差し支えなく、幾つかの例では、容器壁504と同じ貴金属を含みうる。第1のリング516はすべて、同じ金属で形成されてよく、あるいは、第1のリング516は、異なる金属を含んでいてもよい。このような異なる金属としては、同じ元素だが異なる比率の合金が挙げられうる。第1のリング516は、幅W1をさらに含む。幅W1は、一定であってよく、あるいは、W1は、長手方向軸508に対する容器502の周りの角度位置の関数として変動しうる。第1のリング516は、滑らかに湾曲かつ連続した外周(エッジ)を含みうる。
【0101】
第2のリング518は、容器502の壁504から離間しており、第1のリング516の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング516は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング518は、例えば、限定はしないが、ニッケル、銅及びそれらの合金などのより安価な導電体から形成されうる。第2のリング518は、幅W2をさらに含む。幅W2は、一定であってよく、あるいは、幅W2は、容器502の周りの角度位置の関数として変動してもよい。
【0102】
幾つかの実施形態では、最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、ここで、最も外側のリングの領域520は、最も外側のリングの他の領域より厚い。例えば、例証される実施形態では第2のリング518でもある、
図7の実施形態の最も外側のリングの一部分519a,bは、電極部分520と第1のリング516との間に直接位置付けられた最も外側のリングの部分521よりも厚くなりうる。例えば、部分519a及び519bは、部分521よりも50%以上厚くなっていてよく、例えば約30%〜約70%の範囲、約35%〜約60%の範囲、又は約40%〜約55%の範囲など、例えば約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分は、容器の円周の周りに電流を誘導するのに役立ち、かつ、電極部分520に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分520に近いが、電極部分520と第1のリング516との間に直接隣接はしない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって、電流密度の低下がもたらされる。よって、電極部分520に近い最も外側のリングの部分は、例えば最も外側のリングの電極部分とは反対側の部分など、最も外側のリングの他の部分より厚くなりうる。上述のように、最も外側のリングは第2のリング518でありうる。しかしながら、他の実施形態では、第2のリング518は、最も外側のリングと第1のリング516との中間、又は、最も外側のリングと容器壁504との中間のリングでありうる。
【0103】
第1のリング516が最も内側のリングである事例では、第1のリング516の内側エッジは、容器壁504に取り付けられて、容器502の周りの閉ループ内に延在しうる。例えば、第1のリング516の内側エッジは、容器壁504に溶接されうる。同様に、
図7に示される例では、第2のリング518の内側エッジは、第1のリング516の外側のエッジに取り付けられうる。他の例では、例えば介在する追加のリングなどの介在する部分が、第1のリング516と第2のリング518との間に位置づけられうる。さらには、追加のリングは、第2のリング518の外側、又は、第1のリング516と容器壁504の間など、第1のリング516の内側に位置づけられてもよい。
【0104】
図5及び6の実施形態(フランジ300及び400)と同様に、第1のリング516は、それぞれ、3つの厚さT1、T2及びT3を有する、少なくとも3つの部分、すなわち、第1の部分522、第2の部分528、及び2つのサブ部分532a及び532bに分けられる第3の部分を含みうる。3つの部分のいずれも、容器502の全周には延在しない。サブ部分532a及び532bは、反対側にかつ対称的に位置付けられうる。フランジ500は、第2の部分528の一部分が、サブ部分530a及び530bと第1の部分522との間に位置づけられるという点で、少なくともフランジ300及び400とは異なっている。したがって、3つの部分522、528及びサブ部分532a及び532bのすべてを別々に横断して延在する、フランジ500の面内で長手方向軸508から外側に無限に延び、かつ、長手方向軸508に対して垂直な、少なくとも1つの線550が存在する。2つの部分のみ、すなわち第2の部分528と、サブ部分532a又は532bのうちのいずれか1つのみとを横断して延在する、フランジ500の面内で長手方向軸508から外側に無限に延び、かつ、長手方向軸508に対して垂直な、少なくとも1つの線552も存在する。第1及び第2の部分522及び528のみを横断して延在するであろう長手方向軸508から延びる線(例えば線550)が存在するように、サブ部分532aの角度範囲を短縮する(例えば、破線556でサブ部分532aを切り捨てることによって)など、他のフランジ構成もまた可能であることは、
図7から容易に観察されうる。このような短縮がサブ部分532bについても行われうることは、容易に理解できよう。
【0105】
第1のリング516に関し、第1の部分522の幅のみを横断し、第2の部分528もサブ部分532a又は532bも横断しない、フランジ500の面内で長手方向軸508から外側に無限に延び、かつ、長手方向軸508に対して垂直な、少なくとも1つの線558が存在することもまた、
図7及び前述の説明とともに明白であろう。線558は、電極部分520とさらに交差しうる。同様に、第1のリング516に関し、第2の部分528のみを横断し、第1の部分522もサブ部分532a又は532bも横断しない、フランジ500の面内で長手方向軸508から外側に無限に延び、かつ、長手方向軸508に対して垂直な、少なくとも1つの線560が存在する。
【0106】
図8に示されるフランジ600は、フランジ100、200、300、400及び500と同様であり、第1のリング616及び第2のリング618を含む本体部分614と、最も外側のリングに取り付けられた電極部分620とを含む。したがって、主要構成要素についてのフランジ100、200、300、400及び500の前述の説明は、適切な場合には、
図8のフランジにも適用されうる。第2のリング618は、幾つかの例では、最も外側のリングであってよく、ここで、電極部分620は、図示されるように、第2のリング618に直接連結しうる。例えば、電極部分620は、第2のリング618と一体化し、それを用いて形成されうる。幾つかの例では、電極部分620は、別個に形成されて、溶接などによって、例えば第2のリング618などの最も外側のリングに取り付けられてもよい。第1のリング616は、最も内側のリングであってよく、容器602の壁604に密着されうる。
【0107】
図8に示される実施形態では、第1のリング616は、容器602と相容性であり、かつ、著しく劣化することなく、長期間、容器の表面の高温環境を耐え抜くことができる、第1の金属を含みうる。例えば、第1のリング616は、白金族金属又はそれらの合金などの貴金属を含んで差し支えなく、幾つかの例では、容器壁604と同じ貴金属を含みうる。第1のリング616はすべて、同じ金属で形成されてよく、あるいは、第1のリング616は、異なる金属を含んでいてもよい。このような異なる金属としては、同じ元素だが異なる比率の合金が挙げられうる。第1のリング616は、幅W1をさらに含む。幅W1は、一定であってよく、あるいは、容器602の周りの角度位置の関数として変動してもよい。第1のリング616は、滑らかに湾曲かつ連続した外周を含みうる。
【0108】
加えて、第1のリング616は、それぞれ、例えば、フランジ200の一部分222及び228に対応する第1の部分622及び第2の部分628を含む。
【0109】
第2のリング618は、容器602の壁604から離間しており、したがって、第2のリング618は、第1のリング616の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング616は、白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング618は、ニッケル、銅、又はモリブデンなどのより安価な導電体から形成されうる。第2のリング618は、幅W2をさらに含む。幅W2は、一定であってよく、あるいは、幅W2は、容器602の周りの角度位置の関数として変動しうる。
【0110】
幾つかの実施形態では、最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、ここで、電極部分620に近い最も外側のリングの領域は、最も外側のリングの他の領域より厚い。例えば、例証される実施形態では第2のリング618でもある、
図8の実施形態の最も外側のリングの一部分650a,bは、電極部分620と第1のリング616との間に直接的に隣接する最も外側のリングの部分652より厚くなりうる。例えば、部分650a及び650bは、部分652よりも50%以上厚くなっていてよく、例えば、約30%〜約70%の範囲、約35%〜約60%の範囲又は約40%〜約55%の範囲など、約25%〜約75%の範囲でより厚くなりうる。最も外側のリングのより厚い部分650a,bは、容器の円周の周りに電流を誘導するのに役立ち、かつ、電極部分620に近い最も外側のリングにおけるホットスポットの形成を、例えば排除するなど、最小限に抑える。このような過熱は、電極部分及びその周辺での電流密度が高いことから生じうる。電極部分620に近いが、電極部分620と第1のリング616との間に直接隣接はしない、最も外側のリングのより厚い部分は、増加した断面積を呈し、したがって電流密度は低下する。よって、電極部分620に隣接した最も外側のリングの部分は、例えば電極部分とは反対側の最も外側のリングの部分など、最も外側のリングの他の部分より厚くなりうる。上述のように、最も外側のリングは、第2のリング618でありうる。しかしながら、他の実施形態では、第2のリング618は、最も外側のリングと第1のリング616との中間、又は最も外側のリングと容器壁604との中間のリングでありうる。
【0111】
第1のリング616が最も内側のリングである事例では、第1のリング616の内側エッジは、容器壁604に取り付けられ、かつ、容器602の周りの閉ループ内に延在しうる。例えば、第1のリング616の内側エッジは、容器壁604に溶接されうる。同様に、
図8に示される例では、第2のリング618の内側エッジは、第1のリング616の外側のエッジに取り付けられうる。他の例では、介在する部分、例えば介在する追加のリングが、第1のリング616と第2のリング618との間に位置づけられうる。さらには、追加のリングは、第2のリング618の外側、又は、第1のリング616と容器壁604の間など、第1のリング616の内側に位置づけられてもよい。
【0112】
図8の実施形態では、第1のリング616は、その外側エッジに、電流を誘導するのにさらに役立つノッチ654を含み、該ノッチは、水平線626の電極部分620とは反対側に位置している。さらには、先に記載された第1のリング114、216、316、416又は516は、いずれも、水平線124、226、326、426、526に対して、それぞれ、第1のリングの電極部分120、220、320、420及び520とは反対側に切り欠き部分を含む、ノッチを含みうる。
図8に例証される実施形態では、ノッチ654はV字状の切り欠きであるが、さらなる実施形態では、ノッチ654は、例えば矩形の形状など、他の形状でありえよう。
【0113】
容器702に取り付けられた例となるフランジ700の断面図が
図9に示されている。容器702は、例えば、第1、第2及び第3の導管32、38及び46、清澄容器34、混合容器36、送給容器40、出口導管44及び入口50を含む、溶融炉と上述の成形本体との間の下流ガラス製造装置30を構成する金属容器のいずれか1つ、又は溶融ガラスを搬送し、ガラス製造装置10を構成する、いずれかの他の金属容器でありうる。容器702は、内部容積706を取り囲み、容器の長さに沿って延びる長手方向中心軸708を含む壁704と、長手方向軸708に対して垂直なフランジの面内における断面形状とによって画成される。容器の断面形状は、容器の長さに沿った位置の関数として、形状及び大きさの両方において変動しうるが、
図9の例では円形の断面として示されている。したがって、長手方向軸708は、容器の円形の断面の中心に位置している。
【0114】
フランジ700は、第1のリング712及び第2のリング714を含む本体部分710を含む。
図9の実施形態では、フランジ700は、本体部分710の最も外側のリングに取り付けられた2つの電極部分716a及び716bを含み、該2つの電極部分は、180度ずれた位置にあり、水平線720の両側に位置づけられる。第2のリング714は、幾つかの例では、最も外側のリングであってよく、ここで、電極部分716a及び716bは、図示されるように、第2のリング714に直接連結している。例えば、電極部分716a及び716bは、最も外側のリングと一体化し、それを用いて形成されうる。幾つかの例では、電極部分716a及び716bは、別個に形成されて、溶接などによって、例えば第2のリング714など、最も外側のリングに取り付けられうる。本明細書で用いられる場合、第1のリング712は、最も内側のリングであってよく、容器702に密着されうる。
【0115】
図9に示される実施形態では、第1のリング712は、容器702と相容性であり、かつ、著しく劣化することなく、長期間、容器の外面の高温環境を耐え抜くことができる、第1の金属を含む。例えば、第1のリング712は、白金族金属又はそれらの合金などの貴金属を含んで差し支えなく、幾つかの例では、容器702と同じ貴金属を含みうる。第1のリング712はすべて、同じ金属で形成されてよく、あるいは、第1のリング712は、異なる金属を含んでいてもよい。第1のリング712は、幅W1をさらに含む。幾つかの実施形態では、幅W1は、第1のリングを中心とした角度位置に対して変動しうる。例えば
図9実施形態など、他の実施形態では、幅W1は、実質的に角度的に一定でありうる。
【0116】
第2のリング714は、容器702の壁704から離間しており、第1のリング712の周りの閉ループ内に位置付けられ、かつ、第1のリング712よりも容器壁704からの距離が遠く、したがって第1のリング712よりも低い温度に曝露され、第1のリング712の製造に用いられる一又は複数の金属とは異なる金属を含みうる。例えば、第1のリング712は白金族金属又はそれらの合金を含む貴金属から形成されうる一方、第2のリング714は、ニッケル、銅又はモリブデンなどのより安価な導電性金属から形成されうる。第2のリング714は、幅W2をさらに含む。幅W2は、容器702に対する角度位置の関数として変動してよく、あるいは、W2は、実質的に一定であってもよい。幾つかの実施形態では、第2のリング714の内側エッジは、第1のリング712の外側エッジに溶接などによって直接連結されうる。
【0117】
第1のリング712は、容器702の周りの閉ループ内に延在しており、第1のリング712が最も内側のリングである事例では、第1のリング712は、容器壁704の外周の周りの容器702に取り付けられうる。例えば、第1のリング712の内側エッジは、容器壁704の外面に溶接されうる。同様に、
図9に示される例では、第2のリング714の内側のエッジは、第1のリング712の外側のエッジに取り付けられうる。他の例では、介在する部分、例えば介在する追加のリングが、第1のリング712と第2のリング714との間に位置づけられうる。さらには、追加のリング、例えば最も外側のリングは、第2のリング714の外側、又は、例えば第1のリング712と容器壁704の間など、第1のリング712の内側に位置づけられてもよい。
【0118】
幾つかの実施形態では、最も外側のリングの厚さは、フランジが取り付けられた容器を中心とした角度位置の関数として変動しうる。例えば、最も外側のリングは、ニッケル、銅、モリブデン、又は白金よりも安価かつ温度に対する耐久性が乏しい他の金属、若しくはそれらの合金から形成されてよく、ここで、電極部分716a、716bに近い最も外側のリングの領域は、最も外側のリングの他の領域より厚い。上述のように、最も外側のリングは第2のリング714でありうる。しかしながら、他の実施形態では、第2のリング714は、最も外側のリングと第1のリング712との中間、又は最も外側のリングと容器壁704との中間のリングでありうる。
【0119】
図9によってさらに例証されるように、第1のリング712は、水平線720の両側に位置付けられた2つのサブ部分718a及び718bを含み、かつ、厚さT1を含みうる。サブ部分718aは、容器702の周りに延在してよく、容器702の全周の半分以下と接触しうる。同様に、サブ部分718bもまた、容器702の全周の半分未満と接触しうる。例えば、
図9の実施形態では、サブ部分718a及び718bはいずれも、容器の周囲の半分未満で容器702の周りに延在し、したがって、サブ部分のいずれも容器の周囲の全周にわたっては延在しない、別々のサブ部分である。幾つかの実施形態では、サブ部分718a及び718bは、互いに接触しないことは明らかであろう。例えば、サブ部分718a及び718bは、それらのそれぞれの電極部分716a及び718bに隣接して位置づけられてよく、長手方向軸708を通って延び、長手方向軸708に対して垂直な垂線724は、両方のサブ部分を通って延びる。サブ部分718a及び718bは、同じ厚さT1を有してよく、あるいは、サブ部分718a及び718bは、異なる厚さT1a及びT1b(T1bはT1aとは異なる)を有していてもよい。
【0120】
第1のリング712は、サブ部分722a及びサブ部分722bをさらに含む。サブ部分722a及び722bは、同じ厚さT2を有していてもよく、あるいは、サブ部分722a及び722bは、異なる厚さT2a及びT2b(T2bはT2aとは異なる)を有していてもよい。サブ部分718a及び718bと同様に、サブ部分722a及び722bは分離されており、容器702の周りに対向して位置付けられている。また、サブ部分718a及び718bと同じく、サブ部分722a及び722bは、各々、容器702の周りに180度未満で延在する。幾つかの実施形態では、T1はT2より小さい。幾つかの実施形態では、T1a及びT1bは等しく、かつ、T2a及びT2bは等しく、かつ、T1a、T1bは、T2a、T2bより小さい。幾つかの実施形態では、各サブ部分の材料は、異なる固有の電気抵抗を有するように選択されうる。
【0121】
サブ部分718a、718b及び722a、722bが長手方向軸708に対して重なり合うサブ部分であることは、
図9及び前述の説明から明白である。したがって、サブ部分722a又はサブ部分722bのうちのいずれも横断することなく、サブ部分718a又は718bのうちの一方を横断する、長手方向軸708から外側に無限に延び、長手方向軸708に対して垂直な、少なくとも1つの線726が存在する。サブ部分718a又は718bのうちの一方と、サブ部分722a又はサブ部分722bのうちの一方との両方を横断する、長手方向軸708から外側に無限に延び、長手方向軸708に対して垂直な、少なくとも1つの線728もまた存在しうる。最後に、サブ部分718a又はサブ部分718bのうちのいずれも横断することなく、サブ部分722a又は722bのうちの一方を横断する、フランジの面内で長手方向軸708から外側に無限に延び、長手方向軸708に対して垂直な、少なくとも1つの半径方向線730が存在する。
【0122】
多くのフランジ設計が作出されうることは、前述の開示の利益を享受する当業者にとって明らかであろう。特に、フランジが交差する(取り付けられた)容器壁へと電流が均一に送給されるように、フランジにおける角度位置の関数としてのフランジの通電容量を調整可能な、一貫した設計方法論が想定されうる。したがって、このような方法の1つにおいて、第1の工程は、初期のフランジ及び容器設計をパラメータ化することを含む。初期のフランジ及び/又は容器設計は、既存の物理的フランジ及び/又は容器であって差し支えなく、あるいは、初期のフランジ及び/又は容器は、仮想設計であってもよい。パラメータ化するとは、フランジ及び/又は容器を、構造及びその動作特性を定める必要なパラメータ値まで引き下げることを意味する。例えば、リングの最も内側のエッジにおいて、所定の壁厚を有する容器に取り付けられた単一のリングのみを有する単純な円形対称のフランジは、リングの外周を画成する外半径、フランジの内側のエッジを画成する内半径、厚さ、及び材料(それ自体が例えば電気抵抗などによって少なくとも定められている)、容器の壁厚、さらには、容器を通る溶融材料(例えば溶融ガラス)の流量などであるがそれらに限られない、パラメータ値によってパラメータ化されうる。このようなパラメータ値は、フランジ内の所定の電流について、フランジ上又は内の任意の地点における電流密度を計算するために用いられうる。必要な計算は、例えば、電気回路解析ソフトウェアなど、その目的用に設計又は適合されたソフトウェアを用いて行われうる。加えて、電流密度は、容器を通る材料の所定の流量について、所定の位置におけるフランジ又は容器壁の温度を決定するために用いられうる。これらの計算結果は、所望の電流密度及び/又は温度と比較されうる。流れ場及び温度場は、例えば、ANSYS Fluentソフトウェアを使用して、計算されうる。
【0123】
したがって、本方法は、パラメータ化された値、並びに、例えば、フランジに供給される所定の電流、及び幾つかの例では、容器を通る材料(例えば溶融ガラス)の流量を使用して、フランジ及び/又は容器内の電流密度、及び/又は、フランジ及び/又は容器内の温度を計算する工程をさらに含みうる。計算された電流密度及び/又は温度は、フランジ及び/又は容器を修正するための基礎として用いられうる。例えば、フランジの初期の設計は、限定せずに、フランジを含む材料の第1のリングの個別の部分の数、第1のリングの個別の部分の厚さ、第1のリングの個別の部分の形状、第1のリングの幅の変動、及び、リング又はそれらの部分を含む1つ以上の材料の固有の電気抵抗などのうちの少なくとも1つを変化させることによって修正されうる。変更がなされた場合、フランジ及び/又は容器上の所定の地点における電流密度及び/又は温度は、再計算されて、再び、例えば、容器の頂部と容器の側部又は底部との間の電流密度及び/又は温度における差異など、フランジ又は容器における対象とする領域間の電流密度及び/又は温度における所望される差異と比較されうる。所定の地点における電流密度及び/又は温度また、所定の限界値など、所定の値と比較されうる。修正及び計算のプロセスは、電流密度及び/又は温度における所望される差異が達成されるまで、反復して適用されうる。完了次第、最終的な設計のパラメータ値を用いて、最終的なパラメータ値を示すフランジ及び/又は容器が製造されうる。
【実施例】
【0124】
実施例1
FLUENTソフトウェア及び電気回路解析用に開発されたソフトウェアを使用してモデル化を行い、
図4のフランジ、すなわちフランジ200に従ったフランジ設計を有する、内部容積806を取り囲む壁804を含む楕円形の容器802用に構成された、
図10に示される空の(溶融ガラスを含まない)通常のフランジ800を評価した。容器壁804は40ミル(およそ50.8cm)の一定の厚さを有していた。通常のフランジ800は、本体部分808及びそこから延びる電極部分810を備えていた。本体部分808は、0.5インチ(1.27cm)の厚さを有する最も外側のニッケルリング810と、異なる厚さの2つの白金−ロジウムリング、すなわち、最も外側のリング810と容器802との間に位置づけられた、80ミル(およそ0.41cm)の一定の厚さを有する最も内側のリング812と、40ミル(およそ0.20cm)の一定の厚さを有する中間リング814とを備えていた。白金−ロジウムリング812及び814はいずれも、容器802の全周に延在していた。容器802は、6インチ(15.24cm)の非主軸816及び20インチ(50.8cm)の主軸818を有していた。フランジ800は、例えば異なる厚さの複数の部分など、複数の部分を含む、同等の第1のリングを含んでいなかった。
図4に従ったフランジであるフランジ200は、最も外側のニッケルリング218と、40ミル(およそ0.20cm)の一定の厚さを有する第1の部分222及び80ミル(およそ50.8cm)の一定の厚さを有する第2の部分228を含む白金−ロジウムの最も内側のリング216とを備えていた。フランジ200を、同じ容器802の周りに位置付けた。フランジは、単一の電極部分220を備えていた。
【0125】
モデル化において、両方のフランジを、60インチ(152.4cm)の間隔をあけた同一の構成の第2のフランジと組み合わせ、10,000アンペアを供給した。すなわち、フランジ800を第2のフランジ800と組み合わせ、フランジ200を第2のフランジ200と組み合わせた。モデル化は、白金の溶融温度(1768.3℃)を優に上回る、通常のフランジ800における最高温度である2030℃を示した。最高温度は、電極部分810と容器802の頂部との間の直線上の中間リングで生じた。最大電流密度は16アンペア/mm
2であり、容器壁804の弧状の部分に隣接した最も内側のリング812で生じた。ニッケルリング810で生じた最高温度は1096℃であった。
【0126】
フランジ800とは対照的に、フランジ200は、同一条件下で、1523℃の最高温度を示し、これは、電極部分220と容器802の頂部との間の直線上の第1の部分222において生じた。最高温度は白金の溶融温度未満であった。最大電流密度は11アンペア/mm
2であり、フランジ800と同じ位置で生じた。最も外側のニッケルリングの最高温度は650℃であった。
【0127】
実施例2
図11は、フランジ200の電流密度と比較した、12,000アンペア/mm
2の電流を供給した、容器(導管)の長さに沿った3つの位置におけるフランジ800のモデル化された電流密度を示している。フランジ200及び800を、この場合もやはり、組み合わせるフランジ間の間隔を60インチ(152.4cm)として、9インチ(およそ22.9cm)の非主軸及び30インチ(76.2cm)の主軸を有する楕円形の容器(導管)上で、同一のそれぞれのフランジと組み合わせた。容器の頂部、主軸(エッジ)、及び容器の底部における電流密度を計算した。通常のフランジ800は、本体部分808及びそこから延びる電極部分810を備えていた。本体部分808は、0.5インチ(1.27cm)の厚さを有する最も外側のニッケルリング810及び、異なる厚さの2つの白金−ロジウムリング、すなわち、最も外側のリング810と容器802との間に位置づけられた、80ミル(およそ0.41cm)の一定の厚さを有する最も内側のリング812と、40ミル(およそ0.20cm)の一定の厚さを有する中間リング814とを備えていた。白金−ロジウムリング812及び814はいずれも、容器802の全周にわたって延在していた。容器802は、9インチ(22.9cm)の非主軸816及び30インチ(76.2cm)の主軸818を有していた。フランジ200は、0.5インチ(1.27cm)の厚さを有する最も外側のニッケルリング218と、40ミル(およそ0.20cm)の一定の厚さを有する第1の部分222、及び、80ミル(およそ50.8cm)の一定の厚さを有する第2の部分228を含む、白金−ロジウムの最も内側のリング216と、単一の電極部分220とを備えていた。フランジ200を、同じ容器802の周りに位置付けた。
【0128】
図11は、左側のフランジ(−30インチ、76.2cmの位置)では、通常のフランジ設計の容器の頂部における電流密度(曲線900)は、およそ7.3アンペア/mm
2であり、容器の底部(曲線904)では約5.3アンペア/mm
2であったことを示している。容器のエッジ(曲線902)では、電流密度は約7.3アンペア/mm
2であった。この例では60インチ(152.4cm)である、フランジ間の距離にわたって、電流密度は、およそ0.55アンペア/mm
2(約7.3アンペア/mm
2から6.75アンペア/mm
2まで)変動する。加えて、電流は、容器−フランジ接合(すなわち、図における−30インチ(−76.2cm)及び+30インチ(+76.2cm))において最大になり、フランジ間の中間点に向かって低下することが見て取れる。
【0129】
比較において、フランジ200の容器の頂部(曲線906)におけるフランジ容器接合(例えば−30インチ(−76.2cm))における電流密度は、約6.5アンペア/mm
2しかなく、容器の底部(曲線910)のフランジ容器接合(例えば−30インチ(−76.2cm))では約5.8アンペア/mm
2である。容器のエッジ(側部)(曲線910)では、電流密度は約7.3アンペア/mm
2である。よって、容器−フランジ接合における容器の円周の周りの電流の最大変動は、約1.5アンペア/mm
2であり、電流が容器の頂部から遠ざかる方向に誘導されることを示唆している。
【0130】
さらに重要なことには、フランジ間の距離にわたって、容器の頂部(曲線906)に沿った電流密度は、通常のフランジと同じ供給電流について、およそ0.26アンペア/mm
2(約6.76アンペア/mm
2から6.5アンペア/mm
2まで)しか変動しない。この差異は、合計で、容器の頂部における最大電流密度の約4%に達する。さらには、図にはっきりと見られるように、容器の頂部に沿った電流密度は、通常のフランジとは対照的に、容器−フランジ接合において(すなわち−30インチ(−76.2cm)及び+30インチ(+76.2cm))最低であり、1つのフランジから隣接するフランジへと移動する際に、最大電流密度まで急速に増加する。例証される例では、電流密度は、容器−フランジ接合の非常に近くでピークになる。本願の例では、電流密度は、フランジの約8インチ(20.32cm)以内、又は隣接するフランジ間の総距離の約13%以内で最大に達する。加えて、電流密度は、
図11の例では約−22インチ(−55.88cm)及び+22インチ(+55.88cm)(距離44インチ、111.76cm)に位置するピーク間で、実質的に一定であり、約0.05アンペア/mm
2以下で変動する。
【0131】
まとめると、同じ入力電流については、本明細書に記載の実施形態に従ったフランジは、例えば本願の例における容器の頂部など、電極部分の位置に最も近い点(電流がフランジ本体に導入される場所)における、フランジと容器壁との間の接合における電流密度を、通常のフランジと比較した場合に、顕著に低下させることができ、隣接するフランジ間の距離にわたって容器の頂部に沿ってより一貫した(均一な)電流密度を生成することを示す。
【0132】
図12は、12,000アンペア/mm
2の供給電流を用いた、容器(導管)の長さに沿った同じ3つの位置における、同じ配置のフランジ800及び200についてのモデル化された温度を示している。フランジ200及び800は、この場合も、同一のそれぞれのフランジを組合せ、容器の頂部(12時の位置)、主軸(3時の位置)、及び容器の底部(6時の位置)における温度を計算した。
図12は、左側のフランジ(−30インチ、76.2cmの位置)において、容器−フランジ接合における通常のフランジ設計についての容器の頂部(12時の位置)における温度が、およそ1360℃であり(曲線912)、容器の底部(6時の位置)では約1140℃である(曲線916)ことを示している。容器−フランジ接合における容器の側部(3時の位置)では、温度は約1220℃である(曲線914)。
【0133】
比較において、フランジ200の容器フランジ接合における容器の頂部(12時の位置)における温度はおよそ1300℃であり(曲線918)、容器の底部では約1075℃である(曲線922)。容器−フランジ接合における容器の3時の位置では、温度は約1220℃である(曲線920)。
【0134】
図11及び12についてのデータは、本開示の実施形態に従ったフランジが、容器の頂部近くのフランジの電流をフランジの他の領域に再分配することによって、フランジが取り付けられた容器の機能を危険にさらすことなく、高電流(例えば、>8000アンペア)を運ぶことができることを示している。加えて、データは、電流分布及び温度の均一性が、本明細書のさまざまな実施形態に記載されるフランジ設計使用して改善できることを示している。例えば、約−25インチ(−63.5cm)の位置(
図11の線924)において、通常のフランジを採用する容器の円周の周り(頂部、側部及び底部)の電流密度は、約5.5〜約7.25アンペア/mm
2の範囲にわたり、約1.75アンペア/mm
2又は約24.1%の差で変動する。フランジ200については、容器の円周の周りの電流密度は、約6.15アンペア/mm
2〜約6.75アンペア/mm
2の範囲にわたり、約0.6アンペア/mm
2又は約8.9%の差で変動する。
【0135】
図12における約−25インチ(−63.5cm)の位置(
図12の線926)において、容器温度は、通常のフランジ800を採用する場合には、約1170℃〜約1225℃の範囲にわたり、約55℃又は約5.5%の差で、容器の円周の周囲で変動する。同じ位置におけるフランジ200については、温度は、約1180℃〜約1210℃の範囲にわたり、約30℃又は約2.5%の差で、容器の円周の周辺で変動する。よって、データは、両方のフランジ設計についての導管の中心(位置0)では実質的に均一に近い温度を示しているが、本明細書に記載の実施形態に従ったフランジを採用する容器は、通常のフランジよりも、フランジ容器接合、特に電極部分に最も近い位置において、より低い電流密度を示し、フランジに対してより近くで、より大きい周辺温度均一性を示すことができ、かつ、フランジ間の容器の相当の長さにわたって、電流密度及び温度の顕著な均一性を維持することができる。
【0136】
本発明の精神及び範囲から逸脱することなく、本開示の実施形態にさまざまな修正及び変形がなされうることは、当業者にとって明白であろう。よって、本開示は、添付の特許請求の範囲及びそれらの等価物の範囲内に入ることを条件として、このような実施形態の修正及び変形にも及ぶことが意図されている。
【0137】
以下、本発明の好ましい実施形態を項分け記載する。
【0138】
実施形態1
溶融材料を処理するための装置において、
壁を含み、前記溶融材料を搬送するように配置された、容器、及び
前記容器に取り付けられ、前記容器の壁に電流を送給するように構成され、かつ、閉ループにおいて前記容器の全周に延在する第1のリングを備えた、フランジであって、前記第1のリングが、第1の厚さを含む第1の部分と、前記第1の厚さとは異なる第2の厚さを含む第2の部分とを含んでおり、前記第1の部分が、前記第2の部分と前記容器壁との間に位置づけられ、かつ、前記第1の部分及び前記第2の部分のいずれも、前記容器の全周にわたっては延在しないように、前記第1の部分及び前記第2の部分が、前記フランジの面内に重なり合うエッジを含んでいる、フランジ
を備えた、装置。
【0139】
実施形態2
前記第1のリングの前記第1の部分の前記厚さが、前記第1のリングの前記第2の部分の前記厚さより小さいことを特徴とする、実施形態1に記載の装置。
【0140】
実施形態3
前記第1のリングの周囲の閉ループに延在する第2のリングをさらに含むことを特徴とする、実施形態1に記載の装置。
【0141】
実施形態4
前記第2のリングの厚さが、前記第2の部分の前記厚さより大きいことを特徴とする、実施形態3に記載の装置。
【0142】
実施形態5
前記第1のリングが第1の金属を含み、前記第2のリングが前記第1の金属とは異なる第2の金属を含むことを特徴とする、実施形態3に記載の装置。
【0143】
実施形態6
前記第2のリングが最も外側のリングであることを特徴とする、実施形態3に記載の装置。
【0144】
実施形態7
前記フランジの面内で前記容器の中心線から延在し、該中心線に対して垂直な第1の線において、該第1の線が、前記第1のリングの前記第2の部分と交差せずに、前記第1のリングの前記第1の部分を横断することを特徴とする、実施形態1に記載の装置。
【0145】
実施形態8
前記第1の線が前記容器の非主軸に対して平行であることを特徴とする、実施形態7に記載の装置。
【0146】
実施形態9
前記第1のリングが、前記第1の部分と前記第2の部分との間に位置づけられた第3の部分をさらに含み、該第3の部分が、前記容器の全周にわたっては延在しないことを特徴とする、実施形態1に記載の装置。
【0147】
実施形態10
前記溶融材料が溶融ガラスであることを特徴とする、実施形態1に記載の装置。
【0148】
実施形態11
前記第1のリングが白金を含むことを特徴とする、実施形態1に記載の装置。
【0149】
実施形態12
前記第2のリングがニッケルを含むことを特徴とする、実施形態3に記載の装置。
【0150】
実施形態13
最も外側のリングをさらに含み、該最も外側のリングの厚さが、前記容器を中心とした角度位置の関数として変動することを特徴とする、実施形態1に記載の装置。
【0151】
実施形態14
前記容器の長手方向軸に対して垂直な面内における前記容器の断面形状が楕円形であることを特徴とする、実施形態1に記載の装置。
【0152】
実施形態15
前記容器が清澄容器であることを特徴とする、実施形態1〜14のいずれかに記載の装置。
【0153】
実施形態16
壁を含む容器、及び
前記容器に取り付けられ、前記容器の壁に電流を送給するように構成されたフランジであって、
前記容器の全周に延在し、閉ループにおいて前記容器の壁に取り付けられ、かつ、第1の厚さを含む第1の部分と、前記第1の厚さとは異なる第2の厚さを含む第2の部分とを含む、第1のリングであって、前記第1の部分及び前記第2の部分が各々、前記容器の周りにその全周未満で延在しており、前記フランジの面内で前記容器の中心線から延び、かつ、該中心線に対して垂直な線が、前記第1の部分及び前記第2の部分の両方を横切る、第1のリングと、
閉ループにおいて前記第1のリングの全周に延在する第2のリングと、
を含む、フランジ
を備えた、ガラスを製造するための装置。
【0154】
実施形態17
前記第1のリングが第1の金属を含み、前記第2のリングが第1の金属とは異なる第2の金属を含むことを特徴とする、実施形態16に記載の装置。
【0155】
実施形態18
前記第1のリングが、前記第1及び第2の厚さとは異なる第3の厚さを含む第3の部分を含み、該第3の部分が、前記容器の全周にわたっては延在しないことを特徴とする、実施形態16に記載の装置。
【0156】
実施形態19
前記第2のリングが、前記第1のリングの全周の周りで前記第1のリングと接触し、前記第1の部分及び前記第2の部分がいずれも前記第2のリングと接触することを特徴とする、実施形態16に記載の装置。
【0157】
実施形態20
前記容器の長手方向軸に対して垂直な面内における前記容器の断面形状が、楕円形であることを特徴とする、実施形態16に記載の装置。
【0158】
実施形態21
前記容器が清澄容器であることを特徴とする、実施形態16〜20のいずれかに記載の装置。
【0159】
実施形態22
電気フランジを備えた電気加熱式容器の製造方法であって、該電気フランジが、それに取り付けられた前記容器に電流を供給するように構成され、かつ、前記容器の中心線に対して略垂直な面内で前記容器を取り囲み、該方法が、
(a)前記電気フランジをパラメータ化する工程であって、該電気フランジが、第1の金属を含む第1のリングと、前記第1の金属とは異なる第2の金属を含む第2のリングとを含み、前記第1のリングが、前記フランジの面内に、異なる厚さの複数の部分をさらに含み、前記複数の部分が重なり合うエッジを含んでおり、前記複数の部分がいずれも前記容器の全周には延在せず、前記パラメータ化が、前記複数の部分の厚さ、形状、及び位置の決定を含む、工程;
(b)前記フランジを通じて前記容器に供給される所定の電流の合計について、第1の位置における前記第1のリングの電流密度を計算する工程;
(c)前記容器の頂部における前記フランジの前記電流密度間の差異が所定の値を超える場合に、前記複数の部分の前記厚さ、形状及び位置のうちの少なくとも1つを修正する工程;及び
(d)前記第1の位置における前記電流密度が前記所定の値未満になるまで、工程(b)及び(c)を繰り返す工程
を含む、方法。
【0160】
実施形態23
工程(b)において、前記第1の位置における前記計算された電流密度を使用して、前記容器壁の温度を計算する工程をさらに含むことを特徴とする、実施形態22に記載の方法。
【0161】
実施形態24
ガラスの製造方法において、
容器を通じて溶融ガラスを流す工程であって、前記容器が、壁、第1のフランジ、及び前記第1のフランジから離間された第2のフランジを備えており、前記第1及び第2のフランジが、それぞれ、容器−フランジ接合において前記壁に取り付けられ、前記壁に電流を供給するように構成され、かつ、各々が、本体部分から延びる電極部分を含む、工程;及び
前記第1及び第2のフランジ間の前記壁内に電流を確立する工程
を含み、
前記第1及び第2のフランジの前記電極部分に最も近い前記壁上の位置において前記第1のフランジから前記第2のフランジへと延びる前記壁上の線に沿って、該線に沿った電流密度が、前記容器−フランジ接合において最小になる、
方法。
【0162】
実施形態25
前記線における最大電流密度と前記最小電流密度との間の差異が10%以下であることを特徴とする、実施形態24に記載の方法。
【0163】
実施形態26
前記差異が5%以下であることを特徴とする、実施形態25に記載の方法。
【0164】
実施形態27
前記最大電流密度が、前記第1及び第2のフランジ間の総距離の20%以下である、前記第1のフランジからの距離に位置することを特徴とする、実施形態25に記載の方法。
【0165】
実施形態28
前記最大電流密度が、前記第1及び第2のフランジ間の総距離の15%以下である、前記第1のフランジからの距離に位置することを特徴とする、実施形態27に記載の方法。
【0166】
実施形態29
前記容器の長手方向軸に対して垂直な面内における前記容器の断面形状が、楕円形であることを特徴とする、実施形態24に記載の方法。
【0167】
実施形態30
前記容器が清澄容器であることを特徴とする、実施形態24〜29のいずれかに記載の方法。
【0168】
実施形態31
溶融炉、
前記溶融炉と流体連通する溶融ガラス処理容器であって、前記溶融ガラス処理容器の長手方向軸に対して垂直な面内に楕円形の断面形状を含み、その内部を通じて溶融ガラスを搬送するように配置され、かつ、前記溶融ガラスの流れの方向に対して前記溶融炉の下流に位置づけられた、溶融ガラス処理容器、及び
前記溶融ガラス処理容器に取り付けられ、前記溶融ガラス処理容器の壁に電流を送給するように構成され、かつ、閉ループにおいて前記容器の全周に延在する第1のリングを備えた、フランジであって、該第1のリングが、第1の厚さを含む第1の部分と、前記第1の厚さとは異なる第2の厚さを含む第2の部分とを含み、前記第1の部分が、前記第2の部分と前記溶融ガラス処理容器との間に位置づけられ、かつ、前記第1の部分及び前記第2の部分のいずれも前記溶融ガラス処理容器の全周には延在しないように、前記第1の部分及び前記第2の部分が、前記フランジの面内に重なり合うエッジを含んでいる、フランジ
を備えた、ガラス製造装置。
【0169】
実施形態32
前記溶融ガラス処理容器と流体連通する成形本体をさらに含み、該成形本体が、前記溶融ガラスの前記流れの方向に対して前記溶融ガラス処理容器の下流に位置づけられていることを特徴とする、実施形態31に記載の装置。
【0170】
実施形態33
前記第1のリングの前記第1の部分の前記厚さが、前記第1のリングの前記第2の部分の前記厚さより小さいことを特徴とする、実施形態31に記載の装置。
【0171】
実施形態34
前記第1のリングの周囲の閉ループに延在する第2のリングをさらに含むことを特徴とする、実施形態31に記載の装置。
【0172】
実施形態35
前記第2のリングの厚さが、前記第2の部分の前記厚さより大きいことを特徴とする、実施形態34に記載の装置。
【0173】
実施形態36
前記第1のリングが第1の金属を含み、前記第2のリングが前記第1の金属とは異なる第2の金属を含むことを特徴とする、実施形態34に記載の装置。
【0174】
実施形態37
前記第2のリングが最も外側のリングであることを特徴とする、実施形態34に記載の装置。
【0175】
実施形態38
前記フランジの面内で前記容器の中心線から延在し、該中心線に対して垂直な第1の線において、該第1の線が、前記第1のリングの前記第2の部分と交差せずに、前記第1のリングの前記第1の部分を横断することを特徴とする、実施形態32に記載の装置。
【0176】
実施形態39
前記第1の線が前記容器の非主軸に対して平行であることを特徴とする、実施形態38に記載の装置。
【0177】
実施形態40
前記第1のリングが、前記第1の部分と前記第2の部分との間に位置づけられた第3の部分をさらに含み、該第3の部分が、前記容器の全周にわたっては延在しないことを特徴とする、実施形態31に記載の装置。
【0178】
実施形態41
前記第1のリングが白金を含むことを特徴とする、実施形態31に記載の装置。
【0179】
実施形態42
前記第2のリングがニッケルを含むことを特徴とする、実施形態34に記載の装置。
【0180】
実施形態43
最も外側のリングをさらに含み、該最も外側のリングの厚さが、前記容器を中心とした角度位置の関数として変動することを特徴とする、実施形態31に記載の装置。
【0181】
実施形態44
前記ガラス製造装置がフュージョン・ダウンドローガラス製造装置であることを特徴とする、実施形態31に記載の装置。
【0182】
実施形態45
前記溶融ガラス処理容器が清澄容器であることを特徴とする、実施形態31〜44のいずれかに記載の装置。
【0183】
実施形態46
前記溶融ガラス処理容器が、混合容器の下流に位置づけられ、かつ、前記溶融ガラスの前記流れの方向に対して該混合容器と流体連通することを特徴とする、実施形態31〜44のいずれかに記載の装置。