(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
図面において、同じ符号を有する要素は同じまたは同様の機能を有する。
【0013】
以下の説明において、いくつかの実施形態について記載する具体的な詳細を示し得る。しかしながら、開示する実施形態をこれらの具体的な詳細のいくつかまたはすべてなしに実施し得ることが当業者に明らかであろう。本明細書では、具体的かつ/または例示的であるが、ただし限定的ではない実施形態を提示し得る。当業者であれば、本明細書において具体的に記載されていないが、他の材料が本開示の範囲および趣旨内にあり得ることを理解するであろう。
【0014】
本開示は、光ビームの意図されない角度または横方向の位置ずれを許容する方法で光ファイバ内に光ビームを光学的に結合する装置、システムおよび方法について記載する。光源は、患者の眼等の手術野を照明するように光ビームを発生させることができる。集光器は、光ビームを集束させて光ファイバに向けることができる。集光ビームは、場合により位置ずれし得る。光ファイバは、比較的高い結合効率を維持しながら、集光ビームを受け取るように構成されたテーパ状近位部を含む。光ファイバの近位部は、中心部および遠位部のコア直径より大きいことができるコア直径を有する。集光器は、テーパ状近位部の比較的大きいコア直径に基づいて、集光ビームを光ファイバに向けるように構成することができる。
【0015】
本開示の装置、システムおよび方法は、以下を含む多数の利点を提供する。
【0016】
(1)本開示の眼科照明システムは、光ビームと、光源、コリメータ、集光器および/または眼科照明システムの他の部品との間のアライメント誤差をより適切に許容することができる。直線状の近位部のみを有する光ファイバは、位置ずれした光を受け入れることができないことがあり得る。これに関連して、拡大径近位部を有する光ファイバは、位置ずれした光でさえも効率的に伝送することができる。
【0017】
(2)アライメント誤差にも関わらず、高い結合効率を維持することができる。光ファイバの拡大径近位部は、アライメント誤差のために本来失われていた光を有利に結合することができる。
【0018】
(3)温度関連、振動関連および/または衝撃関連誤差を考慮することができる。位置ずれは、これらの誤差の任意の1つまたは複数からもたらされ得る。位置ずれした光でさえも効率的に結合することにより、拡大径近位部を含む光ファイバは、複数の誤差源を考慮することができる。
【0019】
(4)温度変動、振動および/または衝撃に対する眼科照明システムのロバスト性を向上させることができる。眼科照明システムがこれらのアライメント誤差源に遭遇する場合でも、眼科照明システムは、拡大径近位部が位置ずれを考慮するため、光ファイバに光を効率的に結合することができる。
【0020】
(5)眼科照明システムの耐用年数を延長することができる。光学位置ずれは、接着剤または機械的劣化とともに通常の動作中の振動の結果として等、眼科照明システムの耐用年数にわたって生じ得る。光ファイバは、比較的大量の位置ずれした光を受け入れるため、位置ずれ誤差が生じる場合でも眼科照明システムを利用することができる。
【0021】
図1に、眼科照明システム100を示すことができる。眼科照明システム100は、光源122を含むことができる。光源122は、手術野180を照明するように光ビームを出力するように構成することができる。眼科照明システム100はまた、複数のレンズを有する集光器126も含むことができる。集光器126は、光源122によって出力される光ビームを集束させるように構成することができる。眼科照明システム100はまた、集光器126によって集束される光ビームを伝送するように構成された光ファイバ170も含むことができる。光ファイバ170は、集光器126によって集束される光ビームを受け取るように構成された近位部172と、手術野180内に光ビームを放射するように構成された遠位部174と、近位部172と遠位部174との間に延在する中心部176とを含むことができる。近位部172のコア直径を中心部176のコア直径および遠位部174のコア直径より大きくすることができる。眼科照明システム100はまた、手術野180内に配置されるように構成された手術器具160も含むことができる。光ファイバ170を手術器具160に結合することができる。
【0022】
患者の眼等の手術野180内でさまざまな眼科手術処置中に眼科照明システム100を使用することができる。例示的な眼科手術処置としては、診断処置、治療処置、前眼部処置、後眼部処置、硝子体網膜処置、硝子体切除処置、白内障処置および/または他の好適な処置を挙げることができる。手術野180は、前眼部、後眼部、角膜、水晶体、硝子体腔、網膜および/または黄斑を含む患者の眼の任意の好適な生理機能を含むことができる。
【0023】
執刀医は、光源122からの光によって照明されるときに手術野180を見ることができる。光源122は、本明細書において考察するように、光ファイバ170に光学的に結合される光ビームを出力するように動作可能な任意の好適な光源であり得る。たとえば、光源としては、スーパーコンティニウムレーザー源等のレーザ源、白熱電球、ハロゲン電球、メタルハライド電球、キセノン電球、水銀蒸気電球、発光ダイオード(LED)、他の好適な光源および/またはそれらの組合せを挙げることができる。光源122は、診断光ビーム、治療光ビームおよび/または照明光ビームを出力することができる。光ビームは、可視光、赤外光、紫外(UV)光等、任意の好適な波長の光を含むことができる。たとえば、光ビームは、手術野180を照明するために高輝度、広帯域および/または白色光を伝送することができる。
【0024】
光ビームは、コリメータ124、集光器126および光ファイバ170を通る等、光源122と手術野180との間に延在する光路を横切ることができる。コリメータ124は、光源122によって出力される光ビームを受け取るように、光源122と手術野180との間の光路に配置することができる。コリメータ124は、光源122によって出力される光ビームをアライメントするように構成された1つもしくは複数のレンズおよび/または他の好適な光学部品を含むことができる。光ビームの伝送を容易にする光ファイバ123は、光源122とコリメータ124との間に機械的にかつ/または光学的に結合され、その間に延在することができる。コリメータ124は、コリメートビーム125を生成するように光源122によって出力される光ビームをコリメートすることができる。コリメートビーム125は、発散、平行または収束ビームであり得る。
【0025】
集光器126は、光路において、コリメートビーム125を受け取るように、光源122と手術野180との間またはコリメータ124と手術野180との間に配置することができる。コリメートビーム125は、コリメータ124から集光器126までの空気または自由空間を通って伝送することができる。集光器126は、集光ビーム127を生成するように、コリメート光ビームを曲げかつ/または他の方法でコリメート光ビームと相互作用するように構成することができる。集光ビーム127は、コリメートビーム125より小さい空間断面および/またはビーム径を有することができる。それに関して、集光ビーム127は、収束ビームであり得る。たとえば、集光器126は、集光ビーム127をビームスポット129に集束させるように構成することができる。集光器126は、1つ、2つ、3つ、4つ、5つもしくはそれより多くのレンズおよび/または他の好適な光学部品を含むことができる。例示的なレンズとしては、両凹レンズ、両凸レンズ、凹凸レンズ、平凹レンズ、平凸レンズ、正/負メニスカスレンズ、非球面レンズ、発散レンズおよび/またはそれらの組合せを挙げることができる。集光器126は、1つまたは複数のシングレットおよび1つまたは複数のダブレットを含む任意の好適なレンズ配置を有することができる。
【0026】
集光器126から、集光ビーム127を光ファイバ170まで、空気/自由空間または別の光ファイバを通して伝送することができる。
図2A、
図2Bおよび
図2Cは、光ファイバ170のさらなる詳細を示すことができる。光ファイバ170は、光源122から手術野180に光を伝送するように構成することができる。概して、
図1に示すように、光ファイバ170は、近位部172、遠位部174および中心部176を含むことができる。近位部172は、集光器126から集光ビーム127を受け取ることができる。光は、近位部172において受け取られると、光ファイバ170に沿って手術野180に向かって遠位側に伝播する。中心部176は、近位部172と遠位部174との間に延在し、その間に光を伝送することができる。遠位部174は、放射光162を手術野180内に送出することができる。遠位部174等、光ファイバ170の少なくとも一部を手術野180内に配置することができる。それに関して、光ファイバ170は、単回使用に対して構成された使い捨て部品であり得る。たとえば、手術野180内に配置された手術器具160に遠位部174を結合することができる。遠位部174は、手術器具160内に配置するかまたは手術器具160の外側に結合することができる。中心部176および/または近位部172も手術器具160に結合することができる。手術器具160は、たとえば、スポットイルミネータ、シャンデリアイルミネータ、エンドイルミネータ、注入カニューレ、切断プローブ、硝子体切除プローブ、吸引プローブ、ハサミおよび鉗子を含む、眼科手術処置中に執刀医によって使用される任意の好適な器具であり得る。手術器具160は、より詳細に後述する注入デバイス132またはプローブ152であり得る。
【0027】
光源122、コリメータ124および集光器126は、照明サブシステム120の一部であり得る。光ファイバ170は、照明サブシステム120と光通信することができる。照明サブシステム120は、手術野180に光を送出することに関連する光学部品のすべてまたは一部を含むことができる。照明サブシステム120は、手術野180への光の伝送を容易にする、ホットまたはコールドダイクロイックミラーおよび折返しミラーを含むミラー、ビームスプリッタ、レンズ、回折格子、フィルタおよび/またはそれらの組合せ等、さまざまな他の光学部品を含むことができる。光源122、コリメータ124および集光器126は、照明サブシステム120のハウジング121内に配置することができる。ハウジング121は、光源122、コリメータ124および集光器126を互いに対して固定配置で維持する任意の好適な筐体であり得る。たとえば、光源122、コリメータ124、集光器126および/または光ファイバ170がアライメントされると、光を効率的に伝送することができる。ハウジング121はベースプレートを含むことができる。光源122、コリメータ124および集光器126は、部品の意図されない移動を防止するように、ベースプレートに据え付け、取り付けかつ/または他の方法で機械的に結合することができる。本明細書において考察するように、こうした移動は、光結合効率に悪影響を与え得る。
図1、
図2Aおよび
図2Bは、光源122と手術野180との間の折り曲げられていない光路を示す。光路は、ハウジング121の物理的構造内に光ビームを誘導するために、折返しミラー、ビームスプリッタおよび/または他の光学部品を含むことができる。折返しミラーにより、照明光学系は小型容積内に嵌まることができる。ビームスプリッタは、複数の光ファイバポートへの光の送出を容易にすることができる。
【0028】
再び
図1を参照すると、光ファイバ170は、ポート128において照明サブシステム120のハウジング121に機械的に結合することができる。ポート128は、ハウジング121の構成要素であり得る。ポート128は、光源122、コリメータ124、集光器126および/または照明サブシステム120の他の部品に対して堅固に配置することができる。たとえば、ポート128は、光ファイバ170の近位部172とハウジング121との間の取外し可能な機械的結合を容易にするように、ねじ、突起、溝等の機械的特徴を含むことができる。集光ビーム127のビームスポット129は、ポート128内で中心合せすることができる。光ファイバ170の近位部172は、ポート128においてハウジング121に結合することができる。光源122、コリメータ124、集光器126および/または光ファイバ170の適切なアライメントにより、ポート128内でのビームスポット129の適切な中心合せ、および光ファイバ170内への集光ビーム127の効率的な結合を確実にすることができる。本明細書に記載するように、眼科手術システム100は、光源122、コリメータ124、集光器126および/または光ファイバ170の位置ずれの結果としての光結合効率の低下の影響を受けにくくすることができる。
【0029】
照明システム120は、独立型構成要素とするか、または手術コンソール110に組み込むことができる。執刀医は、手術コンソール110を利用して、眼科手術処置に関連する1つまたは複数のパラメータを制御することができる。手術コンソール110は、照明サブシステム120、流体工学サブシステム130、コンピューティングデバイス140およびプローブサブシステム150を含むことができる。手術コンソール110の1つまたは複数の構成要素をベースハウジング112に結合しかつ/またはベースハウジング112内に配置することができる。ベースハウジング112は可動とすることができ、それにより眼科手術処置中に患者に近接して配置することができる。ベースハウジング112は、眼科照明サブシステム100の構成要素間の連通を容易にする空気、光、流体および/または電気供給ラインを含むことができる。
【0030】
コンピューティングデバイス140は、注入デバイス132、プローブ152および/または手術器具160等、眼科照明システム100の1つまたは複数の構成要素に制御信号を送り、かつ/またはそうした構成要素から入力またはステータス信号を受け取るように構成することができる。たとえば、コンピューティングデバイス140は、光源122の作動および停止とともに、光源122によって出力される光の強度、波長および/または他の特性を制御することができる。それに関して、光源122および/または照明サブシステム120は、コンピューティングデバイス140と電気通信することができる。コンピューティングデバイス140は、プロセッサ142およびメモリ144を有する処理回路を含むことができる。プロセッサ142は、メモリ144に格納されたもの等のコンピュータ命令を実行して、さまざまなサブシステムおよびそれらの関連する手術器具を制御することができる。プロセッサ142は、ターゲットデバイスコントローラおよび/またはマイクロプロセッサであり得る。半導体メモリ、RAM、FRAM(登録商標)またはフラッシュメモリ等のメモリ144は、プロセッサ142とインタフェースすることができる。したがって、プロセッサ142は、メモリ144に書き込みかつメモリ144から読み出し、メモリ144の管理に関連する他の一般的な機能を実行することができる。コンピューティングデバイス140の処理回路は、論理機能を実行することができる電源ピン、入力ピンおよび出力ピンを備えた集積回路であり得る。コンピューティングデバイス140は、眼科手術処置中にシステム動作および性能に関連するデータを示す表示デバイス146と通信することができる。
【0031】
流体工学サブシステム130は、コンピューティングデバイス140と電気通信することができる。流体工学サブシステム130は、流体の開始/停止、速度、圧力、体積等、注入デバイス132の動作を容易にするさまざまな構成要素を含むことができる。注入デバイス132は、眼科手術処置中に眼内圧を維持するために患者の眼内に流体を送達することができる。注入デバイス132は、流体工学サブシステム130と流体連通および/または電気通信することができる。
【0032】
プローブサブシステム150は、コンピューティングデバイス140と電気通信することができる。プローブサブシステム150は、プローブ152の動作を容易にするさまざまな構成要素を含むことができる。執刀医は、手術野180内でプローブ152を利用して1つまたは複数の手術操作を行うことができる。たとえば、プローブ152は、切断プローブ、硝子体切除プローブ、水晶体超音波吸引プローブ、レーザプローブ、アブレーションプローブ、真空プローブ、フラッシングプローブ、ハサミ、鉗子、吸引デバイスおよび/または他の好適な手術デバイスであり得る。プローブ152は、プローブサブシステム150と機械的に連通し、電気通信し、空気連通し、流体連通し、かつ/または他の好適な連通をすることができる。
【0033】
図2A、
図2Bおよび
図2Cに、照明サブシステム120および光ファイバ170を含む眼科照明システム100の一部を示すことができる。
図2A、
図2Bおよび
図2Cは、光ファイバ170の断面図を示すことができる。光ファイバ170は、コア202、クラッド204およびコーティング206を含むことができる。コア202は、光が伝播する、ガラス、プラスチック、二酸化ケイ素、ホウケイ酸塩および/または他の好適な材料の円柱であり得る。クラッド204は、コア202を包囲し、コア202内に光を閉じ込めることができる。クラッド204は、コア202の屈折率より小さい屈折率を有する誘電体材料を含むことができる。コーティング206は、クラッド204を包囲し、光ファイバ170を物理的損傷から保護することができる。
【0034】
集光器126は、光ファイバ170の近位部172に集束ビーム127を向けることができる。光ファイバ170の近位部172内のコア202は、テーパ状部分210を含むことができる。たとえば、集光器126は、
図2Aおよび
図2Bに示すように、テーパ状部分210に集束ビーム127を向けることができる。それに関して、テーパ状部分210内のコア202の直径および断面積は、光ファイバ170に沿って遠位側に低減することができる。コア202は、光ファイバ170の最近位端に位置する入口開口部212を含むことができる。入口開口部212は、コア220の一部であり得る。たとえば、入口開口部212は、集光ビーム127とインタフェースするコア202の近位面であり得る。入口開口部212は、テーパ状部分210の一部であり得る。入口開口部212は、
図2Aおよび
図2Cに示す直径214を有することができる。入口開口部212の直径214および/または部分211の直径215は、光ファイバ170の長さ208に沿ったコア202の最大径であり得る。集光ビーム127は、入口開口部212において光ファイバ170内に光学的に結合することができる。たとえば、ビームスポット129は、理想的には、入口開口部212内に中心合せすることができる。テーパ状部分210は、集光ビーム127を受け取るように拡大径を有するじょうごと同様であり得る。有利には、テーパ状部分210は、ビームスポット129および/または集光ビーム127の位置ずれに適応することにより高い結合効率を可能にするようなサイズおよび形状とすることができる。
【0035】
図2Cに示すように、光ファイバ170の近位部172内のコア202は、一定のサイズおよび形状を有する部分211を含むことができる。たとえば、部分211は、直線状の非テーパ状部分であり得る。集光器126は、部分211に集束ビーム127を向けることができる。部分211は、テーパ状部分210の近位側に配置することができる。入口開口部212は部分211の一部であり得る。部分211は、直径215および長さ217を有することができる。部分211の直径215は、入口開口部212の直径214と実質的に等しくすることができる。部分211の直径215および断面積は、光ファイバ170の長さ217に沿って一定のままであり得る。長さ217は、数学的関係によって直径215に関連することができる。たとえば、長さ217および直径215の比率は1000を超えることができる。長さ217および直径215がこの関係を満足させる場合、光ファイバ170内の光は、コア202を横方向に充填するため、横方向に広がることができる。したがって、光は、テーパ状部分210にさしかかる前に部分211内で空間的に均質化され得る。これは、ビームスポットおよび/または照明サブシステム120の構成要素の位置ずれがある場合でも当てはまることができ、それは、長さ217が、光が部分211内で横方向に広がりかつ空間的に均質化されることを可能にするように十分大きいためである。したがって、有利には、テーパ状部分を通る光の透過率は、ビームスポット129および/または照明サブシステム120の構成要素の位置ずれによって影響を受けないようにすることができ、それは、光がテーパ状部分210にさしかかる前に部分211を通過するためである。
【0036】
光ファイバ170の中心部176内のコア202は、一定のサイズおよび形状を有する部分220を含むことができる。たとえば、部分220は、直線状の非テーパ状部分であり得る。部分220は直径224を有することができる。部分220の直径224および断面積は、光ファイバ170の中心部176に沿って一定のままであり得る。
【0037】
光ファイバ170の遠位部174内のコア202は、テーパ状部分230を含むことができる。それに関して、テーパ状部分230内のコア202の直径および断面積は、光ファイバに沿って遠位側に低減することができる。テーパ状部分230は、光ファイバ170の最遠位端において先端部232で終端することができる。先端部232を介して、放射光162を手術野180内に送出することができる。先端部232は直径234を有することができる。テーパ状部分230は、たとえば、ホウケイ酸塩テーパを含むことができる。テーパ状部分230は、手術野180を照明するように比較的大きいかまたは比較的小さい角度広がりで放射光162を出力するように構成することができる。いくつかの例では、テーパ状部分230におけるクラッド204を光ファイバ170から剥離することができる。いくつかの例では、光ファイバ170の遠位部174内のコア202は、一定のサイズおよび形状を有することができる。たとえば、遠位部174内のコア202は、直線状の非テーパ部分であり得る。いくつかの例では、遠位部174内のコア202は、光ファイバ170に沿って遠位側に増大する直径を有することができる。たとえば、コア202は、直径が増大するテーパ状部分であり得る。いくつかの例では、光ファイバ170の遠位部174内のコア202は、テーパ状部分230の代わりにまたはそれに加えて散乱部分を含むことができる。先端部232は、手術野180内での所望の角度広がりでの放射光の出力を容易にするように、円錐形状、球形状および/または他の好適な形状を含む、さまざまなサイズおよび形状とすることができる。
【0038】
コア202の直径は、光ファイバ170の近位部172と、中心部176と、遠位部174との間で変化することができる。部分220内の直径は、概してd
fiberと記述することができる。たとえば、d
fiberの値は、20μm、22μm、25μm、27μm、30μmおよび/またはより大きいか小さい他の好適な値等の値を含む、約10μm〜約100μm、約10μm〜約50μm、約20μm〜約30μmであり得る。入口開口部212の直径214は、直径224の倍数であり、概してN×d
fiberと記述することができる。したがって、パラメータNは、中心部176の直径224に対する入口開口部212のより大きいサイズを記述することができる。パラメータNの値は、2、2.5、3、3.1、3.3、4および/またはより大きいか小さい他の好適な値等の値を含む、1〜10、1〜5、2〜4であり得る。パラメータNの値は、光ファイバ170に対して比較的小さい直径(たとえば、直径214)を有利に維持しながら、位置ずれした光の改善された伝送を達成するように選択することができる。光ファイバ170の比較的小さい直径により、光ファイバ170をさまざまな手術器具(たとえば、手術器具160)に有利に組み込むことを可能にすることができる。部分211の直径215(
図2C)は、入口開口部212の直径214と実質的に等しくすることができる。近位部172内のテーパ状部分210の直径は、入口開口部212または部分211におけるN×d
fiberから中心部176におけるd
fiberまで遠位側に低減することができる。先端部232の直径234は、直径224のd
fiber以下の任意の好適なサイズであり得る。いくつかの例では、先端部232の直径234はまた、直径224のd
fiberより大きい場合もある。先端部232の直径234の値は、約1μm〜直径224の約d
fiberおよび/またはより大きいか小さい他の好適な値であり得る。遠位部174内のテーパ状部分230の直径は、中心部176におけるd
fiberから先端部232における直径234まで遠位側に低減することができる。したがって、近位部172内のコア202の直径は、中心部176および遠位部174におけるコア202の直径より大きくすることができる。中心部176内のコア202の直径は、遠位部174におけるコア202の直径より大きくすることができる。
【0039】
光ファイバ170は、任意の好適な長さ208を有することができる。たとえば、長さは、2.5m、2.55m、2.6mおよび/またはより大きいか小さい他の好適な値等の値を含む、約0.1m〜約3m、約1m〜3m、約2.5m〜2.6mであり得る。近位部172のテーパ状部分210は、長さ216を有することができる。長さ216は、任意の好適な長さであり得る。テーパ状部分210を通る部分220内への光の最大透過率のために、テーパは漸進的であり得る。たとえば、テーパ状部分の形状、テーパの角度および/または長さ216は、漸進的なテーパを提供するように選択することができる。たとえば、近位部172のテーパ状部分210の長さは、直径214と直径224との間の差の約100倍以上である任意の値であり得る。たとえば、直径224は25ミクロン(マイクロメートル)である場合があり、直径214は75ミクロン(たとえば、N=3であって、パラメータNに直径224を乗算、すなわち3×25μm)である場合がある。最大スループットのために、長さ216は、5mm(たとえば、100×(75μm−25μm)))より長い任意の長さであり得る。一定の形状を有する中心部176内の部分220は、任意の好適な長さ226を有することができる。たとえば、長さ226は、100mm、125mm、145mm、150mm、166mm、200mmおよび/またはより大きいか小さい他の任意の好適な値等の値を含む、約10mm〜約1000mm、約50mm〜約500mm、約100mm〜約200mmであり得る。遠位部174のテーパ状部分230は、任意の好適な長さ236を有することができる。たとえば、長さ236は、10ミクロン、25ミクロン、50ミクロン、66ミクロン、100ミクロンおよび/またはより大きいか小さい他の好適な値等の値を含む、約5ミクロン〜約1000ミクロン、約5ミクロン〜500ミクロン、約10ミクロン〜100ミクロンであり得る。コア/クラッド直径比は、テーパ状部分210の長さ216および/またはテーパ状部分230の長さ236に沿って一定のままであるかかまたは変化することができる。
【0040】
ここで、
図2Bを参照すると、集光器126は、ビームスポット129に集光ビーム127を集束させるように構成することができる。ビームスポット129は、理想的には、ポート129内でかつ/または光ファイバ170の入口開口部212内で中心合せすることができる。本明細書に記載するように、入口開口部212は、光ファイバ170内への集光ビーム127の効率的な光結合を維持するように、ビームスポット129の角度または横方向の位置ずれに適応するようなサイズおよび形状とすることができる。ビームスポット129は、回折限界であり得る。ビームスポット129は直径244を有することができる。直径244の値は、2μm、8μm、12μm、15μmおよび/またはより大きいか小さい他の好適な値等の値を含む、約1μm〜約30μm、1μm〜約20μm、2μm〜約15μmであり得る。
【0041】
光源122から発する光ビームは、光路内の光源122と手術野180(
図1)との間のさまざまな位置におけるその角度広がり、すなわち発散によって特徴付けることができる。角度広がりの基準は、開口数(「NA」)であり得る。正式には、NA=sin(円錐角の半角)である。したがって、眼科照明システム100内の光ビームは、開口数NA
beamによって特徴付けることができる。
図2Bを参照すると、より詳細に後述する数学的記述270(
図2B)は、眼科照明システム100内のさまざまな位置におけるNA
beamを記述する。光ファイバ170も、光ファイバ170が受け入れかつ伝送することができる光の角度を記述する角度広がり、すなわち開口数NA
fiberによって特徴付けることができる。NA
fiberは、所与の光ファイバ170に対して固定の特徴であり得る。異なるファイバは異なるNAを有し得る。光ファイバ170は、0.12、0.22、0.26、0.30、0.37、0.44、0.48、0.50、0.63、0.66および/またはより大きいか小さい他の好適な値等の値を含む、約0.1〜約0.9、約0.1〜約0.8、約0.1〜約0.7を含む任意の好適な開口数NA
fiberを有することができる。NA
fiberは、光ファイバ170が所望の角度広がりで光を伝送するように選択することができる。開口数NA
fiber以下の開口数NA
beamを有する場合、光ファイバ170によって光ビームをほとんどまたは全く光損失なしに伝送することができる。
図2Bを参照すると、光ビームが、光ファイバ170内でNA
fiberより大きい開口数NA
beamを有する場合、光ビームの一部(たとえば、角度が大きい方の光線)はクラッド204において失われ得る。開口数NA
fiber以下の開口数NA
beamを有する光ビームの別の部分(たとえば、角度が小さい方の光線)は、光ファイバ170によって伝送することができる。それに関して、光路内の光源122と手術野180との間のNA
beamは、NA
fiberに関連することができる。眼科照明システム100内のさまざまな箇所における光ビームはまた、ビーム径によっても特徴付けることができる。概して、光ファイバ170内では、光ビームのビーム径は光ファイバの直径に等しいことがあり得る。ビーム径および開口数NA
beamは、手術野180に効率的に伝送されるように光ファイバ170を光で充填するように選択することができる。
【0042】
数学的関係は、光ファイバ170によって伝送される光の角度広がりおよびビーム径を記述することができる。たとえば、NA
beam等の角度広がりとビーム径との積は一定であり得る。すなわち、角度広がりおよびビーム径は、逆数関係を有することができる。したがって、ビーム径が低減すると、角度広がりは増大し、その逆もあり得る。たとえば、テーパ状領域210内で、ビーム径が低減する(コア202の直径が低減するため)と、光の角度広がりはそれに対応して増大することができる。同様に、テーパ状領域230内では、ビーム径およびコア202の直径が低減すると、光の角度広がりは増大することができる。
【0043】
図2Bに、眼科照明システム100内のさまざまな点254、256および258における角度広がり、すなわちNA
beamの数学的記述270を示すことができる。集光器126は、光ファイバ127内のNA
beamがNA
fiberを超えないように、集光ビーム127を光ファイバ170に向けるように構成することができる。それに関して、集光ビーム127のNA
beamは、入口開口部212の直径214に基づくことができる。たとえば、集光ビーム127のNA
beamは、パラメータNに基づくことができる。上述したように、入口開口部212の直径214もパラメータNに関連することができる。集光器126は、集光ビーム127が入口開口部212の直径214に基づいた角度広がりを有するように、集光ビーム127を集束させるように構成することができる。点254は、集光ビーム127が入口開口部212とインタフェースする、ビームスポット129に位置することができる。点254において数学的関係270によって示すように、
【数1】
であるように集光ビーム127を集束させるように構成された集光器126である。集光ビーム127は、直径N×d
fiberを有する入口開口部212において光ファイバ170内に結合することができる。NA
beamは、202の直径がパラメータN分の1低減する際、テーパ状領域210内でパラメータN倍増大する。したがって、
【数2】
を有する集光ビーム127を集束させる集光器126は、テーパ状領域210内の角度広がり、すなわちNA
beamの増大を考慮することができる。したがって、点256において数学的関係270によって示すように、光ファイバ170の中心部176内で光ビームはNA
beam=NA
fiberを有する。上述したように、NA
beam=NA
fiberであるとき、光ファイバ170内で効率的な光伝送が発生する。遠位部176内のコア202の直径が低減すると、NA
beamは、テーパ状領域230内で増大する。先端部232も、光ビームを拡散させるかまたはその角度広がりを増大させるようなサイズおよび形状とすることができる。点258において数学的関係270によって示すように、光ファイバ170は、NA
beam>>NA
fiberである放射光162を送出するように構成することができる。
【0044】
集光器126は、有効焦点距離246を有することができる。有効焦点距離246は、集光器126とビームスポット129との間で集光ビーム127が進む距離の記述であり得る。光路において、集光器126と光ファイバ170との間を含む、光源122と光ファイバ170との間に折返しミラー、ビームスプリッタおよび/または他の光学部品を配置することができる。有効焦点距離246の値は、8mm〜50mmの値を含む、約5mm以下〜150mm以上であり得る。集光器126は、光ファイバ170の近位部172の入口開口部212の直径に基づく有効焦点距離246を有するように位置決めすることができる。
【0045】
図3は、光ファイバ310および集光器320を含む配置を示す。
図1、
図2Aおよび
図2Bの光ファイバ170とは対照的に、
図3の光ファイバ310は、テーパ状近位部分を含まない。むしろ、光ファイバ310の近位部および中心部は、一定の直径312を有する。集光器320により、コリメートビーム330を集束させることができる。点384は、
図3の配置内における、集光ビーム340が光ファイバ310と遭遇する場所を特定する。点384において数学的関係370によって示すように、集光ビーム340は、NA
beam=NA
fiberを有し得る。集光ビームが光ファイバとインタフェースするときのNA
beamは、
図2B(点254)では、
図3(点384)と比較してパラメータN分の1だけ小さくすることができる。
図3の光ファイバ310内の光もNA
beam=NA
fiberを有する。点386における数学的関係370は、放射光350がNA
beam>>NA
fiberを有し得ることを示す。集光器320は有効焦点距離380を有する。
【0046】
再び
図2Bを参照すると、集光器126の有効焦点距離246は、コリメートビーム125(
図2B)およびコリメートビーム330(
図3)の等しい直径のために、有効焦点距離380(
図3)より比較的長くすることができる。たとえば、有効焦点距離246は、パラメータN倍、有効焦点距離380より大きくすることができる。それに関して、有効焦点距離246は、入口開口部212の直径129にも関連するパラメータNに基づくことができる。比較的長い有効焦点距離246により、NA
beamが、点254において、パラメータN分の1低減することを可能にすることができる。集光ビーム127は、点254において光ファイバ170内に結合することができる。集光器126の有効焦点距離246は、光ファイバ170がテーパ状部分210を含むため、比較的大きい有効焦点距離246を有するように構成することができる。
【0047】
図2Bを参照すると、点252、254、256および258における光ビームの形状をグラフ260に示すことができる。それに関して、グラフ260は、y軸に光ビームの放射照度の断面プロファイルを含み、x軸に光ビームの中心からの放射位置を含む。図示する光ビームは、すべての点252、254、256および258において概してガウスであり得る。光ビームは、光路内の光源122と手術野180との間の任意の点に配置されたビームシェイパの使用等により、任意の好適なビーム形状を有するように構成することができる。たとえば、光ビームは、フラットトップビームプロファイルまたは他の所望の形状を有することができる。点254において、グラフ260の比較的狭いガウスプロファイルにより、比較的幅の狭い小径のビームスポット129を示すことができる。
図3のグラフ360は、集光器320および光ファイバ310の配置において点382、384、386における光ビームの形状を同様に示す。比較的幅の狭い小径のビームスポット129(
図2B)と比較して、点254におけるグラフ360のガウスプロファイルは、比較的幅が広く、比較的直径の大きいビームスポットを示すことができる。
【0048】
再び
図2Aおよび
図2Bを参照すると、本開示は、眼科照明システム100の組立後に発生する、光源122、コリメータ124、集光器126および/または光ファイバ170の位置ずれに対する光ファイバ170の感度を低下させる等、眼科照明システム100の性能を向上させることができる。角度感度に影響を与える要素としては、(1)集光器126内へのコリメート光ビーム125の直径、(2)光ファイバ170の公差付きコア直径、および光ファイバ170を通る光の効率的な伝搬のための数学的関係NA
beam=NA
fiberを挙げることができる。これらの3つの要素は、変更することが困難である場合があり、それにより光学的位置ずれ感度が高いままになる。たとえば、コリメートビーム330の直径は、場合により、光源およびコリメータの設計によって固定され得る。
【0049】
図2Aおよび
図2Bを参照すると、本開示は、(たとえば、テーパ状部分210内の)コア202の直径を増大させることと、集光ビーム127のNA
beamをパラメータN分の1低減させることとを記載する。こうした変更は、光学位置ずれに対する感度を低下させることにより、眼科照明システム100に対してプラスの影響を与えることができる。したがって、有利には、結合効率は、低下する可能性を低くすることができ、かつ/または角度もしくは横方向の位置ずれの結果としてよりわずかな量だけ低下する。角度感度パラメータθ
Nは、著しいファイバ結合効率損失が発生し始める前の集光器126内へのコリメートビーム125の最大軸外し角として特徴付けることができる。θ
Nが高いほど、より高い軸外し角が光ファイバ170内に効率的に結合することができるため、光学位置ずれに対してより許容するシステムに対応する。概して、本明細書の記載は、いくつかの計算をより容易に理解することができるように、いくつかの具体的な例としての量を使用する。具体的な量は、単に例示するものであり得る。異なる例では任意の好適な値を使用することができる。
【0050】
近似として、θ
Nは、
【数3】
によって与えることができ、式中、D
NはNに対する公差付きコア直径を示し、d
Nは、集光ビーム127のビームスポット129の直径244を示し、f
Nは、Nに対する有効焦点距離246を示す。
図4に、これらの変数のいくつかをグラフィカルに示すことができる。それに関して、
図4は、ビームスポット129、公差付きコア410、ならびに光ファイバの入口開口部の種々の位置432、434、436および438の正面図を示すことができる。ビームスポット129は直径244を有することができる。種々の位置432、434、436および438は、ハウジングまたは集光ビームに対する光ファイバの近位面または入口開口部のアライメントを表すことができる。種々の位置432、434、436および438は、光ファイバ、ハウジング、および/または光ファイバとハウジングとの間の結合を容易にするポートの製造公差からもたらされ得る。困難な光ファイバの正確な位置決めの繰返しは、光ファイバ、ハウジングおよび/またはポートの製造公差を考慮すると困難であり得る。図示するように、種々の位置432、434、436および438における入口開口部のいくつかの部分はオーバーラップすることができるが、他の部分はオーバーラップしないことができる。公差付きコア410の直径420は、位置432、434、436および438の各々における、集光ビームに対する入口開口部の一部の一貫したアライメントを表すことができる。それに関して、位置432、434、436および438の各々における入口開口部は、直径430を有することができる。位置432、434、436および438の各々はまた、長さ440によって示される、それに関連する不確実性または誤差も有し得る。概して、公差付きコア410の直径420は、入口開口部の直径430と光ファイバの位置の不確実性を表す長さ440との差であり得る。入口開口部の直径430が比較的大きいにも関わらず、公差付きコア410の直径420を比較的小さくすることができる。たとえば、公差付きコア410の直径420は、実際のコア直径が25μmである光ファイバに対して7μmであり得る。
【0051】
近似として、一般的なNに対する有効焦点距離f
Nは、N=1の場合、f
N=N×f
1により、有効焦点距離f
1に関連することができる。それに関して、N=1は、光ファイバがテーパ状近位部を含まない
図3の配置に対応することができる。
【0052】
近似として、一般的なNに対するビームスポット径d
Nは、N=1の場合、d
N=N×d
1により、ビームスポットサイズd
1に関連することができる。それに関して、回折限界(および、概して非回折限界)ビームスポット径は、集光器の有効焦点距離f
Nに比例し、したがってパラメータNに比例することができる。有効焦点距離f
NがNの増大によって増大するに従い、ビームスポット径d
Nも増大する。N=1である光学的に十分に設計された集光器の場合、ビームスポットの直径は、最悪でも回折限界スポットサイズよりわずかに大きいのみであり得る。
【0053】
本明細書に記載するように、ミクロン、すなわちμmでの公差付きコア直径D
Nの例は、D
N=25N−18であり得る。「25N」という例としての項は、
図4における直径430によって表される、光ファイバの入口開口部の実際のコア直径を表す。例としての18μmは、
図4において長さ440によって表される、光ファイバコアの位置および/またはアライメントにおける不確実性に対応する。光ファイバ170は、任意の好適なコア直径を有することができ、25μmは一例である。D
Nの数学的記述によって示すように、位置的不確実性が一定のままである一方、入口開口部の実際のコア直径はN倍増大する。したがって、集光ビームを受け取るように一貫して位置決めされる光ファイバコアの部分を表す公差付きコア直径は、Nにより著しく増大する。たとえば、N=1である場合、D
N=7μmであり、N=3である場合、D
N=57μmである。この例で示すように、パラメータNが3倍増大する一方、公差付きコア直径D
Nは約8倍増大する。パラメータNによる公差付きコア直径D
Nのこの急速な増大により、眼科照明システム100における光学位置ずれのより大きい許容度が促進される。それに関して、公差付きコア直径D
Nは、Nの増大によってビームスポット径d
Nおよび有効焦点距離f
Nが増大するより高速に増大する。以下の計算に示すように、公差付きコア直径D
Nがビームスポット径d
Nおよび有効焦点距離f
Nより高速に増大するため、効率的な結合を維持する角度感度パラメータθ
N、すなわち最大軸外し角も増大する。
【0054】
f
N、d
NおよびD
Nに対する値をθ
Nに対する式に代入すると、以下のようになる。
【数4】
図3に示すものと同様の配置を示すN=1に対して、
【数5】
となる。θ
1は、d
1およびf
1の値を特定することによって計算することができる。集光器320からの集光ビーム340の二乗平均平方根(RMS)ビームスポット径、すなわちd
1は、たとえば、2.58μmであり得る。有効焦点距離380、すなわちf
1は、
図5に示す集光器320の配置に基づいて計算することができる。それに関して、有効焦点距離380は、
【数6】
によって記述することができる。半径αは、コリメートビーム330の半径を記述することができる。たとえば、半径αは2.65mmに等しい場合がある。角度βは、1.3×1/e
2点における周辺光線角度であり得る。角度βは、たとえば、17.9°であり得る。半径αおよび角度βに対するこれらの値を上記式に代入すると、f
1、すなわち有効焦点距離380は、8.20mm、すなわち8200μmであると計算することができる。
図5の配置は、ハウジングの物理的制約を考慮して必要に応じて集光ビーム340を向けるビームスプリッタ530を含む。
【0055】
【数7】
に対して、d
1およびf
1に対する例としての値を上記式に代入する。
図3を参照すると、θ
1=0.015°は、著しいファイバ結合効率損失が発生し始める前の集光器320内へのコリメートビーム330の最大軸外し角を記述することができる。光ファイバ310は、25μmの実際のコア直径312に対して7μmの公差付きコア直径を有することができる。
図3に示す照明光学系は、7μm公差付きコア直径を通る回折エンサークルドエネルギー(diffraction encircled energy)と光ファイバ310の角度開口数を通る透過率とを含む、≧72%透過率(製造公差を含む)を有することができる。0.0134°の集光器320内へのコリメートビーム330の最大許容可能軸外し角誤差により、7μm公差付きコア直径を通る回折エンサークルドエネルギーが650nmにおいて90%まで低下する結果となる。すなわち、計算されたθ
1=0.015°は、Zemax等のソフトウェアアプリケーションを使用する光学レイトレーシングによって計算された0.0134°の理論的値におよそ等しいものであり得る。
【0056】
性能指数
【数8】
は、N>1での
図1、
図2A、
図2Bの眼科システム100が、高い結合効率を維持しながら、いかに有効に光学位置ずれに対応するかを測定することができる。性能指数γ
Nは、N>1に対する光結合を維持する最大軸外し角をN=1の最大軸外し角と比較する。より具体的には以下の通りである。
【数9】
γ
Nの第1項は、Nにより一定であり、d
1のみによって決まり得る。第2項は、Nによって決まり、d
1<7μmの場合Nの増大により低減し得る。N=∞の限界では、γ
Nは、第1項に漸近的に近づく。
【0057】
変化するNおよびd
1に対するγ
Nの値は、
図6の表にまとめることができる。表600の値は、眼科照明システム100のアライメント後角度感度における有利な低下を示す。それに関して、γ
Nは、N=1である場合の
図3の配置に対する、N>1である場合の、効率的な光結合を維持する最大軸外し角が増大する倍数を記述することができる。たとえば、2.58μmに等しいRMSビームスポット径d
1を考慮し、d
1が3μmに等しいと想定すると、N=2に対してγ
N=3.25である。すなわち、効率的な光結合を維持する最大軸外し角は、N=2である場合、3.25倍増大し得る。こうしたシステムは、光ファイバ内への光のより高い軸外し角の効率的な結合のために、光学位置ずれにより耐性があり得る。性能指数γ
Nは、限界N=∞において5.5まで増大する。
【0058】
図7は、異なるd
1に対する変化するNに対するγ
Nの値をプロットするグラフ700を含む。x軸はパラメータNの値を含むことができる。y軸は、性能指数γ
Nの値を含むことができる。曲線710、720および730は、1μm、2μmおよび3μmに等しいd
1に対応する。2、3、4および5のパラメータN値および約1.95μmの集束ビームスポット径d
1とを有する実際の集光器/ファイバシステムのミューレション結果740もグラフ700に含めることができる。シミュレーション結果740と曲線720との間の関係は、数学的関係γ
Nの妥当性を示すものであり得る。
【0059】
製造業者は、性能指数γ
Nおよび/または角度感度パラメータθ
Nの計算を使用して、眼科照明システム110に関連する1つまたは複数の量を求めることができる。たとえば、計算は、パラメータNを選択するために使用されるアルゴリズムの一部であり得る。パラメータNを用いて、入口開口部212の直径214、集光器126の有効焦点距離246、集光ビーム127の角度広がり、すなわちNA
beam、および/または他の好適な量を求めることができる。光ファイバ170は、選択された直径214に基づいて製造または選択することができる。集光器126は、選択された有効焦点距離246および/またはNA
beamに基づいて、光源122、コリメータ124および/または光ファイバ170に対してハウジング121内に位置決めすることができる。
【0060】
本明細書に記載した実施形態は、位置決め誤差にも関わらず、光ビームの位置ずれに対するより大きい許容度と、光ファイバ内への高い結合効率の維持とを容易にする装置、システムおよび方法を提供することができる。上に提供した例は、本質的に例示的なものであり限定するものではない。当業者であれば、本開示の範囲内にあるように意図された開示した実施形態に一貫する他のシステムを用意に考案することができる。したがって、本出願は、以下の特許請求の範囲のみによって限定することができる。