特許第6887302号(P6887302)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6887302
(24)【登録日】2021年5月20日
(45)【発行日】2021年6月16日
(54)【発明の名称】ハニカムフィルタ
(51)【国際特許分類】
   B01D 39/20 20060101AFI20210603BHJP
   B01D 46/00 20060101ALI20210603BHJP
   F01N 3/022 20060101ALI20210603BHJP
【FI】
   B01D39/20 D
   B01D46/00 302
   F01N3/022 C
【請求項の数】10
【全頁数】37
(21)【出願番号】特願2017-95955(P2017-95955)
(22)【出願日】2017年5月12日
(65)【公開番号】特開2018-192388(P2018-192388A)
(43)【公開日】2018年12月6日
【審査請求日】2020年1月22日
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】100088616
【弁理士】
【氏名又は名称】渡邉 一平
(74)【代理人】
【識別番号】100154829
【弁理士】
【氏名又は名称】小池 成
(72)【発明者】
【氏名】加藤 靖
(72)【発明者】
【氏名】近藤 隆宏
【審査官】 中村 泰三
(56)【参考文献】
【文献】 特開2016−052635(JP,A)
【文献】 特開2009−154124(JP,A)
【文献】 特開2015−157730(JP,A)
【文献】 特開昭58−196820(JP,A)
【文献】 特開2010−053697(JP,A)
【文献】 特開2010−221159(JP,A)
【文献】 特開2011−169156(JP,A)
【文献】 特開2012−184660(JP,A)
【文献】 特開2012−210581(JP,A)
【文献】 特開2015−183532(JP,A)
【文献】 米国特許出願公開第2009/0139193(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 39/20
B01D 46/00
B01D 53/92−94
B01J 35/00
C04B 38/00
F01N 3/022、3/035
(57)【特許請求の範囲】
【請求項1】
流入端面から流出端面まで延びる流体の流路となる複数のセルを取り囲むように配設された多孔質の隔壁を有するハニカム構造部と、
複数の前記セルのうちの一部の前記セルにおける前記流入端面側又は前記流出端面側のいずれか一方の端部を封止するように配置された目封止部と、を備え、
複数の前記セルのうち、
前記流出端面側の端部に前記目封止部が配設され、前記流入端面側が開口した前記セルを、流入セルとし、
前記流入端面側の端部に前記目封止部が配設され、前記流出端面側が開口した前記セルを、流出セルとし、
前記目封止部が配設されておらず、前記流入端面側及び前記流出端面側の両方が開口した前記セルを、貫通セルとし、
前記ハニカム構造部は、当該ハニカム構造部の前記セルの延びる方向に直交する断面において、一の方向に沿って直線状に複数の前記セルが配列したセル列を複数有し、
前記セル列が、前記セルの延びる方向に直交する断面において、四角形のセルが前記一の方向に沿って配列したセル列、四角形のセルと八角形のセルが前記一の方向に沿って交互に配列した繰り返し単位からなるセル列、又は、六角形のセルが前記一の方向に沿って配列したセル列のいずれかであり、
前記セルの延びる方向に直交する断面において、前記四角形のセル、前記八角形のセル、及び前記六角形のセルのそれぞれの輪郭形状が、互いに対向する2つの辺を有し、当該対向する2つの辺に直交する方向が、前記一の方向であり、
複数の前記セル列は、一の前記セル列としての第一セル列と、他の前記セル列としての第二セル列とからなり
前記第一セル列は、前記流出セルと前記貫通セルとが、前記一の方向に沿って交互に配設されたセル列であり、
前記第二セル列は、前記一の方向に沿って直線状に配列した前記セルとして前記貫通セルを含まないセル列であり、
前記第一セル列の幅P1(mm)、及び前記第二セル列の幅P2(mm)が、下記式(1)の関係を満たすとともに、
前記セルの延びる方向に直交する断面において、それぞれの前記セルは、多角形の角部が、曲率半径Rの曲線状に形成された形状を有し、
前記第一セル列の幅P1(mm)、前記第二セル列の幅P2(mm)、及び曲率半径R(μm)が、下記式(2)の関係を満たす、ハニカムフィルタ。
式(1):2≦100−(P1/P2×100)≦50
式(2):0.4≦(R/1000)/((P1+P2)/2)×100≦20
【請求項2】
前記第一セル列の幅P1と前記第二セル列の幅P2の平均値が、0.5〜2.7mmである、請求項1に記載のハニカムフィルタ。
【請求項3】
前記第一セル列の幅P1が、0.3〜2.7mmである、請求項1又は2に記載のハニカムフィルタ。
【請求項4】
前記第二セル列の幅P2が、0.7〜2.7mmである、請求項1〜3のいずれか一項に記載のハニカムフィルタ。
【請求項5】
前記セルの延びる方向に直交する断面において、前記第一セル列の数N1に対する、前記第二セル列の数N2の比率N2/N1が、1/4〜4.0である、請求項1〜4のいずれか一項に記載のハニカムフィルタ。
【請求項6】
前記第二セル列において、前記流入セルと前記流出セルとが、前記一の方向に沿って交互に配置されている、請求項1〜のいずれか一項に記載のハニカムフィルタ。
【請求項7】
前記第二セル列が、前記流入セルのみが前記一の方向に沿って直線状に配列したセル列を含む、請求項1〜のいずれか一項に記載のハニカムフィルタ。
【請求項8】
前記第二セル列が、前記流出セルのみが前記一の方向に沿って直線状に配列したセル列を更に含む、請求項1〜のいずれか一項に記載のハニカムフィルタ。
【請求項9】
前記セルの延びる方向に直交する断面に、前記セル列の構成が異なる2つ以上の領域を有し、少なくとも一部の領域に、前記ハニカム構造部が存在する、請求項1〜のいずれか一項に記載のハニカムフィルタ。
【請求項10】
複数個の前記ハニカム構造部を備え、
それぞれの前記ハニカム構造部が、柱状のハニカムセグメントによって構成され、複数個の前記ハニカムセグメントの互いの側面同士が接合層によって接合されている、請求項1〜のいずれか一項に記載のハニカムフィルタ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハニカムフィルタに関する。更に詳しくは、捕集したススを燃焼して除去する再生効率に優れるとともに、捕集効率の低下を抑制することが可能なハニカムフィルタに関する。
【背景技術】
【0002】
様々な産業において、動力源として内燃機関が用いられている。一方で、内燃機関が燃料の燃焼時に排出する排ガスには、スス(スート;Soot)や灰(アッシュ;Ash)等の粒子状物質が含まれている。例えば、ディーゼルエンジンから排出される粒子状物質の除去に関する規制は世界的に厳しくなっており、粒子状物質を除去するためのフィルタとして、ハニカム構造を有するハニカムフィルタが用いられている。以下、粒子状物質を、「PM」ということがある。PMは、「Particulate Matter」の略である。
【0003】
従来、PMを除去するためのハニカムフィルタとして、複数のセルを取り囲むように配設された多孔質の隔壁を有するハニカム構造部と、セルのいずれか一方の端部を目封止する目封止部と、を備えたものが提案されている。
【0004】
このようなハニカムフィルタは、多孔質の隔壁がPMを除去するフィルタの役目を果たす構造となっている。具体的には、PMを含有する排ガスを、ハニカムフィルタの流入端面から流入させ、多孔質の隔壁でPMを捕集することによって濾過した後に、浄化された排ガスを、ハニカムフィルタの流出端面から排出する。このようにして排ガス中のPMを除去することができる。
【0005】
近年、このようなハニカムフィルタとして、複数のセルのうちの一部のセルを、目封止部が配設されていない貫通セルとしたハニカムフィルタが提案されている(例えば、特許文献1〜3参照)。
【0006】
例えば、特許文献1には、流入端面側が目封止部によって塞がれた入口目封止セルと、両端が開口した貫通セルとが、交互に隣接して配置されたハニカム構造体が開示されている。
【0007】
特許文献2には、流入端面側の端部に目封止部が配設された目封止セルと、目封止部が配設されない貫通セルとを有するハニカム構造体が開示されている。特許文献2に開示されたハニカム構造体は、貫通セルと隔壁を挟んで隣接するセルのうち、目封止セルとなるセルの数が、2つ以下となっている。
【0008】
特許文献3には、一方の端面のみを目封止された目封止セルと、いずれにも目封止されていない貫通セルと、を含むセラミックスフィルタが開示されている。特許文献3に開示されたセラミックスフィルタにおいては、ハニカム構造部の中心部分が、目封止セルと貫通セルとを含むように構成されている。
【0009】
また、ハニカムフィルタとして、流出セルの断面形状として、四角形以上の多角形における角部に相当する部位が円弧状に形成された形状とする技術についても提案されている(例えば、特許文献4参照)。特許文献4に記載されたハニカムフィルタにおいては、上記構成を採用することで、ハニカムフィルタの熱容量を大きくし、再生時における温度上昇を軽減することができるとされている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】国際公開第2012/046484号
【特許文献2】特開2012−184660号公報
【特許文献3】特開2012−210581号公報
【特許文献4】特開2010−221159号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
特許文献1に開示されたハニカム構造体は、入口目封止セルと貫通セルとが交互に隣接して配置された構成であるため、捕集性能が低下し易いという問題があった。例えば、特許文献1に開示されたハニカム構造体は、高い捕集性能を必要とない用途に使用されるフィルタであるが、捕集性能が大きく低下してしまうため、使用する用途が大きく限定されてしまうことあった。
【0012】
また、特許文献2に開示されたハニカム構造体は、貫通セルと目封止セルとの配置に関して特徴を有するものであるが、このようなハニカム構造体についても、捕集性能が低下し易いという問題があった。
【0013】
特許文献3に開示されたセラミックスフィルタは、ハニカム構造部の中心部分が、目封止セルと貫通セルとを含むように構成されているため、捕集性能が低下し易いという問題や、外周部分において圧力損失が上昇し易いという問題があった。
【0014】
また、特許文献1〜3に開示されたような貫通セルを有するハニカム構造体においては、貫通セルの角部を発端として、貫通セル内に堆積したススが大量に蓄積してしまうという問題もあった。例えば、貫通セルの断面形状が多角形である場合には、この貫通セルの角部にススが堆積し易くなるが、その一方で、フィルタの再生時においては、角部に堆積したススが除去され難い。このため、結果として、貫通セルの角部を発端として、貫通セル内に堆積したススが大量に蓄積してしまうという問題もあった。
【0015】
また、入口目封止セル等の目封止部を有するハニカム構造体においては、セルの断面形状が多角形である場合には、セルの角部に配設された目封止部に欠損が生じ、目封止部を配設したセルの角部からスス漏れが発生するという問題もあった。
【0016】
特許文献4に記載されたハニカムフィルタは、流出セルの角部に相当する部位のみを、円弧状に形成しているため、流入セル相互間にクラック等が生じやすいという問題があった。
【0017】
本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、捕集効率の低下を抑制することが可能なハニカムフィルタを提供する。また、セル内に堆積したススを燃焼して除去する再生操作において、高い再生効率を実現することが可能なハニカムフィルタを提供する。また、流入セル及び流出セルの端部に配設された目封止部の欠損が生じ難くし、流入セル及び流出セルからのススの漏れだしを有効に抑制することが可能なハニカムフィルタを提供する。
【課題を解決するための手段】
【0018】
本発明によれば、以下に示すハニカムフィルタが提供される。
【0019】
[1] 流入端面から流出端面まで延びる流体の流路となる複数のセルを取り囲むように配設された多孔質の隔壁を有するハニカム構造部と、
複数の前記セルのうちの一部の前記セルにおける前記流入端面側又は前記流出端面側のいずれか一方の端部を封止するように配置された目封止部と、を備え、
複数の前記セルのうち、
前記流出端面側の端部に前記目封止部が配設され、前記流入端面側が開口した前記セルを、流入セルとし、
前記流入端面側の端部に前記目封止部が配設され、前記流出端面側が開口した前記セルを、流出セルとし、
前記目封止部が配設されておらず、前記流入端面側及び前記流出端面側の両方が開口した前記セルを、貫通セルとし、
前記ハニカム構造部は、当該ハニカム構造部の前記セルの延びる方向に直交する断面において、一の方向に沿って直線状に複数の前記セルが配列したセル列を複数有し、
前記セル列が、前記セルの延びる方向に直交する断面において、四角形のセルが前記一の方向に沿って配列したセル列、四角形のセルと八角形のセルが前記一の方向に沿って交互に配列した繰り返し単位からなるセル列、又は、六角形のセルが前記一の方向に沿って配列したセル列のいずれかであり、
前記セルの延びる方向に直交する断面において、前記四角形のセル、前記八角形のセル、及び前記六角形のセルのそれぞれの輪郭形状が、互いに対向する2つの辺を有し、当該対向する2つの辺に直交する方向が、前記一の方向であり、
複数の前記セル列は、一の前記セル列としての第一セル列と、他の前記セル列としての第二セル列とからなり
前記第一セル列は、前記流出セルと前記貫通セルとが、前記一の方向に沿って交互に配設されたセル列であり、
前記第二セル列は、前記一の方向に沿って直線状に配列した前記セルとして前記貫通セルを含まないセル列であり、
前記第一セル列の幅P1(mm)、及び前記第二セル列の幅P2(mm)が、下記式(1)の関係を満たすとともに、
前記セルの延びる方向に直交する断面において、それぞれの前記セルは、多角形の角部が、曲率半径Rの曲線状に形成された形状を有し、
前記第一セル列の幅P1(mm)、前記第二セル列の幅P2(mm)、及び曲率半径R(μm)が、下記式(2)の関係を満たす、ハニカムフィルタ。
【0020】
式(1):2≦100−(P1/P2×100)≦50
式(2):0.4≦(R/1000)/((P1+P2)/2)×100≦20
【0021】
[2] 前記第一セル列の幅P1と前記第二セル列の幅P2の平均値が、0.5〜2.7mmである、前記[1]に記載のハニカムフィルタ。
【0022】
[3] 前記第一セル列の幅P1が、0.3〜2.7mmである、前記[1]又は[2]に記載のハニカムフィルタ。
【0023】
[4] 前記第二セル列の幅P2が、0.7〜2.7mmである、前記[1]〜[3]のいずれかに記載のハニカムフィルタ。
【0024】
[5] 前記セルの延びる方向に直交する断面において、前記第一セル列の数N1に対する、前記第二セル列の数N2の比率N2/N1が、1/4〜4.0である、前記[1]〜[4]のいずれかに記載のハニカムフィルタ。
【0027】
] 前記第二セル列において、前記流入セルと前記流出セルとが、前記一の方向に沿って交互に配置されている、前記[1]〜[]のいずれかに記載のハニカムフィルタ。
【0028】
] 前記第二セル列が、前記流入セルのみが前記一の方向に沿って直線状に配列したセル列を含む、前記[1]〜[]のいずれかに記載のハニカムフィルタ。
【0029】
] 前記第二セル列が、前記流出セルのみが前記一の方向に沿って直線状に配列したセル列を更に含む、前記[1]〜[]のいずれかに記載のハニカムフィルタ。
【0030】
] 前記セルの延びる方向に直交する断面に、前記セル列の構成が異なる2つ以上の領域を有し、少なくとも一部の領域に、前記ハニカム構造部が存在する、前記[1]〜[]のいずれかに記載のハニカムフィルタ。
【0031】
10] 複数個の前記ハニカム構造部を備え、
それぞれの前記ハニカム構造部が、柱状のハニカムセグメントによって構成され、複数個の前記ハニカムセグメントの互いの側面同士が接合層によって接合されている、前記[1]〜[]のいずれかに記載のハニカムフィルタ。
【発明の効果】
【0032】
本発明のハニカムフィルタは、一の方向に沿って直線状に2つ以上のセルが配列したセルが、以下のような、第一セル列と、第二セル列とを含んでいる。第一セル列は、流入セル又は流出セルのうちの少なくとも一方と、貫通セルと、によって構成されたセル列である。第二セル列は、一の方向に沿って直線状に配列したセルに貫通セルを含まないセル列である。本発明のハニカムフィルタは、捕集効率の低下を抑制することができる。また、本発明のハニカムフィルタは、それぞれのセルが、多角形の角部が、曲率半径Rの曲線状に形成された形状を有するように構成されている。そして、上記式(2)を満たすように構成されているため、セル内に堆積したススを燃焼して除去するフィルタの再生操作において、高い再生効率を実現することができる。また、流入セル及び流出セルについては、セルの端部に配設された目封止部の欠損が生じ難く、流入セル及び流出セルからのススの漏れだしを有効に抑制することができる。更に、本発明のハニカムフィルタは、上記式(1)を満たすように構成されているため、流入端面側に対する流出端面側のセルの総開口面積の減少を抑制することができる。このため、圧力損失の上昇を有効に抑制することができる。
【図面の簡単な説明】
【0033】
図1ニカムフィルタの第一実施形態を模式的に示す流入端面側から見た斜視図である。
図2図1に示すハニカムフィルタの流入端面を模式的に示す平面図である。
図3図1に示すハニカムフィルタの流出端面を模式的に示す平面図である。
図4図2に示すハニカムフィルタの流入端面の一部を拡大した拡大平面図である。
図5図3に示すハニカムフィルタの流出端面の一部を拡大した拡大平面図である。
図6図4のA−A’断面を模式的に示す、断面図である。
図7図4のB−B’断面を模式的に示す、断面図である。
図8ニカムフィルタの第二実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図9ニカムフィルタの第二実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図10ニカムフィルタの第三実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図11ニカムフィルタの第三実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図12ニカムフィルタの第四実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図13ニカムフィルタの第四実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図14ニカムフィルタの第五実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図15ニカムフィルタの第五実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図16ニカムフィルタの第六実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図17ニカムフィルタの第六実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図18ニカムフィルタの第七実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図19ニカムフィルタの第七実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図20】本発明のハニカムフィルタの他の実施形態を模式的に示す、流入端面の平面図である。
図21】本発明のハニカムフィルタの更に他の実施形態を模式的に示す、流入端面の平面図である。
図22】本発明のハニカムフィルタの更に他の実施形態を模式的に示す、流入端面の平面図である。
図23】本発明のハニカムフィルタの更に他の実施形態を模式的に示す流入端面側から見た斜視図である。
図24】本発明のハニカムフィルタの第八実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図25】本発明のハニカムフィルタの第八実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図26】本発明のハニカムフィルタの第九実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図27】本発明のハニカムフィルタの第九実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図28】本発明のハニカムフィルタの第十実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図29】本発明のハニカムフィルタの第十実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図30】本発明のハニカムフィルタの第十一実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図31】本発明のハニカムフィルタの第十一実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図32】本発明のハニカムフィルタの第十二実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図33】本発明のハニカムフィルタの第十二実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
図34】本発明のハニカムフィルタの第十三実施形態を模式的に示す、流入端面の一部を拡大した拡大平面図である。
図35】本発明のハニカムフィルタの第十三実施形態を模式的に示す、流出端面の一部を拡大した拡大平面図である。
【発明を実施するための形態】
【0034】
(1)ハニカムフィルタ(第一実施形態):
図1図7に示すように、ハニカムフィルタの第一実施形態は、多孔質の隔壁1を有するハニカム構造部4と、ハニカム構造部4に形成されたセル2のいずれか一方の端部に配設された目封止部5と、を備えたハニカムフィルタ100である。ここで、図1、ハニカムフィルタの第一実施形態を模式的に示す流入端面側から見た斜視図である。図2は、図1に示すハニカムフィルタの流入端面を模式的に示す平面図である。図3は、図1に示すハニカムフィルタの流出端面を模式的に示す平面図である。図4は、図2に示すハニカムフィルタの流入端面の一部を拡大した拡大平面図である。図5は、図3に示すハニカムフィルタの流出端面の一部を拡大した拡大平面図である。図6は、図4のA−A’断面を模式的に示す、断面図である。図7は、図4のB−B’断面を模式的に示す、断面図である。
【0035】
ハニカム構造部4の隔壁1は、柱状のハニカム構造部4の流入端面11から流出端面12まで延びる流体の流路となる複数のセル2を取り囲むように配設されたものである。即ち、ハニカム構造部4は、多孔質の隔壁1によって、複数のセル2が区画形成されたハニカム構造を呈するものである。
【0036】
目封止部5は、ハニカム構造部4に形成された複数のセル2のうちの一部のセル2において、それぞれのセル2のいずれか一方の端部を封止するように配置されたものである。即ち、複数のセル2のうちの一部のセル2は、いずれか一方の端部が目封止部5によって封止されたセル2となり、この一部のセル2以外の残余のセル2は、両側の端部に目封止部5が配設されておらず、当該両側の端部が開口したセル2となっている。以下、目封止部5を配設する箇所、又は目封止部5の配設の有無により、複数のセル2を、流入セル2a、流出セル2b、又は貫通セル2cと称することとする。流入セル2aは、流出端面12側の端部に目封止部5が配設され、流入端面11側が開口したセル2とする。流出セル2bは、流入端面11側の端部に目封止部が配設され、流出端面12側が開口したセル2とする。貫通セル2cは、目封止部5が両端の端部に配設されておらず、流入端面11側及び流出端面12側の両方が開口したセル2とする。
【0037】
図4及び図5において、貫通セル2cは、白抜きのセルとして図示されている。図4において、流出セル2bは、流入端面11側の端部に目封止部5が配設された状態で図示されている。目封止部5は、右上がりの斜線のハッチングで図示されている。図4において、流入セル2aは、右下がりの破斜線のハッチングで図示されている。なお、流入セル2bは、流入端面11側の端部に目封止部5が配設されておらず、図4に示される流入端面11側では、貫通セル2cと同様に、当該流入セル2aの端部が開口した状態となっている。ただし、図4において、流入セル2aを白抜きのセルとして図示すると、図4の紙面上で、貫通セル2cと流入セル2aの区別が困難になるおそれがある。このため、図4及び図5においては、各図が示す端面側の端部に目封止部5が配設されておらず、セル2の延びる方向の反対側の端部に目封止部5が配設されているセル2を、右下がりの破斜線のハッチングにより示している。また、後述するハニカムフィルタの端面を示す図8図19及び図24図35においても、各図が示す端面側の端部に目封止部が配設されておらず、セルの延びる方向の反対側の端部に目封止部が配設されているセルを、右下がりの破斜線のハッチングにより示している。
【0038】
ハニカム構造部4は、当該ハニカム構造部4のセル2の延びる方向に直交する断面において、一の方向に沿って直線状に2つ以上のセル2が配列した複数のセル列を有する。そして、複数のセル列は、以下に説明するような、第一セル列15と、第二セル列16とを含んでいる。第一セル列15は、流入セル2a又は流出セル2bのうちの少なくとも一方と、貫通セル2cと、によって構成されたセル列である。第二セル列16は、一の方向に沿って直線状に配列したセル2に貫通セル2cを含まないセル列である。なお、第二セル列16は、流入セル2aのみ又は流出セル2bのみによって構成されたセル列であってもよいし、流出セル2bと流入セル2aとが混在したセル列であってもよい。
【0039】
本実施形態のハニカムフィルタ100は、第一セル列15の幅P1、及び第二セル列16の幅P2が、下記式(1)の関係を満たしている。下記式(1)において、P1は、第一セル列15の幅P1(単位:mm)を示し、Pは、第二セル列16の幅P2(単位:mm)を示す。図4及び図5に示すようなハニカム構造部4において、各セル列の幅を測定する際の側縁は、それぞれのセル列の側縁に配設された隔壁1の厚さの中間位置とする。このようにして、それぞれのセル列の両側の側縁を求め、2つの側縁間の距離を測定する。測定された2つの側縁間の距離を、それぞれのセル列の幅とする。
【0040】
式(1):2≦100−(P1/P2×100)≦50
【0041】
また、本実施形態のハニカムフィルタ100は、セル2の延びる方向に直交する断面において、それぞれのセル2は、多角形の角部6が、曲率半径R(μm)の曲線状に形成された形状を有している。図4及び図5において、符号6は、セル2の延びる方向に直交する断面におけるセル2の形状において、曲線状に形成された角部6を示す。そして、第一セル列15の幅P1(mm)、第二セル列16の幅P2(mm)、及び曲率半径R(μm)が、下記式(2)の関係を満たしている。下記式(2)において、Rは、セル2の角部6における曲線状の部位の曲率半径R(単位:μm)を示す。
【0042】
式(2):0.4≦(R/1000)/((P1+P2)/2)×100≦20
【0043】
このように構成することによって、貫通セル2cを有する第一セル列15の幅P1が、第二セル列16の幅P2の幅P2に比して相対的に狭くなり、ハニカムフィルタ100の捕集効率の低下を有効に抑制することができる。また、ハニカムフィルタ100は、上記式(2)を満たすように構成されているため、セル2内に堆積したススを燃焼して除去するフィルタの再生操作において、高い再生効率を実現することができる。また、流入セル2a及び流出セル2bについては、セル2の端部に配設された目封止部5の欠損が生じ難く、流入セル2a及び流出セル2bからのススの漏れだしを有効に抑制することができる。更に、ハニカムフィルタ100は、上記式(1)を満たすように構成されているため、流入端面11側に対する流出端面側のセル2の総開口面積の減少を抑制することができる。このため、圧力損失の上昇を有効に抑制することができる。
【0044】
式(1)において、「100−(P1/P2×100)」の値が、2未満であると、貫通セル2cを有する第一セル列15の幅P1が、第二セル列16の幅P2の幅P2と同程度の幅となり、捕集効率が低下してしまう。式(1)において、「100−(P1/P2×100)」の値が、50を超えると、第一セル列15の幅P1が狭すぎて、貫通セル2cを有する利点が失われてしまう。式(1)において、「100−(P1/P2×100)」の値は、5以上であることが特に好ましい。また、45以下であることが特に好ましい。
【0045】
式(2)において、「(R/1000)/((P1+P2)/2)×100」の値が、0.4未満であると、セル2内に堆積したススを燃焼して除去するフィルタの再生操作において、再生効率の十分な改善が見られない。また、ハニカムフィルタ100からスス等が漏れ出し易くなる。式(2)において、「/1000)/((P1+P2)/2)×100」の値が、20を超えると、圧力損失が悪化する。式(2)において、「(R/1000)/((P1+P2)/2)×100」の値は、1以上であることが特に好ましい。また、15以下であることが特に好ましい。
【0046】
それぞれのセル2における、曲線状に形成された角部6の曲率半径Rについては、以下のように測定することができる。まず、ハニカムフィルタ100の流入端面及び流出端面を画像測定機によって撮像する。そして、撮像した流入端面及び流出端面の画像を画像解析することによって、角部6の曲率半径Rを求めることができる。画像解析の方法としては、例えば、ニコン社製の「VM−2520(商品名)」を用いることができる。セル2の角部6の曲率半径Rは、上記画像解析により、セル2の角部6に対するカーブフィッティングにて、当該角部6の内接円の半径(又は直径)を求めることによって得ることができる。
【0047】
本実施形態のハニカムフィルタ100において、セル列を規定する方向、即ち、上述した一の方向については、2つ以上のセル2が直線状に配列した方向であれば、ハニカム構造部4のセル2の延びる方向に直交する断面において、任意の方向とすることができる。ただし、第一セル列15の幅P1と、第二セル列16の幅P2とを比較する際には、それぞれのセル列は、同一方向に延びる平行なセル列とする。
【0048】
第一セル列15は、ハニカム構造部4のセル2の延びる方向に直交する断面において、少なくとも1列以上存在していればよい。また、第二セル列16についても、ハニカム構造部4のセル2の延びる方向に直交する断面において、少なくとも1列以上存在していればよい。
【0049】
第一セル列15の幅P1と、第二セル列16の幅P2の平均値が、0.5〜2.7mmであることが好ましく、0.7〜2.0mmであることが更に好ましい。上記平均値が、0.5mm未満であると、スス堆積によるセル2の詰まりが発生する点で好ましくない。また、上記平均値が、2.7mmを超えると、実質的なセル数が減少することで、1個のセル2あたりのスス堆積量が増加し、圧力損失の上昇を引き起こす点で好ましくない。
【0050】
第一セル列15の幅P1が、0.3〜2.7mmであることが好ましく、0.5〜2.0mmであることが更に好ましい。第一セル列15の幅P1が、0.3mm未満であると、スス堆積によるセル2の詰まりが発生する点で好ましくない。また、第一セル列15の幅P1が、2.7mmを超えると、実質的なセル数が減少することで、1個のセル2あたりのスス堆積量が増加し、圧力損失の上昇を引き起こす点で好ましくない。
【0051】
第二セル列16の幅P2が、0.7〜2.7mmであることが好ましく、1.0〜2.0mmであることが更に好ましい。第二セル列16の幅P2が、0.7mm未満であると、スス堆積によるセル2の詰まりが発生する点で好ましくない。また、第二セル列16の幅P2が、2.7mmを超えると、実質的なセル数が減少することで、1個のセル2あたりのスス堆積量が増加し、圧力損失の上昇を引き起こす点で好ましくない。
【0052】
第一セル列15及び第二セル列16のそれぞれのセル列において、直線上に配列するセル2の個数については特に制限はない。ただし、それぞれのセル列は、5個以上のセル2が直線上に配列したものであることが好ましく、10個以上のセル2が直線上に配列したものであることが更に好ましい。なお、直線上に配列するセル2の個数の上限は、ハニカム構造部4の一の周縁から他の周縁までの直線上に存在する全てのセル2の個数となる。
【0053】
セル2の延びる方向に直交する断面において、第一セル列15の数N1、及び第二セル列16の数N2については、少なくとも1列以上であればよい。本実施形態のハニカムフィルタ100においては、第一セル列15の数N1に対する、第二セル列16の数N2の比率N2/N1が、1/4〜4.0であることが好ましく、1/3〜3.0であることが更に好ましい。このように構成することによって、灰の堆積容量を大きく確保しつつ、圧力損失の上昇を有効に抑制することができる。なお、上記比率N2/N1が、1/4未満であると、流入セル2aの個数に対する、流出セル2bの個数の比率が小さくなる。このため、隔壁1にススが堆積していない状態から少量のススが堆積した際に、ハニカムフィルタ100の圧力損失の上昇が大きくなることがある。また、上記比率N2/N1が、4.0を超えると、流入セル2aの減少により、灰の堆積容量が減少することがある。
【0054】
セル2の延びる方向に直交する断面において、第一セル列15と第二セル列16とは、隔壁1を挟んで隣接して配置されている。例えば、図1図7に示すハニカムフィルタ100のように、セル2の延びる方向に直交する断面において、第二セル列16の両側にそれぞれ第一セル列15が配置されていてもよい。ハニカムフィルタ100においては、セル2の延びる方向に直交する断面において、第一セル列15と第二セル列16とが、各列に直交する方向に交互に配置されている。このように構成されたハニカムフィルタ100は、灰の堆積容量を、ハニカムフィルタ100内のどの場所においても均等に確保することができる点で好ましい。
【0055】
第一セル列15において、流入セル2aと貫通セル2cとが、列の延びる方向に交互に配設されていてもよい。また、図示は省略するが、第一セル列において、流出セルと貫通セルとが、列の延びる方向に交互に配設されていてもよい。なお、第一セル列は、流入セルと流出セルと貫通セルとが、列の延びる方向に混在したセル列であってもよいが、流入セルと貫通セルとによって構成されたセル列、又は流出セルと貫通セルとによって構成されたセル列であることが好ましい。
【0056】
また、図示は省略するが、第二セル列において、流入セルと流出セルとが、列の延びる方向に交互に配置されていてもよい。第二セル列は、貫通セルを含まないセル列であれば、流入セルと流出セルとの配列が異なる複数種類のセル列を含んでいてもよい。例えば、第二セル列は、流入セルと流出セルとによって構成されたセル列の他に、流入セルのみが一の方向に沿って直線状に配列したセル列を更に含んでいてもよい。また、流出セルのみが一の方向に沿って直線状に配列したセル列を更に含んでいてもよい。
【0057】
ハニカムフィルタ100の全体形状については、特に制限はない。例えば、図1に示すハニカムフィルタ100の全体形状は、流入端面11及び流出端面12が円形の円柱状である。その他、図示は省略するが、ハニカムフィルタの全体形状としては、流入端面及び流出端面が、楕円形やレーストラック(Racetrack)形や長円形等の略円形の柱状であってもよい。また、ハニカムフィルタの全体形状としては、流入端面及び流出端面が、四角形や六角形等の多角形の角柱状であってもよい。
【0058】
隔壁1の厚さが、50〜600μmであることが好ましく、100〜500μmであることが更に好ましく、150〜450μmであることが特に好ましい。隔壁1の厚さが、50μm未満であると、ハニカムフィルタ100のアイソスタティック強度(Isostatic strength)が低下してしまうことがある。隔壁1の厚さが、600μmを超えると、圧力損失が増大し、エンジンの出力低下や燃費の悪化を引き起こすことがある。隔壁1の厚さは、ハニカムフィルタ100の軸方向に直交する断面を光学顕微鏡により観察する方法で測定した値である。
【0059】
隔壁1の気孔率は、例えば、20〜90%であることが好ましく、25〜80%であることが更に好ましく、30〜75%であることが特に好ましい。隔壁1の気孔率が20%未満であると、ハニカムフィルタ100の圧力損失が増大し、エンジンの出力低下や燃費の悪化を引き起こすことがある。隔壁1の気孔率が30%以上であると、上記の問題がより起こり難くなる。一方で、隔壁1の気孔率が90%を超えると、ハニカムフィルタ100のアイソスタティック強度(Isostatic strength)が低下してしまうことがある。隔壁1の気孔率が75%以下であると、上記の問題がより起こり難くなる。なお、隔壁1の気孔率は、水銀ポロシメータ(Mercury porosimeter)によって計測された値とする。水銀ポロシメータとしては、例えば、Micromeritics社製のAutopore 9500(商品名)を挙げることができる。
【0060】
セル2の形状については、多角形の角部6が、曲率半径Rの曲線状に形成された形状であれば、元の多角形状については特に制限はない。後述するように、セル2の形状としては、四角形、六角形、八角形等を挙げることができる。
【0061】
隔壁1を構成する材料に特に制限はないが、強度、耐熱性、耐久性等の観点から、主成分は、酸化物又は非酸化物の各種セラミックスや金属等であることが好ましい。具体的には、例えば、セラミックスとしては、コージェライト、ムライト(Mullite)、アルミナ、スピネル(Spinel)、炭化珪素、窒化珪素、及びチタン酸アルミニウム等が考えられる。金属としては、Fe−Cr−Al系金属、及び金属珪素等が考えられる。これらの材料の中から選ばれた1種又は2種以上を主成分とすることが好ましい。高強度、高耐熱性等の観点から、アルミナ、ムライト、チタン酸アルミニウム、コージェライト、炭化珪素、及び窒化珪素から構成された群より選ばれた1種又は2種以上を主成分とすることが特に好ましい。また、高熱伝導率や高耐熱性等の観点からは、炭化珪素、又は珪素−炭化珪素複合材料が特に適している。ここで、「主成分」とは、隔壁の50質量%以上を構成する成分のことを意味する。上記成分は、隔壁を構成する材料中に70質量%以上含まれることが好ましく、80質量%以上含まれることが更に好ましい。
【0062】
目封止部5の材質は、隔壁1の材質として好ましいとされた材質であることが好ましい。目封止部5の材質と隔壁1の材質とは、同じ材質であってもよいし、異なる材質であってもよい。
【0063】
本実施形態のハニカムフィルタ100は、ハニカム構造部4の隔壁1の表面及び隔壁1の細孔のうちの少なくとも一方に、排ガス浄化用の触媒が担持されていてもよい。このように構成することによって、排ガス中のCOやNOxやHCなどを触媒反応によって無害な物質にすることができる。また、隔壁1に捕集したススの酸化を促進させることができる。
【0064】
本実施形態のハニカムフィルタ100に触媒を担持する場合には、触媒は、SCR触媒、NOx吸蔵触媒、及び酸化触媒から構成される群より選ばれる1種以上を含むことが好ましい。SCR触媒は、被浄化成分を選択還元する触媒である。特に、SCR触媒が、排ガス中のNOxを選択還元するNOx選択還元用SCR触媒であることが好ましい。また、SCR触媒としては、金属置換されたゼオライトを挙げることができる。ゼオライトを金属置換する金属としては、鉄(Fe)、銅(Cu)を挙げることができる。ゼオライトとしては、ベータゼオライトを好適例として挙げることができる。また、SCR触媒が、バナジウム、及びチタニアから構成される群より選択される少なくとも1種を主たる成分として含有する触媒であってもよい。NOx吸蔵触媒としては、アルカリ金属やアルカリ土類金属等を挙げることができる。アルカリ金属としては、カリウム、ナトリウム、リチウム等を挙げることができる。アルカリ土類金属としては、カルシウムなどを挙げることができる。酸化触媒としては、貴金属を含有するものを挙げることができる。酸化触媒として、具体的には、白金、パラジウム及びロジウムから構成される群より選択される少なくとも一種を含有するものが好ましい。
【0065】
(2)ハニカムフィルタ(第二実施形態〜第七実施形態):
次に、ハニカムフィルタの第二実施形態〜第七実施形態について、図8図19を参照しつつ説明する。ここで、図8図19、ハニカムフィルタの第二実施形態〜第七実施形態を模式的に示す、流入端面又は流出端面の一部を拡大した拡大平面図である。
【0066】
図8図11に示される第二実施形態及び第三実施形態のハニカムフィルタは、セル2の形状が、角部6が曲線状に形成された四角形であり、第一実施形態のハニカムフィルタと同様に、上述した式(1)及び式(2)を満たすように構成されている。特に、第二実施形態及び第三実施形態のハニカムフィルタは、第一セル列15の幅P1が、第二セル列16の幅P2よりも小さくなるように構成されている。第二実施形態及び第三実施形態のハニカムフィルタは、第一セル列15及び第二セル列16の配列が、第一実施形態のハニカムフィルタと異なること以外は、第一実施形態のハニカムフィルタと同様に構成されていることが好ましい。
【0067】
図8及び図9に示すように、第二実施形態のハニカムフィルタ200は、流入セル2aと流出セル2bとによって構成された第二セル列16が、第二セル列16に直交する方向に2列連続して配置されている。このように、第一セル列15及び第二セル列16は、各列に直交する方向に交互に配置されていなくともよい。例えば、ハニカムフィルタ200に求められる捕集効率に応じて、貫通セル2cを含む第一セル列15を相対的に減少させてもよい。図8及び図9に示すハニカムフィルタ200において、第二セル列16に直交する方向に隣接する2つの第二セル列16のぞれぞれは、流入セル2aと流出セル2bとが交互に配置されたセル列である。そして、この隣接する2つの第二セル列16は、目封止部5の配設位置が、半ピッチ(pitch)ずれた状態となっている。
【0068】
図10及び図11に示すように、第三実施形態のハニカムフィルタ300は、流入セル2aと貫通セル2cとによって構成された第一セル列15が、第一セル列15に直交する方向に2列連続して配置されている。このように、第一セル列15及び第二セル列16は、各列に直交する方向に交互に配置されていなくともよい。このように構成されたハニカムフィルタ200においても、上述した式(1)及び式(2)を満たすように構成することにより、捕集効率の低下を有効に抑制することができる。
【0069】
なお、図10及び図11に示される第三実施形態のハニカムフィルタ300は、後述するセグメント構造のハニカムフィルタとなっている。このため、図10及び図11において図示されるセル2の構造は、セグメント構造のハニカムフィルタを構成する一つのハニカムセグメントの端面の一部を示したものである。
【0070】
図12図15に示される第四実施形態及び第五実施形態のハニカムフィルタは、隔壁21によって区画形成されるセル22の形状が、略四角形と略八角形になっている。略四角形とは、四角形の角部が曲線状に形成された形状のことであり、略八角形とは、八角形の角部が曲線状に形成された形状のことである。以下、四角形の角部が曲線状に形成された略四角形のことを、「略四角形」又は単に「四角形」ということがある。また、八角形の角部が曲線状に形成された略八角形のことを、「略八角形」又は単に「八角形」ということがある。第四実施形態及び第五実施形態のハニカムフィルタは、上述した式(1)を満たし、且つ、セル22の角部における曲線状の部位の曲率半径Rとした場合に、上述した式(2)を満たすように構成されている。
【0071】
第四実施形態及び第五実施形態のハニカムフィルタにおいては、ハニカム構造部24のセル22の延びる方向に直交する断面において、四角形のセル22と八角形のセル22とが互い違いに形成されている。第四実施形態及び第五実施形態のハニカムフィルタにおいても、第一セル列35の幅P1が、第二セル列36の幅P2よりも小さくなるように構成されている。第四実施形態及び第五実施形態のハニカムフィルタは、第一実施形態のハニカムフィルタと、セル22の形状、並びに第一セル列35及び第二セル列36の配列が異なること以外は、第一実施形態のハニカムフィルタと同様に構成されていることが好ましい。
【0072】
ここで、図12図15に示される第四実施形態及び第五実施形態のハニカムフィルタにおける、第一セル列35の幅P1、及び第二セル列36の幅P2の測定方法について、図12及び図13を参照しつつ説明する。まず、図12及び図13に示すハニカムフィルタ400において、流入セル22a又は流出セル22bのうちの少なくとも一方と、貫通セル22cとによって構成されたセル列を、第一セル列35とする。流入セル22aは、流出端面32側の端部に目封止部25が配設され且つ流入端面31側が開口したセル22である。流出セル22bは、流入端面31側の端部に目封止部25が配設され、流出端面32側が開口したセル22である。また、一の方向に沿ってセル22が配列したセル列において、貫通セル22cを含まないセル列を、第二セル列36とする。各セル列の幅を測定する際には、まず、符号35で示される第一セル列35を「測定対象セル列」とした場合、当該測定対象セル列を構成するセル22のうち、セル列の最も内側に配置されたセル22xを見つける。次に、この測定対象セル列に隣接するセル列について、当該隣接するセル列を構成するセル22のうち、セル列の最も内側に配置されたセル22yを見つける。そして、セル22xとセル22yとの、セル列の延びる方向に直交する方向における中間位置を、「測定対象セル列」の片側の側縁とする。上述した方法により、「測定対象セル列」の両側の側縁を求め、2つの側縁間の距離を測定する。測定された2つの側縁間の距離を「測定対象セル列」の幅とする。
【0073】
図12図15に示される第四実施形態及び第五実施形態のハニカムフィルタ400,500は、排ガス中のススの量が多く、ススの堆積量が多くなる場合に有効なハニカムフィルタである。即ち、ススの堆積が無い時の圧力損失よりも、ススの堆積した状態での圧力損失の上昇を抑制する必要がある場合に好適な実施形態である。
【0074】
なお、図14及び図15に示される第五実施形態のハニカムフィルタ500は、後述するセグメント構造のハニカムフィルタとなっている。このため、図14及び図15において図示されるセル22の構造は、セグメント構造のハニカムフィルタを構成する一つのハニカムセグメントの端面の一部を示したものである。
【0075】
図16図19に示される第六実施形態及び第七実施形態のハニカムフィルタ600,700は、隔壁41によって区画形成されるセル42の形状が、略六角形になっている。略六角形とは、六角形の角部が曲線状に形成された形状のことである。以下、六角形の角部が曲線状に形成された略六角形のことを、「略六角形」又は単に「六角形」ということがある。第六実施形態及び第七実施形態のハニカムフィルタは、上述した式(1)を満たし、且つ、セル42の角部における曲線状の部位の曲率半径Rとした場合に、上述した式(2)を満たすように構成されている。なお、図16図19は、第六実施形態及び第七実施形態のハニカムフィルタ600,700において、六角形のセル42の配列を説明ための模式図であるため、六角形のセル42の角部における曲線状の部位は、省略して作図している。
【0076】
第六実施形態及び第七実施形態のハニカムフィルタにおいては、ハニカム構造部44のセル42の延びる方向に直交する断面において、第一セル列55の幅P1が、第二セル列56の幅P2よりも小さくなるように構成されている。図16図19においては、隔壁41によって区画形成されたセル42の形状のみを模式的に示している。即ち、図16図19においては、隔壁41を直線によって示し、当該隔壁41の厚みを捨象した状態で作図している。
【0077】
図16図19に示される第六実施形態及び第七実施形態のハニカムフィルタ600,700は、キャニング時において、各紙面の縦方向、横方向のみでなく、円周方向の強度の均一性を図ることができる。
【0078】
図16図19に示される第六実施形態及び第七実施形態のハニカムフィルタにおける、第一セル列55の幅P1、及び第二セル列56の幅P2の測定方法について、図16及び図17を参照しつつ説明する。まず、図16及び図17に示すハニカムフィルタ600において、流入セル42a又は流出セル42bのうちの少なくとも一方と、貫通セル42cとによって構成されたセル列を、第一セル列55とする。流入セル42aは、流出端面52側の端部に目封止部45が配設され且つ流入端面51側が開口したセル42である。流出セル42bは、流入端面51側の端部に目封止部45が配設され、流出端面52側が開口したセル42である。また、一の方向に沿ってセル42が配列したセル列において、貫通セル42cを含まないセル列を、第二セル列56とする。各セル列の幅を測定する際の側縁は、それぞれのセル列の側縁において、内側に窪んだ部位と、外側に張り出した部位との中間位置とする。このようにして、それぞれのセル列の両側の側縁を求め、2つの側縁間の距離を測定する。測定された2つの側縁間の距離を、セル列の幅とする。
【0079】
これまでに説明した第一実施形態〜第七実施形態のハニカムフィルタは、流入セルと流出セルとの数を比較した場合に、流入セルの数が相対的に多くなっている。例えば、第一実施形態〜第七実施形態のハニカムフィルタは、流入セルと流出セルとが所定の繰り返し配列を有するように構成されたハニカムフィルタにおいて、一部の流出セルを貫通セルに変更したような構成のハニカムフィルタである。一方、以下に説明する第八実施形態〜第十三実施形態のハニカムフィルタは、流入セルと流出セルとの数を比較した場合に、流出セルの数が相対的に多くなっている。例えば、第八実施形態〜第十三実施形態のハニカムフィルタは、流入セルと流出セルとが所定の繰り返し配列を有するように構成されたハニカムフィルタにおいて、一部の流入セルを貫通セルに変更したような構成のハニカムフィルタである。
【0080】
(3)ハニカムフィルタ(第八実施形態〜第十三実施形態):
次に、本発明のハニカムフィルタの第八実施形態〜第十三実施形態について、図24図35を参照しつつ説明する。ここで、図24図35は、本発明のハニカムフィルタの第八実施形態〜第十三実施形態を模式的に示す、流入端面又は流出端面の一部を拡大した拡大平面図である。
【0081】
図24図27に示される第八実施形態及び第九実施形態のハニカムフィルタは、セル2の形状が、略四角形であり、第一実施形態のハニカムフィルタと同様に、上述した式(1)及び式(2)を満たすように構成されている。特に、第八実施形態及び第九実施形態のハニカムフィルタは、第一セル列15の幅P1が、第二セル列16の幅P2よりも小さくなるように構成されている。第八実施形態のハニカムフィルタ1100は、第一実施形態のハニカムフィルタに対して、流入セル2a及び流出セル2bの配置箇所が逆になっていること以外は、第一実施形態のハニカムフィルタと同様に構成されている。また、第九実施形態のハニカムフィルタ1200は、第二実施形態のハニカムフィルタに対して、流入セル2a及び流出セル2bの配置箇所が逆になっていること以外は、第二実施形態のハニカムフィルタと同様に構成されている。
【0082】
図28図31に示される第十実施形態及び第十一実施形態のハニカムフィルタは、隔壁21によって区画形成されるセル22の形状が、略四角形と略八角形になっている。第十実施形態のハニカムフィルタ1300は、第四実施形態のハニカムフィルタに対して、流入セル22a及び流出セル22bの配置箇所が逆になっていること以外は、第四実施形態のハニカムフィルタと同様に構成されている。また、第十一実施形態のハニカムフィルタ1400は、第五実施形態のハニカムフィルタに対して、流入セル22a及び流出セル22bの配置箇所が逆になっていること以外は、第五実施形態のハニカムフィルタと同様に構成されている。
【0083】
図32図35に示される第十二実施形態及び第十三実施形態のハニカムフィルタは、隔壁41によって区画形成されるセル42の形状が、略六角形になっている。第十二実施形態のハニカムフィルタ1500は、第六実施形態のハニカムフィルタに対して、流入セル42a及び流出セル42bの配置箇所が逆になっていること以外は、第六実施形態のハニカムフィルタと同様に構成されている。また、第十三実施形態のハニカムフィルタ1600は、第七実施形態のハニカムフィルタに対して、流入セル42a及び流出セル42bの配置箇所が逆になっていること以外は、第七実施形態のハニカムフィルタと同様に構成されている。
【0084】
(4)ハニカムフィルタ(他の実施形態):
次に、本発明のハニカムフィルタの他の実施形態について、図20図23を参照しつつ説明する。ここで、図20は、本発明のハニカムフィルタの他の実施形態を模式的に示す、流入端面の平面図である。図21は、本発明のハニカムフィルタの更に他の実施形態を模式的に示す、流入端面の平面図である。図22は、本発明のハニカムフィルタの更に他の実施形態を模式的に示す、流入端面の平面図である。図23は、本発明のハニカムフィルタの更に他の実施形態を模式的に示す流入端面側から見た斜視図である。
【0085】
図20に示すハニカムフィルタ2000は、ハニカムフィルタ2000の流入端面11において、紙面の左上の1/4の扇型の範囲が、本発明の特徴を満たすハニカム構造部4となっている。即ち、図20において、符号4によって示される太線によって囲われた扇型の範囲のハニカム構造部4が、上記式(1)及び式(2)を満たすように構成されている。このように、ハニカムフィルタは、ハニカムフィルタを使用する際のレイアウト(layout)や、排ガスの偏流などにより、灰等の粒子状物質の堆積状況に偏りを生じることがある。このため、図20に示すハニカムフィルタ2000のように、ハニカムフィルタ2000の端面全域において、上記式(1)を満たしていなくともよい。例えば、ハニカムフィルタ2000は、ハニカムフィルタを使用する際のレイアウト(layout)や、排ガスの偏流などに応じて、灰の堆積容量を大きく確保しつつ、捕集効率の低下を有効に抑制することができる。例えば、排ガスがハニカムフィルタ2000の破線で囲まれた部分に集中して流れる場合等に有効である。
【0086】
図21に示すハニカムフィルタ2100は、ハニカムフィルタ2100の流入端面11の中央の範囲が、本発明の特徴を満たすハニカム構造部4となっている。即ち、図21において、符号4で示される太線で囲われた範囲のハニカム構造部4が、上記式(1)及び式(2)を満たすように構成されている。図21に示すハニカムフィルタ2100は、例えば、排ガスがハニカムフィルタ2100の太線で囲まれた中央部分に集中して流れる場合等に有効である。なお、図21に示すハニカムフィルタ2100においては、符号4で示される太線で囲われた範囲以外においては、上記式(1)を満たさないものであってもよい。
【0087】
図22に示すハニカムフィルタ2200は、ハニカムフィルタ2200の流入端面11の太線で示した中央部分が、本発明の特徴を満たすハニカム構造部4となっている。図22に示すハニカムフィルタ2200は、例えば、外周部分近傍において、排ガスの流れが少ない場合等に有効である。
【0088】
図23に示すハニカムフィルタ3000は、ハニカム構造部4と、ハニカム構造部4に形成されたセル2のいずれか一方の端部に配設された目封止部5と、を備えたハニカムフィルタ3000である。特に、ハニカムフィルタ3000においては、それぞれのハニカム構造部4が、柱状のハニカムセグメント64によって構成され、複数個のハニカムセグメント64の互いの側面同士が接合層65によって接合されている。即ち、本実施形態のハニカムフィルタ3000においては、セグメント構造のハニカムフィルタを構成する個々のハニカムセグメント64のそれぞれが、ハニカムフィルタ3000におけるハニカム構造部4となっている。ここで、「セグメント構造のハニカムフィルタ」とは、個々に作製された複数個のハニカムセグメント64が接合されることによって構成されたハニカムフィルタのことである。なお、図1図7に示すような、ハニカム構造部4の隔壁1が全て一体的に形成されているようなハニカムフィルタ100を、「一体型のハニカムフィルタ」ということがある。本発明のハニカムフィルタにおいては、「セグメント構造のハニカムフィルタ」であってもよいし、「一体型のハニカムフィルタ」であってもよい。
【0089】
ハニカムフィルタ3000においては、少なくとも1つのハニカムセグメント64が、これまでに説明した第一実施形態のハニカムフィルタのハニカム構造部と同様に構成されていることが好ましい。即ち、少なくとも1つのハニカムセグメント64は、一の方向に沿って直線状に2つ以上のセル2が配列した複数のセル列を有する。そして、この複数のセル列が、流入セル2a又は流出セル2bのうちの少なくとも一方と、貫通セル2cとによって構成された構成された第一セル列と、貫通セル2cを含まない第二セル列とを含む。そして、少なくとも1つのハニカムセグメント64は、上記式(1)及び式(2)を満たすように構成されている。このようなハニカムフィルタ3000であっても、これまでに説明した第一実施形態のハニカムフィルタと同様の作用効果を得ることができる。複数個のハニカムセグメント64は、それぞれ同じセル構造を有するものであってもよいし、それぞれ異なるセル構造を有するものであってもよい。
【0090】
ハニカムフィルタ3000における外周壁3は、複数個のハニカムセグメント64を接合した接合体の外周に塗工した外周コート材によって形成された外周コート層であることが好ましい。また、複数個のハニカムセグメント64を接合した接合体は、当該接合体に対して、その外周部分を研削加工し、上述した外周コート層を配設したものであることが好ましい。
【0091】
図23に示すハニカムフィルタ3000においては、セル2の形状が四角形となっているが、各ハニカムセグメント64のセル2の形状は、これまでに説明した第一実施形態〜第十三実施形態のハニカムフィルタにおけるセルの形状を採用することができる。
【0092】
(5)ハニカムフィルタの製造方法:
次に、本発明のハニカムフィルタを製造する方法について説明する。本発明のハニカムフィルタの製造方法としては、ハニカム成形体を作製する工程、セルの開口部に目封止部を形成する工程、ハニカム成形体を乾燥及び焼成する工程、を備えたものを挙げることができる。
【0093】
(5−1)成形工程:
成形工程は、成形原料を混練して得られる坏土をハニカム形状に押出成形してハニカム成形体を得る工程である。ハニカム成形体は、第一端面から第二端面まで延びるセルを区画形成する隔壁、及びこの隔壁の最外周を囲繞するように形成された外周壁を有するものである。隔壁によって構成されたハニカム構造の部分が、ハニカム構造部となる。成形工程においては、まず、成形原料を混練して坏土とする。次に、得られた坏土を押出成形して、隔壁と外周壁とが一体的に成形されたハニカム成形体を得る。
【0094】
成形原料は、セラミック原料に分散媒及び添加剤を加えたものであることが好ましい。添加剤としては、有機バインダ、造孔材、界面活性剤等を挙げることができる。分散媒としては、水等を挙げることができる。成形原料としては、従来公知のハニカムフィルタの製造方法において使用される成形原料と同様のものを用いることができる。
【0095】
成形原料を混練して坏土を形成する方法としては、例えば、ニーダー、真空土練機等を用いる方法を挙げることができる。押出成形は、ハニカム成形体の断面形状に対応したスリットが形成された押出成形用の口金を用いて行うことができる。例えば、押出成形用の口金としては、これまでに説明した第一実施形態〜第十実施形態のハニカムフィルタにおけるセルの形状に対応したスリットが形成された口金を用いることが好ましい。
【0096】
(5−2)目封止工程:
目封止工程は、セルの開口部を目封止することで目封止部を形成する工程である。例えば、目封止工程においては、ハニカム成形体の製造に用いた材料と同様の材料で、一部のセルの開口部を目封止することで目封止部を形成する。目封止部を形成する方法については、従来公知のハニカムフィルタの製造方法に準じて行うことができる。
【0097】
(5−3)焼成工程:
焼成工程は、目封止部を形成したハニカム成形体を焼成して、ハニカムフィルタを得る工程である。目封止部を形成したハニカム成形体を焼成する前に、得られたハニカム成形体を、例えば、マイクロ波及び熱風で乾燥してもよい。また、例えば、目封止部を形成する前のハニカム成形体に対して、先に、焼成工程を行って、焼成工程によって得られたハニカム焼成体に対して、上述した目封止工程を行ってもよい。
【0098】
ハニカム成形体を焼成する際の焼成温度は、ハニカム成形体の材質によって適宜決定することができる。例えば、ハニカム成形体の材質がコージェライトの場合、焼成温度は、1380〜1450℃が好ましく、1400〜1440℃が更に好ましい。また、焼成時間は、最高温度でのキープ時間として4〜6時間程度とすることが好ましい。
【実施例】
【0099】
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0100】
参考例1)
コージェライト化原料100質量部に、造孔材を0.5質量部、分散媒を33質量部、有機バインダを5.6質量部、それぞれ添加し、混合、混練して坏土を調製した。コージェライト化原料としては、アルミナ、水酸化アルミニウム、カオリン、タルク、及びシリカを使用した。分散媒としては水を使用し、造孔材としては平均粒子径10〜50μmの吸水性ポリマーを使用し、有機バインダとしてはメチルセルロース(Methylcellulose)を使用し、分散剤としてはデキストリン(Dextrin)を使用した。
【0101】
次に、所定の金型を用いて坏土を押出成形し、セル形状が略四角形で、全体形状が円柱状のハニカム成形体を得た。
【0102】
次に、ハニカム成形体を、熱風乾燥機にて乾燥させた。乾燥条件としては、95〜145℃とした。
【0103】
次に、乾燥したハニカム成形体に、目封止部を形成した。具体的には、まず、ハニカム成形体の流入端面に、流入セルが覆われるようにマスクを施した。その後、マスクの施されたハニカム成形体の端部を、目封止スラリーに浸漬し、マスクが施されていない流出セルの開口部に目封止スラリーを充填した。その後、ハニカム成形体の流出端面についても、上記と同様の方法で、流入セルの開口部に目封止スラリーを充填した。その後、目封止部を形成したハニカム成形体を、更に、熱風乾燥機で乾燥した。
【0104】
次に、乾燥させたハニカム成形体を焼成した。焼成条件としては、1350〜1440℃で、10時間、焼成して、参考例1のハニカムフィルタを作製した。
【0105】
参考例1のハニカムフィルタは、隔壁の厚さが203μmであった。セルの形状は、四角形の角部が、曲率半径が20μmの曲線状に形成された形状であった。表1の「セル構造」の欄に、隔壁の厚さ、セル形状を示す。なお、表1の「セル形状」の欄については、多角形の角部が曲線状に形成された形状について、単に、その多角形の形状を示すこととする。なお、曲率半径については、以下の方法で測定を行った。まず、ニコン社製の「VM−2520(商品名)」を用い、ハニカムフィルタの流入端面及び流出端面を画像測定機によって撮像した。次に、撮像した流入端面及び流出端面の画像を画像解析することによって、セルの角部の曲率半径を求めた。参考例1においては、流入端面の20箇所と流出端面20箇所の曲率半径を測定し、その平均値を、セルの角部の曲率半径とした。参考例1において、セルの角部の曲率半径は、20μmであった。
【0106】
参考例1のハニカムフィルタは、軸方向に直交する断面の形状が円形であり、ハニカム構造部が、図4に示すような第一セル列15及び第二セル列16を有するものであった。ハニカムフィルタの流入端面の直径は、118.4mmであり、流入端面から流出端面のまでの長さ(全長)は、120.0mmであった。参考例1のハニカムフィルタの形状を、表1の「断面形状」、「直径」、「全長」の欄に示す。
【0107】
参考例1のハニカムフィルタの、第一セル列の幅P1(mm)、及び第二セル列の幅P2(mm)を、表2に示す。また、表2の「P1,P2比(%)」の欄に、「100−(P1/P2×100)」の値を示す。表2の「P1,P2平均(mm)」の欄に、「(P1+P2)/2」の値を示す。表2の「曲率半径(μm)」の欄に、セルの角部の曲率半径Rの値を示す。表2の「X(%)」の欄に、「(R/1000)/((P1+P2)/2)×100」の値を示す。表2における「X(%)」は、本願明細書における式(2)にて示される値である。また、表2の「セル構造」の欄に、各実施例及び比較例のハニカムフィルタにおける、セルの構造を示す。例えば、「セル構造」の欄に、図4と示される場合には、製造されたハニカムフィルタが、図4に示されるセル構造を有するものであることを示す。
【0108】
【表1】
【0109】
【表2】
【0110】
参考例2〜19及び実施例20〜35)
セル構造、断面形状、外周の形状等を表1、表2、又は表4、表5に示すように変更し、参考例2〜19及び実施例20〜35のハニカムフィルタを作製した。なお、表1における「配置パターン」の欄に、「パターン1」と記載されている場合、流入セルと流出セルとの数を比較した場合に、流入セルの数が相対的に多くなっているセル構造であることを意味する。表4における「配置パターン」の欄に、「パターン2」と記載されている場合、流入セルと流出セルとの数を比較した場合に、流出セルの数が相対的に多くなっているセル構造であることを意味する。
【0111】
参考例6及び7においては、ハニカムフィルタを作製する材料として、炭化珪素(SiC)を用いた。参考例6及び7のハニカムフィルタは、セグメント構造のハニカムフィルタである。
【0112】
参考例及び実施例1〜35のハニカムフィルタについて、以下の示す方法で、「捕集性能」、「スス漏れ」、及び「総合判定」についての評価を行った。結果を表3及び表6に示す。
【0113】
[捕集性能]
スートジェネレータ(Soot generator)を用い、排ガス流量10Nm/min、排ガス温度200℃になるように調整し、スートジェネレータから排出される排ガスの流量と温度が安定するのを確認した。その後、スートジェネレータから排出した排ガスを、排ガス配管を経由してハニカムフィルタに流した。次に、ハニカムフィルタの流入端面側と流出端面側の両方で、排ガス配管から排ガスを真空ポンプにより約1分間サンプリングした。そして、各々のサンプリングガスを濾紙に導いて、サンプリングガス中のススを濾紙にて捕集した。その後、各々の濾紙を70℃、2時間乾燥し、その質量を測定した。各々の濾紙は、予め70℃、2時間乾燥させた後、その質量を測定しておき、サンプリングガス中のススを捕集した前後の質量差から、ハニカムフィルタの捕集効率を求めた。捕集効率は、下記式(3)によって算出した。
式(3):η=(A−B)/A×100
(但し、式(3)において、ηは、捕集効率(%)を示す。Aは、流入端面側で濾紙に捕集されたススの質量(g)を示す。Bは、流出端面側で濾紙に捕集されたススの質量(g)を示す。)
【0114】
捕集性能の評価においては、以下に示す評価基準の捕集性能と比較して、その評価を行った。評価基準の捕集性能と比較した場合に、1%以上捕集性能が向上したものを評価「B」とし、10%以上捕集性能が向上したものを評価「A」とした。また、1%未満の捕集性能向上あるいは捕集性能が低下したものを評価「C」とした。圧力損失の評価においては、評価「A」又は評価「B」の場合を合格とする。
【0115】
圧力損失の評価において、各評価基準は、以下の通りである。
参考例1〜3及び比較例1〜3は、比較例1を評価基準とする。
参考例4,5及び比較例4,5は、比較例4を評価基準とする。
参考例6,7及び比較例6,7は、比較例6を評価基準とする。
参考例8,9及び比較例8,9は、比較例8を評価基準とする。
参考例10,11及び比較例10,11は、比較例10を評価基準とする。
参考例12,13及び比較例12,13は、比較例12を評価基準とする。
参考例14,15及び比較例14,15は、比較例14を評価基準とする。
参考例16,17及び比較例16,17は、比較例16を評価基準とする。
参考例18,19及び比較例18,19は、比較例18を評価基準とする。
実施例20,21及び比較例20,21は、比較例20を評価基準とする。
実施例22,23及び比較例22,23は、比較例22を評価基準とする。
実施例24,25及び比較例24,25は、比較例24を評価基準とする。
実施例26,27及び比較例26,27は、比較例26を評価基準とする。
実施例28,29及び比較例28,29は、比較例28を評価基準とする。
実施例30,31及び比較例30,31は、比較例30を評価基準とする。
実施例32,33及び比較例32,33は、比較例32を評価基準とする。
実施例34,35及び比較例34,35は、比較例34を評価基準とする。
【0116】
[スス漏れ]
まず、各参考例及び実施例のハニカムフィルタについて、以下の方法で、加熱振動試験を実施した。まず、ハニカムフィルタの外周面に、非熱膨張性のセラミックマットを巻き付けた。次に、セラミックマットが巻きつけたハニカムフィルタを、2分割されたステンレス製(SUS430)の缶体に収納した後、溶接して、缶体内にハニカムフィルタを収納した。ハニカムフィルタを収納した缶体を、以下、「試験用の缶体」という。次に、試験用の缶体を、加熱振動試験装置に取り付け、加熱振動試験装置から、プロパンの燃焼ガスを試験用の缶体内に供給した。燃焼ガスは、ハニカムフィルタの流入端面におけるガス温度が、最大で1000℃で、ガス流量が2.5Nm/分となるようにした。また、熱サイクルを与えるべく、20分間隔で加熱と冷却を繰り返した。次に、上記燃焼ガスを試験用の缶体内に連続して供給した状態で、ハニカムフィルタのセルの延びる方向に直交する方向の振動を、缶体に与えた。缶体に与えた振動の条件は、150Hz、50Gの振動を20時間与えることとした。その後、試験用の缶体を、ハニカムフィルタの中心軸を中心にして90°回転させた。以上の操作を、合計4回繰り返して行った。即ち、試験時間は、20時間×4回で合計80時間である。
【0117】
スス漏れの評価においては、上述した加熱振動試験を実施した後、PM発生装置を用いて、ハニカムフィルタに4g/Lの量のススを堆積させ、ハニカムフィルタからのススの漏れを確認した。ハニカムフィルタの貫通セル以外のセル(即ち、流入セル及び流出セル)からススの漏れが確認されない場合を評価「A」とした。ハニカムフィルタの貫通セル以外のセル(即ち、流入セル及び流出セル)から、1箇所のススの漏れが確認された場合を評価「C」とした。ハニカムフィルタの貫通セル以外のセル(即ち、流入セル及び流出セル)から、2箇所以上のススの漏れが確認された場合を評価「D」とした。スス漏れの評価においては、評価「A」の場合を合格とする。
【0118】
[総合判定]
捕集性能の評価、及びスス漏れの評価において、共に合格基準を満たす場合を合格とし、表3及び表6において「OK」と示す。捕集性能の評価、及びスス漏れの評価において、少なくとも一方が合格基準を満たしていない場合を不合格とし、表3及び表6において「NG」と示す。
【0119】
【表3】
【0120】
【表4】
【0121】
【表5】
【0122】
【表6】
【0123】
(比較例1〜35)
セル構造、断面形状、外周の形状等を表7、表8、又は表10、表11に示すように変更し、比較例1〜35のハニカムフィルタを製造した。比較例1〜35のハニカムフィルタについても、「捕集性能」、「スス漏れ」、及び「総合判定」についての評価を行った。結果を表9及び表12に示す。
【0124】
【表7】
【0125】
【表8】
【0126】
【表9】
【0127】
【表10】
【0128】
【表11】
【0129】
【表12】
【0130】
(結果)
参考例及び実施例1〜35のハニカムフィルタは、捕集性能の評価、及びスス漏れの評価において、共に合格基準を満たし、総合判定において「OK」の結果を得ることができた。一方、比較例1〜35のハニカムフィルタは、捕集性能の評価、及びスス漏れの評価において、少なくとも一方が合格基準を満たしておらず、総合判定において「NG」の結果となった。具体的には、比較例1〜35のハニカムフィルタにおいて、表8及び表11の「P1,P2比(%)」の値が、2.0%未満である場合には、捕集性能の評価が不合格となった。また、比較例1〜35のハニカムフィルタにおいて、表8及び表11の「X(%)」の値が、0.4%未満の場合には、スス漏れの評価が不合格となった。
【産業上の利用可能性】
【0131】
本発明のハニカムフィルタは、排ガス中の粒子状物質を捕集するためのフィルタとして利用することができる。
【符号の説明】
【0132】
1,21,41:隔壁、2,22,42:セル、2a,22a,42a:流入セル、2b,22b,42b:流出セル、2c,22c,42c:貫通セル、3:外周壁、4,24,44:ハニカム構造部、5,25,45:目封止部、6:角部、11,31,51:流入端面、12,32:流出端面、15,35,55:第一セル列、16,36,56:第二セル列、64:ハニカムセグメント、65:接合層、100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,2000,2100,2200,3000:ハニカムフィルタ、P1:幅(第一セル列の幅)、P2:幅(第二セル列の幅)。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35