(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
ターボ冷凍機では、ターボ冷凍機を構成する各機器を効率的に配置するため、蒸発器の上方に圧縮機を配置することが多い。そのため、蒸発器の上部の冷媒出口と圧縮機の吸入口とが例えば曲管部を有する配管で接続される。
ターボ冷凍機における被圧縮流体である冷媒として、いわゆる低圧冷媒を用いた場合、いわゆる高圧冷媒を用いた場合と比べて冷媒の体積流量が増えるため、蒸発器と圧縮機とを接続する配管の管径が大きくなる。上述したように蒸発器の上方に圧縮機を配置するので、蒸発器と圧縮機とを接続する配管は、長さが短い。また、該配管には上述したように曲管部が存在するため、該配管の管径が大きくなると、曲管部通過後の冷媒の流れに偏りが生じ、圧縮機の性能が十分に発揮されなくなるおそれがある。
【0005】
上述の事情に鑑みて、本発明の少なくとも一実施形態は、圧縮機入口における被圧縮流体の流れの偏りを抑制して圧縮機の性能低下を防止する圧縮機用吸入配管、圧縮ユニット及び冷凍機を提供することを目的とする。
【課題を解決するための手段】
【0006】
(1)本発明の少なくとも一実施形態に係る圧縮機用吸入配管は、
圧縮機の被圧縮流体の吸入側に接続される圧縮機用吸入配管であって、
前記被圧縮流体の流れ方向を第1方向から第2方向に変更する曲管部であって、
前記被圧縮流体の流れの最も上流側の第1短管部、
前記圧縮機の吸入側に接続される第2短管部であって、前記第1短管部の延在方向とは異なる方向に延在する第2短管部、及び
前記第1短管部及び前記第2短管部の間の第3短管部であって、前記第1及び第2短管部の延在方向とはそれぞれ異なる方向に延在する第3短管部、を少なくとも含む曲管部と、
前記曲管部の内部で前記第1短管部の少なくとも途中から、前記第2短管部の少なくとも途中まで延在し、前記曲管部の内部を仕切る少なくとも1つの仕切部と、を備え、
前記仕切部は、前記第1短管部の下流端よりも上流側で前記第1短管部の軸心に接し、かつ、前記第2短管部の軸心に接する内接円が存在する仮想平面に対して交差する方向に延在する。
【0007】
上記(1)の構成では、圧縮機用吸入配管を流れて圧縮機に流れ込む被圧縮流体の流れの偏りを抑制でき、圧縮機の性能低下を防止できる。
すなわち、曲管中を被圧縮流体が流れる場合、被圧縮流体の慣性によって曲がりの内側と外側とで流れに偏りが生じる。具体的には、流路断面内の領域によって被圧縮流体の流速に差が生じる。このような偏流が生じた被圧縮流体が圧縮機に流入すると、圧縮機の性能が十分に発揮されなくなるおそれがある。
上記(1)の構成では、仕切部は、第1短管部の下流端よりも上流側で第1短管部の軸心に接し、かつ、第2短管部の軸心に接する内接円が存在する仮想平面に対して交差する方向に延在する。したがって、仕切部は、被圧縮流体の流路となる曲管部において、上記内接円の半径方向内側の流路と上記内接円の半径方向外側の流路とに仕切る。そのため、仕切部は、上記内接円の半径方向内側の流路において曲がりの外側に位置するので、被圧縮流体の流れ方向を第1方向から第2方向に変更するように被圧縮流体を案内する。
これにより、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0008】
(2)幾つかの実施形態では、上記(1)の構成において、前記少なくとも1つの仕切部は、前記曲管部の軸心よりも前記内接円の中心側に設けられる内側仕切部を含む。
【0009】
上記(2)の構成によれば、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
すなわち、上述したように、曲管中を被圧縮流体が流れる場合、被圧縮流体の慣性によって曲がりの内側と外側とで流れに偏りが生じるが、流れの方向の変化が急であるほど、すなわち曲管(流路)の曲率半径が小さくなるほど、流れの偏りが大きくなる。また、曲がりの内側と外側とを結ぶ流路の幅が広くなるほど、曲がりの内側と外側とで流れの偏りが大きくなる。
【0010】
上記(2)の構成では、内側仕切部が曲管部の軸心よりも上記内接円の中心側に設けられる。これにより、内側仕切部で仕切られた曲管部内の流路の内、上記内接円の半径方向内側の流路の幅は、該流路以外の他の流路の幅よりも狭い。すなわち、上記(2)の構成では、上記他の流路よりも流れの方向の変化が急となる、上記内接円の半径方向内側の流路の幅を狭くすることで、該流路における偏流を抑制でき、圧縮機の性能低下を防止できる。
【0011】
(3)幾つかの実施形態では、上記(2)の構成において、
前記曲管部の内部には、前記内側仕切部により仕切られた、前記内接円の中心に最も近い内側流路が形成され、
前記内側流路の下流端における流路断面積は、前記内側流路の上流端の流路断面積よりも小さい。
【0012】
上記(3)の構成によれば、内側流路の出口における被圧縮流体の流速低下を抑制して圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
すなわち、上記内側流路は、上記内接円の中心に最も近いので、他の流路よりも流れの方向の変化が急となるため、他の流路と比べると被圧縮流体が流入しにくく、内側流路における被圧縮流体の流速が低下する傾向にある。
しかし、上記(3)の構成によれば、内側流路では下流端における流路断面積が上流端の流路断面積よりも小さい。このように、内側流路の下流側で流路面積を小さくすることで、内側流路の下流側における流速を上昇させることができるので、内側流路の出口における被圧縮流体の流速低下を抑制して圧縮機に流入する被圧縮流体の流れの偏りを抑制できる。これにより、圧縮機の性能低下を防止できる。
【0013】
(4)幾つかの実施形態では、上記(2)又は(3)の構成において、
前記少なくとも1つの仕切部は、
前記内側仕切部と、
前記曲管部の軸心に対し前記内接円の中心とは反対側に設けられる外側仕切部と、を含んでいる。
【0014】
上記(4)の構成によれば、内側仕切部により仕切られた、上記内接円の半径方向外側の流路が外側仕切部によってさらに上記内接円の半径方向内側の流路と上記内接円の半径方向外側の流路とに仕切られる。すなわち、上記(4)の構成によれば、曲管部の各流路の幅が狭くなるので、各流路における偏流を抑制でき、圧縮機の性能低下を防止できる。
【0015】
(5)幾つかの実施形態では、上記(2)乃至(4)の何れかの構成において、前記少なくとも1つの仕切部は、前記第1短管部の上流端まで延在する。
上記(5)の構成によれば、少なくとも1つの仕切部が最も上流側の短管部である第1短管部の上流端まで延在するので、仕切部が被圧縮流体の流れ方向を第1方向から第2方向に変更するように効果的に案内できる。
これにより、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0016】
(6)幾つかの実施形態では、上記(2)乃至(5)の何れかの構成において、前記少なくとも1つの仕切部は、前記第2短管部の下流端まで延在する。
上記(6)の構成によれば、少なくとも1つの仕切部が圧縮機の吸入側に接続される短管部、すなわち最も下流側の短管部である第2短管部の下流端まで延在するので、仕切部が被圧縮流体の流れ方向を第1方向から第2方向に変更するように効果的に案内できる。
これにより、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0017】
(7)幾つかの実施形態では、上記(2)乃至(6)の何れかの構成において、前記少なくとも1つの仕切部は、前記第1短管部の上流端よりも前記被圧縮流体の流れの上流側に突出している突出部を備える。
上記(7)の構成によれば、突出部が第1短管部の上流端よりもさらに上流側における被圧縮流体の流れを案内して、第1短管部の上流側における流れの偏りを抑制できるので、圧縮機用吸入配管内の被圧縮流体の偏流を抑制できる。
これにより、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0018】
(8)幾つかの実施形態では、上記(7)の構成において、前記突出部は、少なくとも前記被圧縮流体の流れの上流側において、前記第1方向とは異なる方向に延在している。
上記(8)の構成によれば、突出部が第1短管部の上流端よりもさらに上流側における被圧縮流体の流れを案内して、第1短管部の上流側における流れの偏りを抑制できるので、圧縮機用吸入配管内の被圧縮流体の偏流を抑制できる。
これにより、圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0019】
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、前記仕切部は、前記第1乃至第3短管部のそれぞれの内部において平板形状を呈する。
上記(9)の構成によれば、単純な形状の仕切部によって圧縮機用吸入配管内の被圧縮流体の偏流を抑制できるので、圧縮機用吸入配管の製造コストを抑制できる。
すなわち、圧縮機用吸入配管は、延在方向がそれぞれ異なる複数の短管を接続したいわゆるエビ管であり、短管同士が溶接などによって接続されている。例えば、短管同士を接続する前に平板状の仕切部を各短管に溶接などによって固定し、仕切部が取り付けられた短管同士を接続することによって、圧縮機用吸入配管を低コストで製造できる。
【0020】
(10)本発明の少なくとも一実施形態に係る圧縮ユニットは、
上記構成(1)乃至(9)の何れか構成の圧縮機用吸入配管と、
前記圧縮機と、
前記圧縮機用吸入配管の前記第1短管部の上流端が接続され、前記被圧縮流体が内部に存在する接続対象機器と、を備えた圧縮ユニットであって、
前記接続対象機器における前記圧縮機用吸入配管との接続部は、前記接続対象機器側の開口面積が前記圧縮機用吸入配管側の開口面積よりも大きい。
【0021】
上記(10)の構成では、接続対象機器から圧縮機用吸入配管へ被圧縮流体が流れやすくなるので、接続部近傍における縮流を抑制して流れの偏りを抑制できる。
これにより、圧縮機用吸入配管内の被圧縮流体の偏流を抑制して圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0022】
(11)幾つかの実施形態では、上記(10)の構成において、前記接続部は、ベルマウス形状を呈する。
上記(11)の構成では、接続対象機器から圧縮機用吸入配管へ被圧縮流体が流れやすくなるので、接続部近傍における縮流を抑制して流れの偏りを抑制できる。
これにより、圧縮機用吸入配管内の被圧縮流体の偏流を抑制して圧縮機に流入する被圧縮流体の流れの偏りを抑制できるので、圧縮機の性能低下を防止できる。
【0023】
(12)本発明の少なくとも一実施形態に係る冷凍機は、
上記構成(1)乃至(9)の何れかの構成の圧縮機用吸入配管と、
冷媒を圧縮するための前記圧縮機と、
前記圧縮機によって圧縮された冷媒を凝縮させるための凝縮器と、
前記凝縮器によって凝縮された冷媒を膨張させるための膨張器と、
前記膨張器によって膨張された冷媒を蒸発させるための蒸発器と、
を備え、
前記蒸発器は、前記圧縮機用吸入配管の前記第1短管部の上流端が接続される。
【0024】
上記(12)の構成では、圧縮機に流入する冷媒の流れの偏りを抑制できるので、圧縮機の性能低下を防止でき、冷凍機の成績効率を向上できる。
【0025】
(13)幾つかの実施形態では、上記(12)の構成において、前記蒸発器における前記圧縮機用吸入配管との接続部は、前記蒸発器側の開口面積が前記圧縮機用吸入配管側の開口面積よりも大きい。
【0026】
上記(13)の構成では、蒸発器から圧縮機用吸入配管へ冷媒が流れやすくなるので、圧縮機用吸入配管の上流端近傍における縮流を抑制して流れの偏りを抑制できる。
これにより、圧縮機用吸入配管内の冷媒の偏流を抑制して圧縮機に流入する冷媒の流れの偏りを抑制できるので、圧縮機の性能低下を防止でき、冷凍機の成績効率を向上できる。
【0027】
(14)幾つかの実施形態では、上記(13)の構成において、前記接続部は、ベルマウス形状を呈する。
上記(14)の構成では、蒸発器から圧縮機用吸入配管へ冷媒が流れやすくなるので、圧縮機用吸入配管の上流端近傍における縮流を抑制して流れの偏りを抑制できる。
これにより、圧縮機用吸入配管内の冷媒の偏流を抑制して圧縮機に流入する冷媒の流れの偏りを抑制できるので、圧縮機の性能低下を防止でき、冷凍機の成績効率を向上できる。
【発明の効果】
【0028】
本発明の少なくとも一実施形態によれば、圧縮機の性能低下を防止できる。
【発明を実施するための形態】
【0030】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0031】
最初に、一実施形態に係るターボ冷凍機について、
図1,2を参照して説明する。
図1は、一実施形態に係るターボ冷凍機の全体系統図であり、
図2は、一実施形態に係るターボ冷凍機の外観図である。
ターボ冷凍機1は、遠心圧縮機等のターボ式の圧縮機を用いた冷却装置であり、大型の工場空調や、地域冷暖房などの用途に幅広く使用されるものである。
【0032】
ターボ冷凍機1は、冷媒を圧縮する遠心圧縮機10と、圧縮された冷媒を冷却する凝縮器11と、凝縮器11からの冷媒を減圧する第1膨張弁(減圧器)12と、第1膨張弁12からの冷媒を気液二相に分離するエコノマイザ(気液分離器)14と、エコノマイザ14からの液相を再度減圧する第2膨張弁(減圧器)13と、第2膨張弁13からの冷媒を蒸発させる蒸発器15とを備えている。蒸発器15における冷媒の出口である接続部16と、遠心圧縮機10の吸入側の接続部10aとは、圧縮機用吸入配管100によって接続されている。
【0033】
一実施形態のターボ冷凍機1では、ターボ冷凍機1のコンパクト化を図るため、冷媒の流れに関して蒸発器15の下流の機器である遠心圧縮機10を蒸発器15の近傍、具体的には蒸発器15の上部に配置している。蒸発器15は、外観が円筒形状を呈し、
図2において横方向に延在するように、すなわち水平方向に延在するように配置される。また、遠心圧縮機10は、不図示の羽根車の軸心が水平方向を向くように配置される。蒸発器15から遠心圧縮機10への冷媒の出口である接続部16は蒸発器15の上部に設けられている。
したがって、圧縮機用吸入配管100は、上流側の端部(上流端106)の向きと下流側の端部(下流端107)の向きとが略90度異なる曲管形状を呈する。
【0034】
一実施形態のターボ冷凍機1では、オゾン層破壊係数(ODP:Ozone Depletion Potential)及び地球温暖化係数(GWP:Global Warming Potential)が小さい冷媒が用いられる。一実施形態のターボ冷凍機1では、このような冷媒の中で、いわゆる低圧冷媒と呼ばれる冷媒を用いている。一実施形態のターボ冷凍機1で用いている低圧冷媒は、いわゆる高圧冷媒と呼ばれる冷媒と比較して、例えば冷媒ガス密度は約1/5であり、冷媒の潜熱は同等である。そのため、ターボ冷凍機において、高圧冷媒を用いた場合と同様の能力を得るには、高圧冷媒を用いた場合の約5倍の体積流量が必要となるため、冷媒が流れる部位の流路断面を大きくする必要がある。
【0035】
したがって、圧縮機用吸入配管100の管径も大きくする必要がある。しかし、圧縮機用吸入配管として市販のエルボ管を用いた場合、管径を大きくすると管端同士の距離が大きくなるため、蒸発器15と遠心圧縮機10とが上下方向に離れてしまい、ターボ冷凍機1のコンパクト化が図れない。また、蒸発器15の接続部16と遠心圧縮機10の吸入側の接続部10aとの水平方向の距離が離れてしまうため、大容量機のように2基の遠心圧縮機10を備える場合には、蒸発器15の上部に2基の遠心圧縮機10を配置できなくなるおそれがある。
そこで、一実施形態のターボ冷凍機1では、複数の直管(短管)を少しずつ斜め方向に接続して曲管を形成する、いわゆるエビ管と称される曲管を圧縮機用吸入配管100として用いる。
【0036】
一般的に、曲管中を流体が流れる場合、流体の慣性によって曲がりの内側と外側とで流体の流れに偏りが生じる。具体的には、流路断面内の領域によって流体の流速に差が生じる。このことは、圧縮機用吸入配管100についても同様である。特に、一実施形態のターボ冷凍機1では、低圧冷媒を採用し、圧縮機用吸入配管100の管径を大きくしていることから、曲がりの内側と外側とで冷媒の流れの偏りが大きくなる傾向にある。このような偏流が生じた冷媒が遠心圧縮機10に流入すると、遠心圧縮機10の性能が十分に発揮されなくなるおそれがある。
【0037】
そこで、幾つかの実施形態の圧縮機用吸入配管100では、管の内部を仕切る仕切部を設け、この仕切部によって冷媒の流れを案内することで、遠心圧縮機10に流入する冷媒の流れの偏りを抑制し、遠心圧縮機10の性能低下を防止している。以下、幾つかの実施形態の圧縮機用吸入配管100について詳細に説明する。
【0038】
図3A〜
図3H及び
図4A〜
図4Dは、実施形態に係る圧縮機用吸入配管100の部分断面図である。
幾つかの実施形態では、圧縮機用吸入配管100は、
図3A〜
図3H及び
図4A〜
図4Dに示すように、冷媒の流れ方向を図示上方から図示右方に変更する曲管部101と、上流側のフランジ部103と、下流側のフランジ部104とを備えている。圧縮機用吸入配管100は、フランジ部103で蒸発器15の接続部16とフランジ接合され、フランジ部104で遠心圧縮機10の吸入側の接続部10aとフランジ接合される。
【0039】
曲管部101は、第1短管部110と、第2短管部120と、第3短管部130とを有する。第1短管部110は、冷媒の流れの最も上流側で図示上下方向に延在する短管である。第2短管部120は、遠心圧縮機10の吸入側の接続部10aに接続されて図示左右方向に延在する短管である。第3短管部130は、第1短管部110及び第2短管部120の間で、図示左下から右上に向かって延在する短管である。蒸発器15からの冷媒は、圧縮機用吸入配管100において第1短管部110、第3短管部130及び第2短管部120の順に曲管部101内を通過して、遠心圧縮機10に流れ込む。
【0040】
幾つかの実施形態では、圧縮機用吸入配管100は、
図3A〜
図3Hに示すように、曲管部101の内部を第1流路161と第2流路162とに仕切る仕切部150を備えている。仕切部150は、第1仕切部151と、第2仕切部152と、第3仕切部153とを有する。
また、幾つかの実施形態では、圧縮機用吸入配管100は、
図4A〜
図4Dに示すように、曲管部101の内部を第1流路171と第2流路172と第3流路173とに仕切る内側仕切部180及び外側仕切部190を備えている。
【0041】
まず、
図3A〜
図3Hに示した仕切部150について説明する。
幾つかの実施形態では、仕切部150は、
図3A〜
図3Hに示すように、曲管部101の軸心、すなわち、第1短管部110の軸心ax1、第2短管部120の軸心ax2及び第3短管部130の軸心ax3よりも内接円Cの中心O側(
図3A参照)に設けられる。
なお、
図3Aに示した内接円Cは、第1短管部110の下流端112よりも上流側で第1短管部110の軸心ax1に接し、かつ、第2短管部120の軸心ax2に接する内接円である。換言すると、内接円Cは、その中心Oが第3短管部130の軸心ax3よりも曲管部101の曲がりの内側に現れるように描かれた内接円である。
幾つかの実施形態では、
図3A〜
図3Hに示すように、仕切部150は、第1仕切部151と、第2仕切部152と、第3仕切部153とを有する。
【0042】
(第1仕切部151)
第1仕切部151は、第1短管部110の内部に設けられた平板状の部材であり、第1短管部110の軸心ax1の延在方向、及び各
図3A〜
図3Hにおける紙面と垂直な方向に延在する。第1仕切部151は、第1短管部110の軸心ax1よりも流路の内側に配置されている。なお、以下の説明では、流路の内側とは、曲管部101の曲がり方向に関して内側となる方向のことをいう。また、流路の外側とは、曲管部101の曲がり方向に関して外側となる方向のことをいう。例えば、
図3A〜
図3Hにおいて、第1短管部110における流路の内側とは、図示右側であり、第1短管部110における流路の外側とは、図示左側である。
【0043】
幾つかの実施形態では、
図3A及び
図3Cに示すように、第1仕切部151は、第1短管部110の途中から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、第1仕切部151の上流端151aは、第1短管部110の上流端111と下流端112との間に位置している。また、幾つかの実施形態では、
図3B及び
図3Dに示すように、第1仕切部151は、第1短管部110の上流端111から第1短管部110の下流端112まで延在している。
また、幾つかの実施形態では、
図3E〜
図3Hに示すように、第1仕切部151は、蒸発器15の内部から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、
図3E〜
図3Hに示すように、第1仕切部151は、その上流端151aが第1短管部110の上流端111から突出しており、圧縮機用吸入配管100よりも大きな空間、具体的には蒸発器15の内部に挿入されている。第1仕切部151において第1短管部110の上流端111から突出した部分を突出部151cと呼ぶ。
なお、幾つかの実施形態では、
図3E〜
図3Hに示すように、第1仕切部151の上流端151aが接続部16よりも蒸発器15の内側に挿入されているが、第1仕切部151の上流端151aが接続部16の途中まで挿入されていてもよい。
【0044】
幾つかの実施形態では、
図3F〜
図3Hに示すように、突出部151cの先端部151dが第1短管部110の軸心ax1の延在方向とは異なる方向、具体的には、第1短管部110における軸心ax1から離れる方向に向かって延在している。
【0045】
(第2仕切部152)
第2仕切部152は、第2短管部120の内部に設けられた平板状の部材であり、第2短管部120の軸心ax2の延在方向、及び各
図3A〜
図3Hにおける紙面と垂直な方向に延在する。第2仕切部152は、第2短管部120の軸心ax2よりも流路の内側に配置されている。なお、
図3A〜
図3Hにおいて、第2短管部120における流路の内側とは、図示下側であり、第2短管部120における流路の外側とは、図示上側である。
【0046】
幾つかの実施形態では、
図3A及び
図3Cに示すように、第2仕切部152は、第2短管部120の上流端121から第2短管部120の途中まで延在している。すなわち、幾つかの実施形態では、第2仕切部152の下流端152bは、第2短管部120の上流端121と下流端122との間に位置している。また、幾つかの実施形態では、
図3B、及び
図3D〜
図3Hに示すように、第2仕切部152は、第2短管部120の上流端121から第2短管部120の下流端122まで延在している。
【0047】
(第3仕切部153)
第3仕切部153は、第3短管部130の内部に設けられた平板状の部材であり、各
図3A〜
図3Hにおける紙面と垂直な方向に延在する。第3仕切部153は、第3短管部130の軸心ax3よりも流路の内側に配置されている。なお、
図3A〜
図3Hにおいて、第3短管部130における流路の内側とは、図示右下側であり、第3短管部130における流路の外側とは、図示左上側である。
【0048】
幾つかの実施形態では、
図3A及び
図3Bに示すように、第3仕切部153は、第3短管部130の軸心ax3に沿って配置されている。また、幾つかの実施形態では、
図3C〜
図3Hに示すように、第3仕切部153は、下流側に向かうにつれて第3短管部130の軸心ax3との距離が長くなるように配置されている。これにより、幾つかの実施形態では、
図3C〜
図3Hに示すように、第3短管部130における第1流路161の幅は、下流側に向かうにつれて狭くなる。すなわち、幾つかの実施形態では、
図3C〜
図3Hに示すように、第3短管部130の上流端131における第1流路161の内側と外側とを結ぶ、流路の幅をxaとし、下流端132における第1流路161の内側と外側とを結ぶ、流路の幅をxbとすると、xb<xaとなる。
【0049】
幾つかの実施形態では、
図3A〜
図3Hに示すように、第3仕切部153は、第3短管部130の上流端131から第3短管部130の下流端132まで延在している。幾つかの実施形態では、
図3A〜
図3Hに示すように、第3仕切部153の上流端153aは第1仕切部151の下流端151bと当接し、第3仕切部153の下流端153bは第2仕切部152の上流端152aと当接する。すなわち、仕切部150は、冷媒の流れ方向に沿って第1仕切部151、第3仕切部153及び第2仕切部152の順に連なっている。したがって、仕切部150は、切れ目のない連続した1枚の仕切部材と同様に冷媒の流れを案内できる。
なお、後述する作用効果を奏する範囲内であれば、第3仕切部153の上流端153aと第1仕切部151の下流端151bとが離間していてもよく、第3仕切部153の下流端153bと第2仕切部152の上流端152aとが離間していてもよい。
【0050】
図示はしていないが、
図3B及び
図3Dに示した第2仕切部152及び第3仕切部153の構成と、
図3Aに示した第1仕切部151の構成とを組み合わせてもよい。また、図示はしていないが、
図3G及び
図3Hに示した第2仕切部152、第3仕切部153及び蒸発器15の接続部16の構成と、
図3Aに示した第1仕切部151の構成とを組み合わせてもよい。このことは、後述する内側仕切部180及び外側仕切部190についても同様である。
なお、
図3G及び
図3Hに示した蒸発器15の接続部16の構成については、後で詳述する。
【0051】
図示はしていないが、
図3B及び
図3D〜
図3Fに示した第1仕切部151及び第3仕切部153の構成と、
図3Aに示した第2仕切部152の構成とを組み合わせてもよい。また、図示はしていないが、
図3G及び
図3Hに示した第1仕切部151、第3仕切部153及び蒸発器15の接続部16の構成と、
図3Aに示した第2仕切部152の構成とを組み合わせてもよい。このことは、後述する内側仕切部180及び外側仕切部190についても同様である。
【0052】
次に、
図4A〜
図4Dに示した内側仕切部180及び外側仕切部190について説明する。
内側仕切部180は、幾つかの実施形態において、曲管部101の内部を第1流路171と第2流路172と第3流路173とに仕切る2つ仕切部の内、曲管部101の曲がり方向に関して内側に配置された仕切部である。
幾つかの実施形態の内側仕切部180は、
図4A〜4Dに示すように、曲管部101の軸心、すなわち、第1短管部110の軸心ax1、第2短管部120の軸心ax2及び第3短管部130の軸心ax3よりも内接円Cの中心O側(
図3A参照)に設けられる。
幾つかの実施形態では、
図4A〜
図4Dに示すように、内側仕切部180は、第1仕切部181と、第2仕切部182と、第3仕切部183とを有する。内側仕切部180は、上述した仕切部150と同様の特徴を有し、上述した仕切部150の全ての形態をとり得る。以下、例示的に示した
図4A〜
図4Dを参照して、第1仕切部181、第2仕切部182及び第3仕切部183について説明する。
【0053】
(第1仕切部181)
第1仕切部181は、上述した仕切部150の第1仕切部151と同様の特徴を有する仕切部である。
すなわち、第1仕切部181は、第1短管部110の内部に設けられた平板状の部材であり、第1短管部110の軸心ax1の延在方向、及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第1仕切部181は、第1短管部110の軸心ax1よりも流路の内側に配置されている。
【0054】
幾つかの実施形態では、
図4Aに示すように、第1仕切部181は、第1短管部110の途中から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、第1仕切部181の上流端181aは、第1短管部110の上流端111と下流端112との間に位置している。また、幾つかの実施形態では、
図4Bに示すように、第1仕切部181は、第1短管部110の上流端111から第1短管部110の下流端112まで延在している。
また、幾つかの実施形態では、
図4C,
図4Dに示すように、第1仕切部181は、蒸発器15の内部から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、
図4C,
図4Dに示すように、第1仕切部181は、その上流端181aが第1短管部110の上流端111から突出しており、蒸発器15の内部に挿入されている。第1仕切部181において第1短管部110の上流端111から突出した部分を突出部181cと呼ぶ。
なお、幾つかの実施形態では、
図4C,
図4Dに示すように、第1仕切部181の上流端181aが接続部16よりも蒸発器15の内側に挿入されているが、第1仕切部181の上流端181aが接続部16の途中まで挿入されていてもよい。
【0055】
幾つかの実施形態では、
図4Dに示すように、突出部181cの先端部181dが第1短管部110の軸心ax1の延在方向とは異なる方向、具体的には、第1短管部110における軸心ax1から離れる方向に向かって延在している。
【0056】
(第2仕切部182)
第2仕切部182は、上述した仕切部150の第2仕切部152と同様の特徴を有する仕切部である。
すなわち、第2仕切部182は、第2短管部120の内部に設けられた平板状の部材であり、第2短管部120の軸心ax2の延在方向、及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第2仕切部182は、第2短管部120の軸心ax2よりも流路の内側に配置されている。
【0057】
幾つかの実施形態では、
図4Aに示すように、第2仕切部182は、第2短管部120の上流端121から第2短管部120の途中まで延在している。すなわち、幾つかの実施形態では、第2仕切部182の下流端182bは、第2短管部120の上流端121と下流端122との間に位置している。また、幾つかの実施形態では、
図4B〜
図4Dに示すように、第2仕切部182は、第2短管部120の上流端121から第2短管部120の下流端122まで延在している。
【0058】
(第3仕切部183)
第3仕切部183は、上述した仕切部150の第3仕切部153と同様の特徴を有する仕切部である。
すなわち、第3仕切部183は、第3短管部130の内部に設けられた平板状の部材であり、各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第3仕切部183は、第3短管部130の軸心ax3よりも流路の内側に配置されている。
【0059】
幾つかの実施形態では、
図4A〜
図4Dに示すように、第3仕切部183は、下流側に向かうにつれて第3短管部130の軸心ax3との距離が長くなるように配置されている。これにより、幾つかの実施形態では、
図4A〜
図4Dに示すように、第3短管部130における第1流路171の幅は、下流側に向かうにつれて狭くなる。すなわち、幾つかの実施形態では、
図4A〜
図4Dに示すように、第3短管部130の上流端131における第1流路171の内側と外側とを結ぶ、流路の幅をxaとし、下流端132における第1流路171の内側と外側とを結ぶ、流路の幅をxbとすると、xb<xaとなる。
なお、幾つかの実施形態では、図示はしていないが、第3仕切部183は、第3短管部130の軸心ax3と平行に配置されており、xa=xbとなる。
【0060】
幾つかの実施形態では、
図4A〜
図4Dに示すように、第3仕切部183は、第3短管部130の上流端131から第3短管部130の下流端132まで延在している。幾つかの実施形態では、
図4A〜
図4Dに示すように、第3仕切部183の上流端183aは第1仕切部181の下流端181bと当接し、第3仕切部183の下流端183bは第2仕切部182の上流端182aと当接する。すなわち、内側仕切部180は、冷媒の流れ方向に沿って第1仕切部181、第3仕切部183及び第2仕切部182の順に連なっている。したがって、内側仕切部180は、切れ目のない連続した1枚の仕切部材と同様に冷媒の流れを案内できる。
なお、後述する作用効果を奏する範囲内であれば、第3仕切部183の上流端183aと第1仕切部181の下流端181bとが離間していてもよく、第3仕切部183の下流端183bと第2仕切部182の上流端182aとが離間していてもよい。
【0061】
以下、外側仕切部190について説明する。
外側仕切部190は、幾つかの実施形態において、曲管部101の内部を第1流路171と第2流路172と第3流路173とに仕切る2つ仕切部の内、曲管部101の曲がり方向に関して外側に配置された仕切部である。
幾つかの実施形態では、
図4A〜4Dに示すように、外側仕切部190は、曲管部101の軸心に対し内接円C(
図3A参照)の中心Oとは反対側に設けられる。
幾つかの実施形態では、
図4A〜
図4Dに示すように、外側仕切部190は、第1仕切部191と、第2仕切部192と、第3仕切部193とを有する。外側仕切部190は、上述した仕切部150と同様の特徴を有する。以下、例示的に示した
図4A〜
図4Dを参照して、第1仕切部191、第2仕切部192及び第3仕切部193について説明する。
【0062】
(第1仕切部191)
第1仕切部191は、第1短管部110の内部に設けられた平板状の部材であり、第1短管部110の軸心ax1の延在方向、及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第1仕切部191は、第1短管部110の軸心ax1よりも流路の外側に配置されている。
【0063】
幾つかの実施形態では、
図4Aに示すように、第1仕切部191は、第1短管部110の途中から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、第1仕切部191の上流端191aは、第1短管部110の上流端111と下流端112との間に位置している。また、幾つかの実施形態では、
図4B及び
図4Cに示すように、第1仕切部191は、第1短管部110の上流端111から第1短管部110の下流端112まで延在している。
また、幾つかの実施形態では、
図4Dに示すように、第1仕切部191は、蒸発器15の内部から第1短管部110の下流端112まで延在している。すなわち、幾つかの実施形態では、
図4Dに示すように、第1仕切部191は、その上流端191aが第1短管部110の上流端111から突出しており、蒸発器15の内部に挿入されている。第1仕切部191において第1短管部110の上流端111から突出した部分を突出部191cと呼ぶ。
なお、幾つかの実施形態では、
図4Dに示すように、第1仕切部191の上流端191aが接続部16よりも蒸発器15の内側に挿入されているが、第1仕切部191の上流端191aが接続部16の途中まで挿入されていてもよい。
【0064】
幾つかの実施形態では、
図4Dに示すように、突出部191cの先端部191dが第1短管部110の軸心ax1の延在方向とは異なる方向、具体的には
、第1短管部110における軸心ax1から離れる方向に向かって延在している。
幾つかの実施形態では、図示はしていないが、突出部191cの先端部191dは第1短管部110の軸心ax1の延在方向と同じ方向に向かって延在している。すなわち、図示しない幾つかの実施形態では、突出部191cの先端部191dは、
図4Cに示した内側仕切部180の第1仕切部181と同様に、図示下方に向かって延在している。
(第2仕切部192)
第2仕切部192は、第2短管部120の内部に設けられた平板状の部材であり、第2短管部120の軸心ax2の延在方向、及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第2仕切部192は、第2短管部120の軸心ax2よりも流路の外側に配置されている。
【0065】
幾つかの実施形態では、
図4Aに示すように、第2仕切部192は、第2短管部120の上流端121から第2短管部120の途中まで延在している。すなわち、幾つかの実施形態では、第2仕切部192の下流端192bは、第2短管部120の上流端121と下流端122との間に位置している。また、幾つかの実施形態では、
図4B〜
図4Dに示すように、第2仕切部192は、第2短管部120の上流端121から第2短管部120の下流端122まで延在している。
(第3仕切部193)
第3仕切部193は、第3短管部130の内部に設けられた平板状の部材であり、第3短管部130の軸心ax3の延在方向、及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。第3仕切部193は、第3短管部130の軸心ax3よりも流路の外側に配置されている。
【0066】
幾つかの実施形態では、
図4A〜
図4Dに示すように、第3仕切部193は、第3短管部130の上流端131から第3短管部130の下流端132まで延在している。幾つかの実施形態では、
図4A〜
図4Dに示すように、第3仕切部193の上流端193aは第1仕切部191の下流端191bと当接し、第3仕切部193の下流端193bは第2仕切部192の上流端192aと当接する。すなわち、外側仕切部190は、冷媒の流れ方向に沿って第1仕切部191、第3仕切部193及び第2仕切部192の順に連なっている。したがって、外側仕切部190は、切れ目のない連続した1枚の仕切部材と同様に冷媒の流れを案内できる。
なお、後述する作用効果を奏する範囲内であれば、第3仕切部193の上流端193aと第1仕切部191の下流端191bとが離間していてもよく、第3仕切部193の下流端193bと第2仕切部192の上流端192aとが離間していてもよい。
【0067】
なお、図示はしていないが、第1仕切部191は、下流側に向かうにつれて第1短管部110の軸心ax1との距離が長く、又は短くなるように配置されていてもよい。同様に、第2仕切部192は、下流側に向かうにつれて第2短管部120の軸心ax2との距離が長く、又は短くなるように配置されていてもよい。同様に、第3仕切部193は、下流側に向かうにつれて第3短管部130の軸心ax3との距離が長く、又は短くなるように配置されていてもよい。
【0068】
なお、上述した幾つかの実施形態の内側仕切部180と外側仕切部190との組み合わせは、上述した
図4A〜
図4Dに示した組み合わせに限定されない。すなわち、上述した幾つかの実施形態の内側仕切部180の何れかの実施形態と、上述した幾つかの実施形態の外側仕切部190の何れかの実施形態とを適宜組み合わせてもよい。
【0069】
以下、蒸発器15の接続部16について説明する。
幾つかの実施形態では、
図3A〜
図3Fに示すように、蒸発器15の接続部16では、ノズル状の短管が蒸発器15の円筒形状を呈する胴部15aから突出している。また、他の実施形態では、
図3Gに示すように、蒸発器15の接続部16は、漏斗状に形成されていて、蒸発器15側の開口16aの開口面積が圧縮機用吸入配管100側の開口16bの開口面積よりも大きい。また、他の実施形態では、
図3Hに示すように、蒸発器15の接続部16は、ベルマウス状に形成されていて、蒸発器15側の開口16aの開口面積が圧縮機用吸入配管100側の開口16bの開口面積よりも大きい。
なお、図示はしていないが、
図3G及び
図3Hに示した接続部16を備える蒸発器15の何れかの実施形態と、
図3A〜
図3Eに示した圧縮機用吸入配管100や
図4A〜
図4Dによって例示した圧縮機用吸入配管100の何れかの実施形態とを適宜組み合わせてもよい。
【0070】
次に、圧縮機用吸入配管100内を流れる冷媒の流れについて説明する。
幾つかの実施形態では、圧縮機用吸入配管100は、
図3A〜
図3H及び
図4A〜4Dに示すように、曲管部101の内部で第1短管部110の少なくとも途中から、第2短管部120の少なくとも途中まで延在し、曲管部101の内部を仕切る仕切部150及び内側仕切部180を備えている。仕切部150及び内側仕切部180は、第1短管部110の下流端112よりも上流側で第1短管部110の軸心ax1に接し、かつ、第2短管部120の軸心ax2に接する内接円C(
図3A参照)が存在する仮想平面に対して垂直方向に延在している。なお、第1短管部110の軸心ax1及び第2短管部120の軸心ax2が
図3A〜
図3H及び
図4A〜4Dの紙面と同じ平面内に存在していれば、上記仮想平面は、
図3A〜
図3H及び
図4A〜4Dの紙面と同じ平面内に存在する。
【0071】
したがって、幾つかの実施形態の圧縮機用吸入配管100では、圧縮機用吸入配管100を流れて遠心圧縮機10に流れ込む冷媒の流れの偏りを抑制でき、遠心圧縮機10の性能低下を防止できる。
すなわち、上述したように、流れの偏りが生じた冷媒が遠心圧縮機10に流入すると、遠心圧縮機10の性能が十分に発揮されなくなるおそれがある。しかし、
図3A〜
図3H及び
図4A〜4Dに示した幾つかの実施形態の圧縮機用吸入配管100では、仕切部150及び内側仕切部180は、第1短管部110の下流端112よりも上流側で第1短管部110の軸心ax1に接し、かつ、第2短管部120の軸心ax2に接する内接円C(
図3A参照)が存在する仮想平面に対して交差する方向に延在する。したがって、仕切部150及び内側仕切部180は、冷媒の流路となる曲管部101において、内接円Cの半径方向内側の第1流路161,171と、第1流路161,171よりも内接円Cの半径方向外側の第2流路162,172とに仕切る。そのため、仕切部150及び内側仕切部180は、最も上流側の第1短管部110の少なくとも途中から最も下流側の第2短管部120の少なくとも途中まで、上記内接円Cの半径方向内側の第1流路161,171において曲がりの外側に位置するので、冷媒の流れ方向を図示上方へ向かう方向から図示右方へ向かう方向に変更するように冷媒を案内する。
これにより、圧縮機用吸入配管100の下流端107近傍における冷媒の偏流を抑制できるので、遠心圧縮機10に流入する冷媒の流れの偏りが抑制され、遠心圧縮機10の性能低下を防止できる。
【0072】
幾つかの実施形態の仕切部150及び内側仕切部180は、
図3A〜
図3H及び
図4A〜4Dに示すように、曲管部101の軸心、すなわち、第1短管部110の軸心ax1、第2短管部120の軸心ax2及び第3短管部130の軸心ax3よりも内接円Cの中心O側(
図3A参照)に設けられる。
【0073】
したがって、幾つかの実施形態の圧縮機用吸入配管100では、圧縮機用吸入配管100から遠心圧縮機10に流れ込む冷媒の流れの偏りを抑制でき、遠心圧縮機10の性能低下を防止できる。
すなわち、上述したように、曲管中を流れる流体の流れの方向が変わる場合、流体の慣性によって、曲がりの内側と外側とで流れに偏りが生じるが、流れの方向の変化が急であるほど、すなわち曲管(流路)の曲率半径が小さくなるほど、流れの偏りが大きくなる。また、曲がりの内側と外側とを結ぶ流路の幅が広くなるほど、曲がりの内側と外側とで流れの偏りが大きくなる。
【0074】
図3A〜
図3H及び
図4A〜4Dに示した幾つかの実施形態の圧縮機用吸入配管100では、仕切部150及び内側仕切部180が曲管部101の軸心よりも内接円Cの中心O側に設けられるので、
図3A〜
図3Hに示した第1流路161の幅は、内接円Cの半径方向外側の第2流路162の幅よりも狭い。同様に、
図4A〜4Dに示した第1流路171の幅は、第2流路172の内側から第3流路173の外側までの幅よりも狭い。
すなわち、
図3A〜
図3H及び
図4A〜4Dに示した幾つかの実施形態の圧縮機用吸入配管100では、第2流路162,172や第3流路173よりも流れの方向の変化が急となる第1流路161,171について、第1流路161,171の幅、すなわち、仕切部150と第1流路161の内側の壁面との間隔、及び内側仕切部180と第1流路171の内側の壁面との間隔を狭くすることで、第1流路161,171における偏流を抑制でき、遠心圧縮機10の性能低下を防止できる。
【0075】
幾つかの実施形態では、
図3C〜
図3H及び
図4A〜4Dに示すように、曲管部101の内部には、仕切部150及び内側仕切部180により仕切られた、内接円Cの中心O(
図3A参照)に最も近い第1流路161,171が形成され、第1流路161,171の下流端における流路断面積は、第1流路161,171の上流端の流路断面積よりも小さい。
【0076】
したがって、幾つかの実施形態の圧縮機用吸入配管100では、第1流路161,171の出口における冷媒の流速低下を抑制して遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
すなわち、第1流路161,171は、内接円Cの中心Oに最も近いので、他の流路よりも流れの方向の変化が急となるため、他の流路と比べると冷媒が流入しにくく、第1流路161,171における冷媒の流速が低下する傾向にある。
しかし、
図3C〜
図3H及び
図4A〜4Dに示した幾つかの実施形態によれば、第1流路161,171では下流端における流路断面積が上流端の流路断面積よりも小さい。このように、第1流路161,171の下流側で流路面積を小さくすることで、第1流路161,171の下流側における流速を上昇させることができるので、第1流路161,171の出口における冷媒の流速低下を抑制して遠心圧縮機10に流入する冷媒の流れの偏りを抑制できる。これにより、遠心圧縮機10の性能低下を防止できる。
【0077】
幾つかの実施形態では、
図4A〜4Dに示すように、曲管部101の内部には、内側仕切部180と、曲管部101の軸心に対し内接円C(
図3A参照)の中心Oとは反対側に設けられる外側仕切部190とが設けられている。
これにより、内側仕切部180により仕切られた、内接円Cの半径方向外側の流路が外側仕切部190によってさらに内接円Cの半径方向内側の流路(第2流路172)と内接円の半径方向外側の流路(第3流路173)とに仕切られるので、曲管部101の各流路171〜173の幅を狭めることができ、各流路171〜173における偏流を抑制できる。したがって、遠心圧縮機10の性能低下を防止できる。
【0078】
幾つかの実施形態では、
図3B、
図3D及び
図4Bに示すように、第1仕切部151,181,191は、第1短管部110の上流端111まで延在している。
これにより、仕切部150、内側仕切部180、及び外側仕切部190が冷媒の流れ方向を図示上方へ向かう方向から図示右方へ向かう方向に変更するように効果的に冷媒を案内する。したがって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0079】
幾つかの実施形態では、
図3B、
図3D〜
図3H及び
図4B〜4Dに示すように、第2仕切部152,182,192は、第2短管部120の下流端122まで延在している。
これにより、仕切部150、内側仕切部180、及び外側仕切部190が冷媒の流れ方向を図示上方へ向かう方向から図示右方へ向かう方向に変更するように効果的に冷媒を案内する。したがって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0080】
幾つかの実施形態では、
図3E〜
図3H、
図4C及び
図4Dに示すように、第1仕切部151、181は、第1短管部110の上流端111よりも冷媒の流れの上流側に突出している突出部151c,181cを備える。また、幾つかの実施形態では、
図4Dに示すように、第1仕切部191は、第1短管部110の上流端111よりも冷媒の流れの上流側に突出している突出部191cを備える。
これにより、突出部151c,181c,191cが第1短管部110の上流端111よりもさらに上流側における冷媒の流れを案内して、第1短管部110の上流側の流れの偏りを抑制できるので、圧縮機用吸入配管100内の冷媒の偏流を抑制できる。したがって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0081】
なお、幾つかの実施形態では、
図3E〜
図3H、
図4C及び
図4Dに示すように、第1仕切部151,181の突出部151c,181cは、接続部16よりも蒸発器15の内側まで突出している。また、幾つかの実施形態では、
図4Dに示すように、第1仕切部191の突出部191cは、接続部16よりも蒸発器15の内側まで突出している。
これにより、突出部151c,181c,191cが蒸発器15の内部における冷媒の流れを案内して、接続部16の近傍における縮流を抑制して流れの偏りを抑制できるので、圧縮機用吸入配管100内の偏流を抑制できる。したがって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0082】
幾つかの実施形態では、
図3F〜
図3H及び
図4Dに示すように、突出部151c,181cの先端部151d,181dが第1短管部110の軸心ax1の延在方向とは異なる方向、具体的には、第1短管部110における軸心ax1から離れる方向に向かって延在している。
また、幾つかの実施形態では、
図4Dに示すように、突出部191cの先端部191dが第1短管部110の軸心ax1の延在方向とは異なる方向、具体的には、第1短管部110における軸心ax1から離れる方向に向かって延在している。
これにより、突出部151c,181c,191cが第1短管部110の上流端111よりもさらに上流側における冷媒の流れを案内して、第1短管部110の上流側の流れの偏りを抑制できるので、圧縮機用吸入配管100内の冷媒の偏流を抑制できる。したがって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0083】
なお、幾つかの実施形態では、
図3F〜
図3H及び
図4Dに示すように、突出部151c,181c,191cは蒸発器15の内部まで突出しており、先端部151d,181d,191dがそれぞれ蒸発器15の胴部15a側に向かって延在している。
これにより、突出部151c,181c,191cが蒸発器15の内部における冷媒の流れ、特に胴部15aの内面に沿って接続部16に向かって流れる冷媒の流れを案内する。したがって、接続部16の近傍における縮流を抑制して流れの偏りを抑制できるので、圧縮機用吸入配管100内の偏流を抑制できる。よって、遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0084】
幾つかの実施形態では、
図4Dに示すように、内側仕切部180の第1仕切部181の先端部181d、及び外側仕切部190の第1仕切部191の191dは、それぞれの上流端181a,191aが互いに離れるように延在している。
これにより、上流端181a,191aの図示下方近傍の冷媒が第2流路172に向かって流れ易くなるので、圧縮機用吸入配管100における冷媒の流量を確保でき、遠心圧縮機10の性能を向上できる。
【0085】
幾つかの実施形態では、
図3A〜
図3H及び
図4A〜4Dに示すように、仕切部150、内側仕切部180、及び外側仕切部190は、第1〜第3短管部110,120,130のそれぞれの内部において平板形状を呈する第1仕切部151,181,191と、第2仕切部152,182,192と、第3仕切部153,183,193とを有する。
【0086】
これにより、単純な形状の仕切部150、内側仕切部180、及び外側仕切部190によって圧縮機用吸入配管100内の冷媒の流れの偏りを抑制できるので、圧縮機用吸入配管100の製造コストを抑制できる。
すなわち、圧縮機用吸入配管100は、いわゆるエビ管であり、第1〜第3短管部110,120,130同士が溶接などによって接続されている。例えば、第1〜第3短管部110,120,130同士を接続する前であれば、平板状の第1〜第3仕切部151〜153,181〜183,191〜193を第1〜第3短管部110,120,130に溶接などによって容易に固定できる。そして、第1〜第3仕切部151〜153,181〜183,191〜193が取り付けられた第1〜第3短管部110,120,130同士を接続することで、冷媒の流れ方向に沿って第1仕切部151,181,191、第3仕切部153,183,193及び第2仕切部152,182,192の順に連なった仕切部150、内側仕切部180、及び外側仕切部190が形成される。したがって、圧縮機用吸入配管100を低コストで製造できる。
【0087】
幾つかの実施形態では、
図3G及び
図3Hに示すように、蒸発器15の接続部16は、蒸発器15側の開口16aの開口面積が圧縮機用吸入配管100側の開口16bの開口面積よりも大きい。
これにより、蒸発器15から圧縮機用吸入配管100へ冷媒が流れやすくなるので、接続部16近傍における縮流を抑制して流れの偏りを抑制できる。したがって、圧縮機用吸入配管100内の冷媒の偏流を抑制して遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
なお、
図3Gに示した実施形態のように、蒸発器15の接続部16を漏斗状に形成する場合、市販のレデューサを利用することにより、蒸発器15の製造コストを抑制できる。
【0088】
幾つかの実施形態では、
図3Hに示すように、蒸発器15の接続部16は、ベルマウス形状を呈する。
これにより、蒸発器15から圧縮機用吸入配管100へ冷媒がさらに流れやすくなるので、接続部16近傍における縮流をさらに抑制して流れの偏りを抑制できる。したがって、圧縮機用吸入配管100内の冷媒の偏流をさらに抑制して遠心圧縮機10に流入する冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止できる。
【0089】
上述した一実施形態のターボ冷凍機1では、上述した何れかの実施形態の圧縮機用吸入配管100によって蒸発器15と遠心圧縮機10とを接続している。これにより、遠心圧縮機10に流れ込む冷媒の流れの偏りを抑制できるので、遠心圧縮機10の性能低下を防止でき、ターボ冷凍機1の成績効率を向上できる。
【0090】
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
(1)上述した幾つかの実施形態の圧縮機用吸入配管100では、上流端106の向きと下流端107の向きとが略90度異なっている。すなわち、上述した幾つかの実施形態の圧縮機用吸入配管100の曲げ角度は略90度であった。しかし、圧縮機用吸入配管100の曲げ角度は90度に限らず、少なくとも最も上流側の第1短管部110における下流側への延在方向と、最も下流側の第2短管部120における下流側への延在方向とがずれていればよい。
【0091】
(2)上述した幾つかの実施形態の圧縮機用吸入配管100では、各短管部110,120,130における管径は等しかった。しかし、各短管部110,120,130がそれぞれ異なっていてもよい。すなわち、たとえば、各短管部110,120,130が下流側に向かうにつれて管径が大きくなってもよく、小さくなってもよい。
【0092】
(3)上述した幾つかの実施形態の圧縮機用吸入配管100では、短管部の数が3であったが、4以上であってもよい。
【0093】
(4)上述した幾つかの実施形態の圧縮機用吸入配管100では、仕切部150、内側仕切部180及び外側仕切部190における第1〜第3仕切部151〜153,181〜183,191〜193は、それぞれ各
図3A〜
図3H及び各
図4A〜
図4Dにおける紙面と垂直な方向に延在する。しかし、第1〜第3仕切部151〜153,181〜183,191〜193は、上述した作用効果を奏する範囲内で紙面と垂直な方向とは異なる方向に延在していてもよい。すなわち、第1〜第3仕切部151〜153,181〜183,191〜193は、
図3Aに示した内接円Cが存在する平面に対する交差角度が90度であるが、例えば±15度程度の範囲内で90度からずれていてもよい。
【0094】
(5)上述した幾つかの実施形態の圧縮機用吸入配管100では、第1短管部110の軸心ax1と第2短管部120の軸心ax2とが同じ平面内に存在している。しかし、上述した作用効果を奏する範囲内で第1短管部110の軸心ax1と第2短管部120の軸心ax2とがねじれの関係にあってもよい。
【0095】
(6)上述した幾つかの実施形態の圧縮機用吸入配管100では、仕切部150は、
図3A〜
図3Hに示すように、曲管部101の軸心、すなわち、第1短管部110の軸心ax1、第2短管部120の軸心ax2及び第3短管部130の軸心ax3よりも流路の内側に設けられている。しかし、遠心圧縮機10に流入する冷媒の流れの偏りが抑制できるのであれば、仕切部150は、少なくともその一部が曲管部101の軸心よりも流路の外側に設けられていてもよい。
同様に、上述した幾つかの実施形態の圧縮機用吸入配管100では、内側仕切部180は、
図4A〜
図4Dに示すように、曲管部101の軸心よりも流路の内側に設けられている。しかし、遠心圧縮機10に流入する冷媒の流れの偏りが抑制できるのであれば、内側仕切部180は、少なくともその一部が曲管部101の軸心よりも流路の外側に設けられていてもよい。
また、上述した幾つかの実施形態の圧縮機用吸入配管100では、外側仕切部190は、
図4A〜
図4Dに示すように、曲管部101の軸心よりも流路の外側に設けられている。しかし、遠心圧縮機10に流入する冷媒の流れの偏りが抑制できるのであれば、外側仕切部190は、少なくともその一部が曲管部101の軸心よりも流路の内側に設けられていてもよい。
【0096】
(7)上述した幾つかの実施形態の圧縮機用吸入配管100では、
図3C〜
図3Hに示すように、第3短管部130において第1流路161の幅が下流側に向かうにつれて狭くなっている。しかし、第1短管部110において第1流路161の幅が下流側に向かうにつれて狭くなっていてもよく、第2短管部120において第1流路161の幅が下流側に向かうにつれて狭くなっててもよい。
また、上述した幾つかの実施形態の圧縮機用吸入配管100では、
図4A〜
図4Dに示すように、第3短管部130において第1流路171の幅が下流側に向かうにつれて狭くなっている。しかし、第1短管部110において第1流路171の幅が下流側に向かうにつれて狭くなっていてもよく、第2短管部120において第1流路171の幅が下流側に向かうにつれて狭くなっててもよい。
【0097】
(8)上述した幾つかの実施形態では、
図3A〜
図3H及び
図4A〜4Dに示すように、第1〜第3仕切部151〜153,181〜183,191〜193は、平板形状を呈している。すなわち、上述した幾つかの実施形態の圧縮機用吸入配管100では、第1〜第3仕切部151〜153,181〜183,191〜193として平板状の部材を用いている。しかし、第1〜第3仕切部151〜153,181〜183,191〜193として曲面や折れ曲がり部等を有する板状の部材を用いてもよい。
【0098】
(9)上述した幾つかの実施形態では、
図3A〜
図3H及び
図4A〜4Dに示すように、曲管部101の各短管部110,120,130において仕切部の数は、1または2であったが、3以上であってもよい。
【0099】
(10)上述した幾つかの実施形態では、圧縮機用吸入配管100をターボ冷凍機1における蒸発器15と遠心圧縮機10との接続に用いた。しかし、上述した幾つかの実施形態に係る圧縮機用吸入配管100をターボ冷凍機1以外の装置における接続対象機器と圧縮機との接続に用いてもよい。例えば、上述した幾つかの実施形態に係る圧縮機用吸入配管100を車両など、内燃機関を備える装置において、大気中から空気を取り入れるエアクリーナボックスと、遠心式の過給機との接続に用いてもよい。