特許第6887688号(P6887688)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社高純度化学研究所の特許一覧

特許6887688蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム
<>
  • 特許6887688-蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム 図000008
  • 特許6887688-蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム 図000009
  • 特許6887688-蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム 図000010
  • 特許6887688-蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム 図000011
  • 特許6887688-蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6887688
(24)【登録日】2021年5月21日
(45)【発行日】2021年6月16日
(54)【発明の名称】蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システム
(51)【国際特許分類】
   C23C 16/448 20060101AFI20210603BHJP
   H01L 21/205 20060101ALI20210603BHJP
   H01L 21/31 20060101ALI20210603BHJP
   C25F 3/16 20060101ALI20210603BHJP
【FI】
   C23C16/448
   H01L21/205
   H01L21/31 F
   C25F3/16 D
【請求項の数】15
【全頁数】21
(21)【出願番号】特願2019-20583(P2019-20583)
(22)【出願日】2019年2月7日
(65)【公開番号】特開2020-128565(P2020-128565A)
(43)【公開日】2020年8月27日
【審査請求日】2021年3月22日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000143411
【氏名又は名称】株式会社高純度化学研究所
(74)【代理人】
【識別番号】100101878
【弁理士】
【氏名又は名称】木下 茂
(74)【代理人】
【識別番号】100187506
【弁理士】
【氏名又は名称】澤田 優子
(72)【発明者】
【氏名】齋 篤
(72)【発明者】
【氏名】松本 浩
【審査官】 山本 一郎
(56)【参考文献】
【文献】 特許第6425850(JP,B1)
【文献】 特開2017−191826(JP,A)
【文献】 国際公開第2014/69174(WO,A1)
【文献】 特開2016−208026(JP,A)
【文献】 特開2012−52669(JP,A)
【文献】 特表2010−502833(JP,A)
【文献】 特開2009−84625(JP,A)
【文献】 特開2010−42330(JP,A)
【文献】 特開平5−267196(JP,A)
【文献】 特開2005−131632(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 16/448
C25F 3/16
H01L 21/205
H01L 21/31
(57)【特許請求の範囲】
【請求項1】
蒸発原料としての薄膜形成用金属ハロゲン化合物を貯留し且つ蒸発させるための蒸発原料用容器であって、
容器壁を有する容器本体と、
前記容器本体に着脱自在に構成され、前記容器本体内にキャリアガスを導入するキャリアガス導入口及び蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとの混合ガスを外部に導出する混合ガス導出口を有する蓋体と、
前記容器本体と前記蓋体とを固定する締結部材と、
前記蓋体の前記キャリアガス導入口及び前記混合ガス導出口に配設された継手部材と、を備え、
前記容器壁は、内壁部材及び外壁部材によって構成された二重壁構造を有し、前記キャリアガス導入口から導入された前記キャリアガスが、前記二重壁構造の前記内壁部材と前記外壁部材の間を経由して前記容器本体内に導入され、
前記容器本体の前記容器壁が、純度99〜99.9999%の銅、純度99〜99.9999%のアルミニウム、又は純度99〜99.9999%のチタンから構成され、
前記容器本体、前記蓋体、前記締結部材、及び前記継手部材のそれぞれには、フッ素樹脂コーティングが施されている、及び/又は、それぞれの表面に電解研磨が施されている、蒸発原料用容器。
【請求項2】
前記容器壁を構成する前記内壁部材の底面部に、前記内壁部材と前記外壁部材の間を経由した前記キャリアガスが前記容器本体に導入される容器内導入口を有する、請求項に記載の蒸発原料用容器。
【請求項3】
前記締結部材が、前記容器本体及び前記蓋体に設けられたボルト挿入孔に挿入されたボルト部材及び前記ボルト部材に螺合して締結したナット部材からなる、請求項1または2に記載の蒸発原料用容器。
【請求項4】
前記容器本体内に懸架された、少なくとも1つの板状の棚部材を更に有する、請求項1〜のいずれか一項に記載の蒸発原料用容器。
【請求項5】
前記棚部材の少なくとも1つは、複数の貫通孔が形成されたシャワーヘッド構造を有する、請求項に記載の蒸発原料用容器。
【請求項6】
前記棚部材の少なくとも1つは、多孔質体によって構成されている、請求項に記載の蒸発原料用容器。
【請求項7】
前記容器本体内に、一の方向における最大長さが1〜30mmで、アルミニウム製又は銅製の、一以上の球状、長球状、葉状、螺旋状、又はその他不定形状の部材を更に有する、請求項1〜のいずれか一項に記載の蒸発原料用容器。
【請求項8】
前記蒸発原料としての前記薄膜形成用金属ハロゲン化合物が、下記一般式(1)で表される化合物である、請求項1〜のいずれか一項に記載の蒸発原料用容器。
一般式(1):MXn
(但し、前記一般式(1)において、Mは、Al、Hf、Zr、Ta、W、Ga、La、Mg、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Tm及びYbのいずれかの元素を示す。Xは、ハロゲン元素を示す。nは、Xの価数である。)
【請求項9】
化学気相成長法による成膜に用いられる、請求項1〜のいずれか一項に記載の蒸発原料用容器。
【請求項10】
原子層堆積法による成膜に用いられる、請求項1〜のいずれか一項に記載の蒸発原料用容器。
【請求項11】
前記混合ガス導出口よりも下流側のガス流路の一部に配設されたバルブを更に備え、
前記バルブは、CV値(水置換)が0.2以上の真空バルブである、請求項1〜10のいずれか一項に記載の蒸発原料用容器。
【請求項12】
請求項1〜11のいずれか一項に記載の蒸発原料用容器と、
前記蒸発原料用容器内に貯留された前記蒸発原料としての前記薄膜形成用金属ハロゲン化合物と、を備え、
前記蓋体の前記キャリアガス導入口から前記キャリアガスを供給し、蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとを混合させた混合ガスを前記蓋体の前記混合ガス導出口から供給する、固体気化供給システム。
【請求項13】
前記容器本体内に前記キャリアガスを供給するキャリアガス供給手段を更に備える、請求項12に記載の固体気化供給システム。
【請求項14】
前記容器壁は、内壁部材及び外壁部材によって構成された二重壁構造を有し、
前記蒸発原料用容器内に、薄膜形成用金属ハロゲン化合物を投入し、
前記容器本体の前記容器壁を加熱して、前記容器本体内の前記薄膜形成用金属ハロゲン化合物を加熱するとともに、
前記蓋体の前記キャリアガス導入口からキャリアガスを導入し、加熱された前記容器壁の前記二重壁構造の前記内壁部材と前記外壁部材の間を経由させて、加熱された前記キャリアガスを前記容器本体内に導入し、
蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとを混合させて前記混合ガスを作製する、請求項12又は13に記載の固体気化供給システム。
【請求項15】
前記混合ガス導出口よりも下流側の前記混合ガスのガス流路の一部に、前記ガス流路の開閉を行うバルブが配設され、
前記バルブは、CV値(水置換)が0.2以上の真空バルブである、請求項1214のいずれか一項に記載の固体気化供給システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システムに関する。更に詳しくは、耐腐食性に優れた蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システムに関する。
【背景技術】
【0002】
従来、例えば化学気相成長(CVD)法において蒸発原料を貯留するための容器として蒸発原料用容器が知られており、そして、この蒸発原料用容器の蒸発器本体を構成する材料として、ステンレス鋼などが報告されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2016−866号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1に記載のような蒸発器は、容器壁にステンレス鋼を採用しており、このステンレス鋼製の容器壁は、熱伝導性が良いものであるが、耐腐食性が十分でないという問題があった。例えば、ステンレス鋼は、耐腐食性を有するものであるが、蒸発原料と触れることで僅かに腐食し、極微量の不純物が蒸発原料中に混ざることがあった。また、ハステロイなどのその他の材料であっても、ステンレス鋼と同様に極微量の不純物が蒸発原料中に混ざることがあった。
【0005】
また、近年、より反応性の高い蒸発原料として金属ハロゲン化合物の使用が検討されている。このような金属ハロゲン化合物は、水分と反応して塩化水素等の酸性ガスを発生するため、このような塩酸ガスにより蒸発原料用容器の腐食がより顕著になるという問題があった。
【0006】
一方で、最近では、半導体製品の更なる高性能化が求められるようになり、その結果、より高純度の蒸発原料(即ち、不純物の割合がより小さい蒸発原料)であることが要求されてきている。また、原子層堆積(ALD)法による成膜を行う場合、その膜には、原子レベルでの無欠陥や均一性が求められるため、蒸発原料に含まれる不純物の量を極限まで少なくする必要がある。このため、蒸発原料用容器の腐食に対する対策は更に重要になっている。
【0007】
本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、耐腐食性に優れた蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システムを提供するものである。
【課題を解決するための手段】
【0008】
本発明によれば、以下に示す蒸発原料用容器、及びその蒸発原料用容器を用いた固体気化供給システムが提供される。
【0009】
[1] 蒸発原料としての薄膜形成用金属ハロゲン化合物を貯留し且つ蒸発させるための蒸発原料用容器であって、
容器壁を有する容器本体と、
前記容器本体に着脱自在に構成され、前記容器本体内にキャリアガスを導入するキャリアガス導入口及び蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとの混合ガスを外部に導出する混合ガス導出口を有する蓋体と、
前記容器本体と前記蓋体とを固定する締結部材と、
前記蓋体の前記キャリアガス導入口及び前記混合ガス導出口に配設された継手部材と、を備え、
前記容器本体の前記容器壁が、純度99〜99.9999%の銅、純度99〜99.9999%のアルミニウム、又は純度99〜99.9999%のチタンから構成され、
前記容器本体、前記蓋体、前記締結部材、及び前記継手部材のそれぞれには、フッ素樹脂コーティングが施されている、及び/又は、それぞれの表面に電解研磨が施されている、蒸発原料用容器。
【0010】
[2] 前記容器壁は、内壁部材及び外壁部材によって構成された二重壁構造を有し、前記キャリアガス導入口から導入された前記キャリアガスが、前記二重壁構造の前記内壁部材と前記外壁部材の間を経由して前記容器本体内に導入される、前記[1]に記載の蒸発原料用容器。
【0011】
[3] 前記容器壁を構成する前記内壁部材の底面部に、前記内壁部材と前記外壁部材の間を経由した前記キャリアガスが前記容器本体に導入される容器内導入口を有する、前記[2]に記載の蒸発原料用容器。
【0012】
[4] 前記締結部材が、前記容器本体及び前記蓋体に設けられたボルト挿入孔に挿入されたボルト部材及び前記ボルト部材に螺合して締結したナット部材からなる、前記[1]〜[3]のいずれかに記載の蒸発原料用容器。
【0013】
[5] 前記容器本体内に懸架された、少なくとも1つの板状の棚部材を更に有する、前記[1]〜[4]のいずれかに記載の蒸発原料用容器。
【0014】
[6] 前記棚部材の少なくとも1つは、複数の貫通孔が形成されたシャワーヘッド構造を有する、前記[5]に記載の蒸発原料用容器。
【0015】
[7] 前記棚部材の少なくとも1つは、多孔質体によって構成されている、前記[5]に記載の蒸発原料用容器。
【0016】
[8] 前記容器本体内に、一の方向における最大長さが1〜30mmで、アルミニウム製又は銅製の、一以上の球状、長球状、葉状、螺旋状、又はその他不定形状の部材を更に有する、前記[1]〜[7]のいずれかに記載の蒸発原料用容器。
【0017】
[9] 前記蒸発原料としての前記薄膜形成用金属ハロゲン化合物が、下記一般式(1)で表される化合物である、前記[1]〜[8]のいずれかに記載の蒸発原料用容器。
一般式(1):MXn
(但し、前記一般式(1)において、Mは、Al、Hf、Zr、Ta、W、Ga、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Tm及びYbのいずれかの元素を示す。Xは、ハロゲン元素を示す。nは、Xの価数である。)
【0018】
[10] 化学気相成長法による成膜に用いられる、前記[1]〜[9]のいずれかに記載の蒸発原料用容器。
【0019】
[11] 原子層堆積法による成膜に用いられる、前記[1]〜[9]のいずれかに記載の蒸発原料用容器。
【0020】
[12] 前記混合ガス導出口よりも下流側のガス流路の一部に配設されたバルブを更に備え、
前記バルブは、CV値(水置換)が0.2以上の真空バルブである、前記[1]〜[11]のいずれかに記載の蒸発原料用容器。
【0021】
[13] 前記[1]〜[12]のいずれかに記載の蒸発原料用容器と、
前記蒸発原料用容器内に貯留された前記蒸発原料としての前記薄膜形成用金属ハロゲン化合物と、を備え、
前記蓋体の前記キャリアガス導入口から前記キャリアガスを供給し、蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとを混合させた混合ガスを前記蓋体の前記混合ガス導出口から供給する、固体気化供給システム。
【0022】
[14] 前記容器本体内に前記キャリアガスを供給するキャリアガス供給手段を更に備える、前記[13]に記載の固体気化供給システム。
【0023】
[15] 前記容器壁は、内壁部材及び外壁部材によって構成された二重壁構造を有し、
前記蒸発原料用容器内に、薄膜形成用金属ハロゲン化合物を投入し、
前記容器本体の前記容器壁を加熱して、前記容器本体内の前記薄膜形成用金属ハロゲン化合物を加熱するとともに、
前記蓋体の前記キャリアガス導入口からキャリアガスを導入し、加熱された前記容器壁の前記二重壁構造の前記内壁部材と前記外壁部材の間を経由させて、加熱された前記キャリアガスを前記容器本体内に導入し、
蒸発した前記薄膜形成用金属ハロゲン化合物と前記キャリアガスとを混合させて前記混合ガスを作製する、前記[13]又は[14]に記載の固体気化供給システム。
【0024】
[16] 前記混合ガス導出口よりも下流側の前記混合ガスのガス流路の一部に、前記ガス流路の開閉を行うバルブが配設され、
前記バルブは、CV値(水置換)が0.2以上の真空バルブである、前記[13]〜[15]のいずれかに記載の固体気化供給システム。
【発明の効果】
【0025】
本発明の蒸発原料用容器は、耐腐食性に優れるという効果を奏する。
【0026】
本発明の固体気化供給システムは、上記した本発明の蒸発原料用容器を備えたものであり、より高純度の蒸発原料を高流量で供給することができるという効果を奏する。
【図面の簡単な説明】
【0027】
図1】本発明の蒸発原料用容器の一の実施形態を模式的に示す断面図である。
図2】本発明の蒸発原料用容器の一の実施形態における、キャリアガス、蒸発した蒸発原料、及び混合ガスのガス流れを説明するための模式的な断面図である。
図3】本発明の蒸発原料用容器の他の実施形態を模式的に示す断面図である。
図4】本発明の蒸発原料用容器の更に他の実施形態を模式的に示す断面図である。
図5図4に示す棚部材を模式的に示す上面図である。
【発明を実施するための形態】
【0028】
以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。
【0029】
[1]蒸発原料用容器:
本発明の蒸発原料用容器の一の実施形態は、図1に示す蒸発原料用容器100である。
この蒸発原料用容器100は、蒸発原料としての薄膜形成用金属ハロゲン化合物Sを貯留し且つ蒸発させるための蒸発原料用容器100である。蒸発原料用容器100は、容器本体2と、蓋体4と、締結部材6と、継手部材8とを備えたものである。ここで、図1は、本発明の蒸発原料用容器の一の実施形態を模式的に示す断面図である。図2は、本発明の蒸発原料用容器の一の実施形態における、キャリアガスG1、蒸発した蒸発原料(即ち、蒸発した薄膜形成用金属ハロゲン化合物G2)、及び混合ガスG3のガス流れを説明するための模式的な断面図である。
【0030】
容器本体2は、容器壁12を有するものであり、蒸発原料用容器100における実質的な本体部分である。蓋体4は、容器本体2に着脱自在に構成され、容器本体2内にキャリアガスG1を導入するキャリアガス導入口16及び蒸発した薄膜形成用金属ハロゲン化合物G2とキャリアガスG1との混合ガスG3を外部に導出する混合ガス導出口18を有する。締結部材6は、容器本体2と蓋体4とを固定するためのものであり、例えば、締結部材6としては、容器本体2と蓋体4とに設けられたボルト挿入孔に挿入されたボルト部材及びこのボルト部材に螺合して締結したナット部材を挙げることができる。継手部材8は、蓋体4のキャリアガス導入口16及び混合ガス導出口18と、バルブ30、圧力計32、流量計(図示せず)、その他のガス配管等とを相互に接続するためのものである。
【0031】
本実施形態の蒸発原料用容器100は、容器本体2の容器壁12が、純度99〜99.9999%の銅、純度99〜99.9999%のアルミニウム、又は純度99〜99.9999%のチタンから構成されている。また、容器本体2、蓋体4、締結部材6、及び継手部材8のそれぞれには、フッ素樹脂コーティング10が施されている。なお、容器本体2、蓋体4、締結部材6、及び継手部材8のそれぞれには、フッ素樹脂コーティング10に変えて、それぞれの表面に電解研磨が施されていてもよい。また、電解研磨が施された各表面に、更に、フッ素樹脂コーティング10が施されていてもよい。このため、本実施形態の蒸発原料用容器100は、優れた耐腐食性を有する。特に、金属ハロゲン化合物は、水分と反応して塩化水素等の酸性ガスを発生するため、従来の蒸発原料用容器では、蒸発原料用容器の内部だけでなく、容器本体や蓋体の表面、ボルト部材やナット部材等の締結部材、及び継手部材等にも腐食を生じることがある。本実施形態の蒸発原料用容器100は、容器本体2、蓋体4、締結部材6、及び継手部材8のそれぞれ、特に、実質的に薄膜形成用金属ハロゲン化合物Sと接触しない箇所についてもフッ素樹脂コーティング10及び/又は電解研磨が施されているため、極めて優れた耐腐食性を有する。
【0032】
また、上述したように容器本体2の容器壁12が、純度99〜99.9999%の銅、純度99〜99.9999%のアルミニウム、又は純度99〜99.9999%のチタンから構成されているため、熱伝導性に優れ、容器壁12内部を良好に加熱することができる。また、容器本体2内にキャリアガスG1を導入する前に、容器壁12の外壁にキャリアガスG1が接触するように構成することにより、容器本体2内に導入するキャリアガスG1を良好に加熱することができ、薄膜形成用金属ハロゲン化合物Sの気化をより促進させることができる。なお、「純度」とは、定量分析により決定した主成分の試料中に占める割合(重量比)のことを意味する。容器壁12を構成する銅、アルミニウム又はチタンの純度が99%未満であると、容器壁12の熱伝導性が低下する点において好ましくない。また、容器壁12を構成する銅、アルミニウム又はチタンの純度が99.9999%を超えると、容器壁12の強度が低下する点において好ましくない。
【0033】
なお、「容器壁12」は、側壁だけでなく底壁も含む概念である。つまり、蒸発原料が蒸発原料用容器100内に投入された際に、この蒸発原料が接する壁部分はこの容器壁ということがよい。
【0034】
フッ素樹脂コーティング10を構成する材料は、特に制限はなく、コーティング可能なフッ素樹脂であれば良いが、例えば、少なくとも一部の水素がフッ素に置換された樹脂などを挙げることができ、具体的には、ポリテトラフルオロエチレン(商品名「テフロン」)などを挙げることができる。このような材料であると、不純物が蒸発原料中に混ざることを更に良好に抑制することができる。
【0035】
フッ素樹脂コーティング10の厚さは、特に制限はないが、例えば、150〜500μmとすることが好ましく、200〜400μmとすることが更に好ましく、250〜350μmとすることが特に好ましい。なお、300μm程度が最も好ましい。フッ素樹脂コーティング10の厚さが上記下限値未満であると、十分な耐腐食性が得られないおそれがある。上記上限値超であると、層が厚くなりすぎてしまうおそれがある。
【0036】
フッ素樹脂コーティング10は、例えば蒸着により形成することができるが、その蒸着方法は従来公知の方法を採用することができ特に制限はない。
【0037】
フッ素樹脂コーティング10は、容器本体2の内面及び外面、蓋体4の内面及び外面、締結部材6の表面、及び継手部材8の表面の全てに施されていることが好ましい。即ち、フッ素樹脂コーティング10は、キャリアガスG1、蒸発した薄膜形成用金属ハロゲン化合物G2及び混合ガスG3と接触する面(内面)だけでなく、通常、前述した各ガスと接触しないと考えられている各部材の表面(外面)を含めた全域に対して施されていることが好ましい。
【0038】
容器本体2等に施される電解研磨については、例えば、下記の条件(i)によって施された研磨処理であることが好ましい。なお、このような研磨処理を行うことで、フッ素樹脂コーティング10を更に施す場合において、フッ素樹脂コーティング10の密着性が更に良くなる。
【0039】
条件(i):
直径250〜350mmの電極を用い、電流密度を28.5mA/cm以下、電解溶液の濃度を15〜30質量%、液流量を1〜8L/分、電解溶液のpHをアルカリ性とし、更に、研磨条件としては、圧力20〜60kPa、回転数350rpm以下とし、砥粒として砥粒径0.020〜0.10μmの無機粒子を用いる。
【0040】
上記条件(i)において、電流密度は15〜20mA/cmとすることが好ましい。また、電解溶液のpHは、11〜11.5であることが好ましい。
【0041】
研磨条件の回転数としては、50〜350rpmとすることができる。砥粒としては、無機粒子を用い、この無機粒子としては、特に制限はないが、例えば、コロイダルシリカ(Colloidal SiO)などを挙げることができる。
【0042】
例えば、このような研磨処理を行った容器壁12の内表面は、その表面粗さをRa=0.8〜1.1μmとすることができる。
【0043】
電解研磨が施されているか否かの確認は、例えば、電子顕微鏡と原子間力顕微鏡(AFM:Atomic Force Microscope)の両方により、その表面の顕微鏡観察によって行うことができる。また、別の方法としては、二次電子質量分析によってその表面状態を検査する方法を挙げることができる。
【0044】
蒸発原料用容器100は、容器本体2、蓋体4、締結部材6、及び継手部材8のそれぞれに、フッ素樹脂コーティング10及び/又は電解研磨が施されているものであるが、電解研磨に変えて、化学研磨を施したものであってもよい。このように構成することによっても、優れた耐腐食性を付与することができる。また、化学研磨を施した後に、フッ素樹脂コーティング10を更に施す場合には、電解研磨を施す場合と同様に、フッ素樹脂コーティング10の密着性が更に良くなる。例えば、フッ素樹脂コーティング10との界面に、水分、酸素などのコンタミネーションが少なくなり、フッ素樹脂コーティング10の密着性を向上させることができる。
【0045】
蓋体4及び締結部材6の材料としては、特に制限はなく、アルミニウム、銅、チタン、ニッケル合金、アルミニウム、アルミニウム合金、スーパーステンレス、ステンレス鋼などを挙げることができる。これらのうち、ニッケル合金としては、例えば、ハステロイ、インコネルなどを挙げることができ、この「ハステロイ」及び「インコネル」は、Ni、Moを含む合金のことである。アルミニウム、銅、チタンは、その純度が99%以上のものであることが好ましく、純度99〜99.9999%のものであることが更に好ましい。
【0046】
「ハステロイ」は、その組成については適宜決定することができるが、具体的には、Niが40〜60質量%、Moが30〜50質量%である。
【0047】
「インコネル」は、その組成については適宜決定することができるが、具体的には、Niが20〜50質量%、Moが70〜50質量%である。
【0048】
「スーパーステンレス」とは、Niを17.00〜19.50質量%、Crを19.00〜21.00質量%、Moを5.50〜6.50質量%、Nを0.16〜0.24質量%、Cuを0.50〜1.00質量%含み、更に、Cが0.020質量%以下、Siが0.80質量%以下、Mnが1.00質量%以下、Pが0.030質量%以下、Sが0.015質量%以下であり、耐腐食性を更に高めたステンレス鋼をいう。
【0049】
容器壁12は、内壁部材12a及び外壁部材12bによって構成された二重壁構造14を有することが好ましい。そして、キャリアガス導入口16から導入されたキャリアガスG1が、二重壁構造14の内壁部材12aと外壁部材12bの間を経由して容器本体2内に導入されることが好ましい。このように構成することによって、容器本体2を外部から加熱した際に、容器本体2内に導入されるキャリアガスG1も同時に加熱することができる。このため、薄膜形成用金属ハロゲン化合物Sに対して、加熱されたキャリアガスG1を接触させることができ、薄膜形成用金属ハロゲン化合物Sを安定的且つ高流量で気化させることができる。
【0050】
図1及び図2に示す蒸発原料用容器100においては、容器壁12を構成する内壁部材12aの底面部に、内壁部材12aと外壁部材12bの間を経由したキャリアガスG1が容器本体2に導入される容器内導入口20を有する。
【0051】
図1及び図2における符号30は、蒸発原料用容器100の流路の開閉を行うバルブ30を示している。このバルブ30を開くことで、蒸発原料用容器100(容器本体2内)にキャリアガスG1を導入したり、キャリアガスG1との混合ガスG3を容器本体2外に導出したりすることができる。このように、蒸発原料用容器100は、2本以上の開閉バルブを備えることができる。また、図1における符号32は圧力計を示し、図2における符号34はガス配管を示している。
【0052】
また、図3に示す蒸発原料用容器200のように、容器本体2内に、一の方向における最大長さが1〜30mmで、アルミニウム製又は銅製の、一以上の部材を更に有していてもよい。図3に示す蒸発原料用容器200においては、直径が2〜30mmのアルミニウム製の一以上の球状部材26を更に有する形態を示している。ここで、容器本体2内に含まれる部材(例えば、図3の球状部材26)としては、球状、長球状、葉状、螺旋状、又はその他不定形状の部材であることが好ましい。葉状の部材の場合には、その横幅が1〜2cm程度であることが好ましい。長球状や螺旋状の部材の場合には、長手方向(別言すれば、縦方向)の長さが1.5〜3cm程度であることが好ましい。その他不定形状の部材についても、長手方向の長さが1.5〜3cm程度であることが好ましい。このような部材は、アルミニウム製、銅製、又はチタンであり、例えば、容器壁12と同材質のものとしてもよい。例えば、容器壁12が純度99〜99.9999%の銅の場合には、球状部材26が銅製であることが好ましい。ここで、図3は、本発明の蒸発原料用容器の他の実施形態を模式的に示す断面図である。図3において、図1及び図2に示す蒸発原料用容器100と同様の構成要素については、同一の符号を付し、その説明を省略することがある。
【0053】
容器本体2内に、例えば、図3に示すようなアルミニウム製の球状部材26を有することにより、容器本体2内の化合物の熱伝導を上昇させることができるという利点がある。図3に示すような球状部材26等の容器本体2内に配置する部材の個数については特に制限はないが、例えば、10〜20個であることが好ましい。
【0054】
図1及び図2に示す蒸発原料用容器100においては、容器本体2内に懸架された、少なくとも1つの板状の棚部材22を更に有していてもよい。このような棚部材22の上に、薄膜形成用金属ハロゲン化合物Sを配置してもよい。棚部材22には、1つ以上の貫通孔24が形成され、この貫通孔24により、容器本体2内において、キャリアガスG1、蒸発した薄膜形成用金属ハロゲン化合物G2、及び混合ガスG3のガス流動が行われる。
【0055】
棚部材22は、例えば、多孔質体によって構成されているものであってもよい。また、多孔質体によって構成された棚部材22においては、図1及び図2に示すような1つ以上の貫通孔24が形成されていなくともよい。棚部材22を構成する多孔質体により、容器本体2内において、キャリアガスG1、蒸発した薄膜形成用金属ハロゲン化合物G2、及び混合ガスG3のガス流動が行われる。また、多孔質体によって構成された棚部材22は、棚部材22自体がフィルタの機能を有し、容器本体2内にて発生したパーティクルを棚部材22にて捕集除去することもできる。また、棚部材22を構成する多孔質体としては、例えば、セラミックを挙げることができる。
【0056】
更に、図4に示す蒸発原料用容器300のように、容器本体2内に懸架された板状の棚部材22の少なくとも1つは、複数の貫通孔24が形成されたシャワーヘッド構造を有することが好ましい。シャワーヘッド構造とは、棚部材22に形成された複数の貫通孔24が、キャリアガスG1等の噴出孔となり、シャワー状のガス流動を実現する構造のことである。例えば、棚部材22内に、キャリアガスG1等が流通するガス流路を格子状に形成し、この棚部材22の上面に複数の貫通孔24を形成したものを挙げることができる。ここで、図4は、本発明の蒸発原料用容器の更に他の実施形態を模式的に示す断面図である。図4において、図1及び図2に示す蒸発原料用容器100と同様の構成要素については、同一の符号を付し、その説明を省略することがある。
【0057】
棚部材22に形成される複数の貫通孔24の配置については特に制限はなく、例えば、図5に示す棚部材22のように、棚部材22の表面に、均等に貫通孔24を形成してもよい。また、図示は省略するが、棚部材に形成される複数の貫通孔24の配置として、例えば、棚部材を周回するように複数の貫通孔が順次形成され、複数の貫通孔の軌跡が渦巻き状を描くように配置されていてもよい。図5は、図4に示す棚部材を模式的に示す上面図である。
【0058】
キャリアガスG1としては、特に制限はなく、例えば、水素、ヘリウム、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素などを挙げることができる。
【0059】
蒸発原料としての薄膜形成用金属ハロゲン化合物Sが、下記一般式(2)で表される化合物であることが好ましい。
【0060】
一般式(2):MXn
(但し、上記一般式(2)において、Mは、Al、Hf、Zr、Ta、W、Ga、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Tm及びYbのいずれかの元素を示す。Xは、ハロゲン元素を示す。nは、Xの価数である。)
【0061】
上記一般式(2)で表される化合物について、例えば、Xのハロゲン元素が塩素(Cl)である場合、塩化アルミニウム(AlCl)、塩化ハフニウム(HfCl)、塩化ジルコニウム(ZrCl)、塩化タンタル(TaCl)、五塩化タングステン(WCl)、六塩化タングステン(WCl)、塩化ガリウム(GaCl)、塩化ランタン(LaCl)、塩化セリウム(CeCl)、塩化プラセオジム(PrCl)、塩化ネオジム(NdCl)、塩化サマリウム(SmCl)、塩化ユウロピウム(EuCl)、塩化ガドリニウム(GdCl)、塩化テルビウム(TbCl)、塩化ジスプロシウム(DyCl)、塩化エルビウム(ErCl)、塩化ツリウム(TmCl)及び塩化イッテルビウム(YbCl)を挙げることができる。
【0062】
本実施形態の蒸発原料用容器は、上記一般式(2)で表される化合物のように腐食性が強い蒸発原料であっても良好に保存することができ、蒸発原料に存在する不純物の割合が非常に小さくなる。
【0063】
本実施形態の蒸発原料用容器は、外部から加熱または冷却が可能な加熱媒体や冷却媒体と接触し、容器内の化合物を気体、固体のいずれかの状態を保持することが可能な容器である。
【0064】
本実施形態の蒸発原料用容器は、化学気相成長(CVD)法、有機金属化学気相成長(MOCVD)法、原子層堆積(ALD)法による成膜に用いられる蒸発原料を溜めておくための容器として使用することができ、原子層堆積(ALD)法による成膜に用いられる容器として使用することが好ましい。具体的には、原子層堆積(ALD)法は、化学気相成長(CVD)法によって形成される膜よりも薄い膜を形成することができる方法であり、数nm程度の非常に薄い膜を成膜することができるが、その反面、膜の精度が、蒸発原料に含まれる不純物による影響を受けやすい。そこで、本実施形態の蒸発原料用容器を用いることによって、蒸発原料に含まれる不純物を極微量とすることができる。
【0065】
本実施形態の蒸発原料用容器は、混合ガス導出口よりも下流側のガス流路の一部に配設されたバルブを更に備えたものであってもよい。そして、このバルブは、CV値(水置換)が0.2以上のバルブであることが好ましい。特に、このバルブは、ベローズバルブに代表される真空バルブであることがより好ましい。このようなバルブを備えることにより、混合ガスの供給をより有効に行うことができる。CV値(水置換)が0.2未満であると、大流量の混合ガスの流通が阻害され、混合ガスがバルブ内で滞留することがある。混合ガスがバルブ内に滞留すると、気化熱から温度減少が生じ、バルブ内で蒸発原料(薄膜形成用金属ハロゲン化合物)が固着して、バルブが閉塞してしまうことがある。CV値(水置換)が0.2以上のバルブを備えることにより、バルブの閉塞を有効に抑制することができ、混合ガスを支障なく供給することができる。なお、バルブのCV値については、0.2以上が好ましく、0.6以上が更に好ましく、1.0以上が特に好ましい。CV値の上限値については特に制限はないが、例えば、3.0又は2.5を挙げることができる。上述したようなCV値のバルブとしては、ダイヤブラム、ボールバルブ、ベローズバルブなどを挙げることができる。これらのバルブは、バルブ機能、本体材質、シート材質、温度に因らないものであることが好ましい。
【0066】
バルブのCV値については、バルブを全開にし、水を流通させることによって測定された水置換の値である。具体的には、バルブの流入側及び流出側にて、バブルを流れる流体(水)の流量を測定する。例えば、流量計を用いて、バルブを流れる流体の流量Qを測定する。次に、圧力計をバルブの前後に配置し、バルブを通過する際の流体の圧力損失ΔPを測定する。なお、流体の流量Q及びバルブを通過する際の圧力損失ΔPについては、実際の使用条件に合わせて計測することとする。例えば、実際の使用条件に近い値となるように測定を行う。例えば、混合ガスの比重と水の比重とから、水の流量Qを定めることができる。例えば、水の比重を1とし、各蒸発原料の比重(例えば、1.40〜1.68)とし、キャリアガスの流量を500cc/分に設定した場合、水の流量Qとしては、300cc/分程度となる。CV値については、15℃の条件で測定することとする。
【0067】
[2]蒸発原料用容器の製造方法:
本発明の蒸発原料用容器は、例えば、以下のように製造することができる。まず、従来公知の方法で、素材をくりぬき、又はロール状の加工物を溶接することによって、容器本体を構成する容器壁の外壁部材を作製する。その後、純度99〜99.9999%の銅、純度99〜99.9999%のアルミニウム、又は純度99〜99.9999%のチタンによって、容器本体を構成する容器壁の内壁部材を作製する。そして、外壁部材の内側に内壁部材を配置して、容器本体を作製する。また、容器本体に着脱自在に構成された蓋体を作製する。また、容器本体及び蓋体には、締結部材を配置するためのボルト挿入孔を形成し、このボルト挿入孔に適合した締結部材としてのボルト部材及びナット部材を用意する。また、蓋体のキャリアガス導入口及び混合ガス導出口に配置する各種の継手部材を用意する。このようにして、蒸発原料用容器を構成するための未処理の各部材を得る(準備工程)。
【0068】
次に、必要に応じて用意した各部材を研磨処理する(研磨処理工程)。具体的には、各部材の内表面を研磨処理して、研磨処理が施された各部材を得る。研磨処理においては、上記した条件(i)による電解研磨処理を施すことが好ましい。
【0069】
次に、各部材に対して、フッ素樹脂コーティングを施す(フッ素樹脂コーティング工程)。このとき、上述したようにフッ素樹脂コーティングは、蒸着により形成することができる。なお、上記した研磨処理において、上記した条件(i)による電解研磨処理を施した場合には、フッ素樹脂コーティングを施さなくともよい。
【0070】
次に、各部材を組み立てて蒸発原料用容器を作製する(組み立て工程)。以上のようにして、本発明の蒸発原料用容器を製造することができる。なお、本発明の蒸発原料用容器を製造する方法について上記方法に限定されることはない。
【0071】
[3]蒸発原料用容器の使用方法:
まず、図1及び図2に示すような蒸発原料用容器100のキャリアガス導入口16を、キャリアガスタンク(図示せず)と連結させ、更に、混合ガス導出口18を、半導体処理設備(不図せず)に連結させる。次に、蒸発原料用容器100内に、蒸発原料としての薄膜形成用金属ハロゲン化合物Sを投入し、その後、容器本体2を密閉状態とする。
【0072】
次に、キャリアガスタンクからキャリアガスG1を蒸発原料用容器100内に導入する。そして、蒸発原料用容器100内で蒸発した蒸発原料(蒸発した薄膜形成用金属ハロゲン化合物G2)とキャリアガスG1とが混合し、混合ガスG3として、混合ガス導出口18から導出される。なお、蒸発原料は、加熱などによって蒸発(気化)されて原料ガスになる。その後、半導体処理設備において、化学気相成長(CVD)法、有機金属化学気相成長(MOCVD)法、原子層堆積(ALD)法による成膜が行われる。半導体処理設備は、被膜対象である基板が配置される設備(例えば、CVD装置の反応室)であり、この半導体処理設備内に配置された基板上に所望の薄膜を形成する。
【0073】
蒸発原料用容器100は、耐腐食性に優れ、蒸発原料中における容器由来の不純物の割合が非常に小さくなり、高純度の混合ガスを半導体処理設備に供給することができる。本発明の蒸発原料用容器は、CVD、ALD、MOCVD等の気相としてガス化させる用途の容器であり、半導体用のバルブを備える圧力容器として用いられるものである。
【0074】
[4]固体気化供給システム:
次に、本発明の固体気化供給システムの一の実施形態について説明する。本実施形態の固体気化供給システムは、これまでに説明した本発明の蒸発原料用容器を用いた固体気化供給システムである。即ち、図1及び図2に示すような蒸発原料用容器100と、蒸発原料用容器100内に貯留された蒸発原料としての前記薄膜形成用金属ハロゲン化合物Sと、を備えたものである。本実施形態の固体気化供給システムは、容器本体2内にキャリアガスG1を供給するキャリアガス供給手段(図示せず)を更に備えていてもよい。本実施形態の固体気化供給システムは、蒸発原料用容器100の混合ガス導出口18の下流側に、混合ガスG3を貯留するためのバッファタンク(図示せず)を更に備えていてもよい。なお、バッファタンク(図示せず)は任意の構成要素であり、バッファタンク(図示せず)を有していなくともよい。この場合には、例えば、蒸発原料用容器100にて生成された混合ガスG3は、半導体処理設備等にそのまま供給される。
【0075】
そして、本実施形態の固体気化供給システムは、蒸発原料用容器100を構成する蓋体4のキャリアガス導入口16からキャリアガスG1を供給し、蒸発した薄膜形成用金属ハロゲン化合物G2とキャリアガスG1とを混合させた混合ガスG3を、蓋体4の混合ガス導出口18から供給するものである。本実施形態の固体気化供給システムは、より高純度の蒸発原料を高流量で供給することができるという効果を奏する
【0076】
なお、本実施形態の固体気化供給システムは、以下のように構成されていることが好ましい。まず、蒸発原料用容器100内に、薄膜形成用金属ハロゲン化合物Sを投入する。次に、容器本体2の容器壁12を加熱して、容器本体2内の薄膜形成用金属ハロゲン化合物Sを加熱するとともに、蓋体4のキャリアガス導入口16からキャリアガスG1を導入し、加熱された容器壁12の二重壁構造14の内壁部材12aと外壁部材12bの間を経由させて、加熱されたキャリアガスG1を容器本体2内に導入する。そして、蒸発した薄膜形成用金属ハロゲン化合物G2とキャリアガスG1とを混合させて混合ガスG3を作製する。このように構成することによって、薄膜形成用金属ハロゲン化合物Sに対して、加熱されたキャリアガスG1を接触させることができ、薄膜形成用金属ハロゲン化合物Sを安定的且つ高流量で気化させることができる。
【0077】
本実施形態の固体気化供給システムは、混合ガス導出口よりも下流側のガス流路の一部に配設されたバルブを更に備えたものであってもよい。そして、このバルブは、混合ガスの流通時においてCV値(水置換)が0.2以上のバルブであることが好ましい。特に、このバルブは、ベローズバルブに代表される真空バルブであることがより好ましい。このようなバルブを備えることにより、混合ガスの供給をより有効に行うことができる。
【0078】
CV値については、上述した方法に準じて行うことができる。CV値を算出する際の流体の流量Q及びバルブを通過する際の圧力損失ΔPについては、混合ガスの流通時における実際の使用条件に合わせて計測することとする。
【実施例】
【0079】
以下、本発明を実施例および比較例によって、さらに具体的に説明するが、本発明はこれに限定されるものではない。
【0080】
(実施例1〜15、比較例1〜16)
図1に示す蒸発原料用容器100のような、容器本体2と、蓋体4と、締結部材6と、継手部材8とを備えた蒸発原料用容器100を作製した。各実施例及び比較例において、蒸発原料用容器の容器本体の容器壁を、表1及び表2の「容器壁」の「材質」及び「純度(%)」に示すような材料によって作製した。また、容器本体、蓋体、締結部材、及び継手部材の表面を、下記の研摩条件(i)で研磨処理(電解研磨処理)を施した。その後、研磨処理が施された各部材の表面上に、フッ素樹脂コーティングを施した。フッ素樹脂コーティングは、電子照射真空蒸着法による蒸着を行う装置を用いてポリテトラフルオロエチレン(テフロン)を蒸着させることによって行った。
【0081】
研摩条件(i):直径300mmの電極を用い、電流密度を20mA/cm以下、電解溶液の濃度を20質量%、液流量を3L/分、電解溶液のpHを10とし、更に、研磨条件としては、圧力31.35kPa、回転数300rpmとし、砥粒として砥粒径0.07μmのColloidal SiOを用いた。
【0082】
各実施例及び比較例の蒸発原料用容器においては、蒸発原料用容器の混合ガス導出口の下流側に、CV値(水置換)が1.5のバルブを配置し、このようなバルブを経由して混合ガスの供給を行った。
【0083】
(実施例16〜30)
実施例16〜30においては、フッ素樹脂コーティングを施さないこと以外は、実施例1〜15と同様の方法で蒸発原料用容器を作製した。即ち、実施例16〜30の蒸発原料用容器は、容器本体、蓋体、締結部材、及び継手部材の表面に、上記の研摩条件(i)による研磨処理のみが施されたものである。なお、各実施例16〜30においては、蒸発原料用容器の容器本体の容器壁を、表3の「容器壁」の「材質」及び「純度(%)」に示すような材料によって作製した。
【0084】
実施例1〜30及び比較例1〜16の蒸発原料用容器に、表1〜表3の「原料(金属ハロゲン化合物)」の欄に示す薄膜形成用金属ハロゲン化合物を貯留し、容器本体内にキャリアガスを供給して、蒸発した薄膜形成用金属ハロゲン化合物とキャリアガスとを混合させた混合ガスを生成した。生成した混合ガスを用いて、原子層堆積(ALD)法による成膜を行った。原子層堆積(ALD)法によって成膜されたALD膜の組成を、表4〜表6に示す。また、成膜後の蒸発原料中の不純物(表4〜表6に示す12成種の元素)の量をICPMS(誘導結合プラズマ質量分析計)によって測定した。なお、表4の「成膜前」の欄において、成膜前の蒸発原料中の不純物(表4〜表6に示す12成種の元素)の量を記載している。
【0085】
不純物の量の測定は、以下の方法によって行った。まず、成膜後に、蒸発原料用容器の容器本体内の残った蒸発原料の残留物を回収した。次に、回収した回収物を、ICPMS(誘導結合高周波プラズマ質量分析法)の装置にて、王水を用いて所定量を溶解させた。その後、これをホットプレートで120℃に加熱して蒸発乾固させた。そして、蒸発乾固されたものを希釈し、測定試料を得た。その後、上記分析装置にて、測定試料中の金属不純物を測定した。
【0086】
また、上記成膜前後において容器本体2の内表面の表面粗さを、AFM(原子間力顕微鏡)アナライザー(HORIBA社製)によって測定した。この表面粗さは、複数回測定してその平均値を算出した。成膜前の表面粗さをAとし、成膜前の表面粗さをBとして、AをBで除算した値(A/B)を算出した。算出した「A/B」の値を、表4〜表6の「内部表面粗さ」の欄に示す。
【0087】
また、原子層堆積(ALD)法による成膜において、成長速度(GPC;Growth Per Cycle)の測定を行った。具体的には、上記した成膜時において、0.2秒当たりに1回の割合でバルブを開閉して、蒸発原料を含む混合ガスを成膜室に導入する。1回のバルブの開閉が行われる0.2秒を1サイクルとし、8インチのシリコンウエハに成膜した膜厚を測定し、単位時間(1サイクル)当たりの膜の成長速度を算出する。
【0088】
【表1】
【0089】
【表2】
【0090】
【表3】
【0091】
【表4】
【0092】
【表5】
【0093】
【表6】
【0094】
(結果)
表4〜表6の結果から分かるように、実施例1〜30の蒸発原料用容器は、比較例1〜16の蒸発原料用容器に比べて、不純物の量が少ないことが分かる。また、実施例1〜30の蒸発原料用容器は、「内部表面粗さ」の「A/B」の値が1に近い値となり、成膜前後における表面粗さの差が小さいことが分かる。ここで、この表面粗さの差が小さいということは、蒸発原料による腐食の程度が少なかったことを表しており、耐腐食性が高いことが分かる。このような結果から、実施例1〜30の蒸発原料用容器は、耐腐食性に優れたものであることが分かる。また、実施例1〜30の蒸発原料用容器は、成長速度が速いという結果も得られた。
【産業上の利用可能性】
【0095】
本発明の蒸発原料用容器は、化学気相成長(CVD)法、有機金属化学気相成長(MOCVD)法、原子層堆積(ALD)法による成膜に用いられる容器として利用することができる。
【符号の説明】
【0096】
2:容器本体、4:蓋体、6:締結部材、8:継手部材、10:フッ素樹脂コーティング、12:容器壁、12a:内壁部材、12b:外壁部材、14:二重壁構造、16:キャリアガス導入口、18:混合ガス導出口、20:容器内導入口、22:棚部材、24:貫通孔、26:球状部材、30:バルブ、32:圧力計、34:ガス配管、100,200,300:蒸発原料用容器、G1:キャリアガス、G2:蒸発した薄膜形成用金属ハロゲン化合物(蒸発した蒸発原料)、G3:混合ガス、S:薄膜形成用金属ハロゲン化合物(蒸発原料)。
図1
図2
図3
図4
図5