【実施例1】
【0015】
図1は、免震システムを示す正面図である。
【0016】
免震システムは、支持機能や復元機能を有する「免震装置」としての積層ゴム1と、減衰性能を有する免震ダンパ2とを備えている。免震システムは、免震構造物3を、積層ゴム1および免震ダンパ2を介して非免震構造物4の上に支持しており、免震構造物3と非免震構造物4との間で発生する相対振動を低減する。
【0017】
図2は、免震システム全体を示す平面図である。
【0018】
免震システムには、例えば、3個の積層ゴム1(
図2中、符号1A〜1Cで示す)を等間隔に並べた列がその並び方向と直交する方向に等間隔に3列(合計9個)並べられており、これら合計9個の積層ゴム1のうちの4個の積層ゴム1に挟まれた略中間毎に合計4基の免震ダンパ2(
図2中、符号2A〜2Dで示す)が配置されている。
【0019】
図1に戻る。免震構造物3の下面には、矩形板状の第一取付パネル5Aが略水平に固定されている。第一取付パネル5Aの下面には、「第一取付部」としての第一取付軸6Aが下方に向かって立設している。
【0020】
非免震構造物4の上面には、第一取付パネル5Aと同形状の第二取付パネル5Bが略水平に固定されている。第二取付パネル5Bの上面には、「第二取付部」としての第二取付軸6Bが上方に向かって立設している。
【0021】
免震ダンパ2は、リンク機構を構成する第一アーム7Aおよび第二アーム7Bと、増速機8と、減衰機構9とを備えている。
【0022】
第一アーム7Aの一端は、第一取付軸6Aに対して回転自在に接続されている。第二アーム7Bの一端は、第一アーム7Aの他端に対して回転自在に接続されている。第二アーム7Bの他端は、第二取付軸6Bに対して回転自在に接続されている。第一アーム7Aと、第二アーム7Bとは、相互に平行をなす回転軸をそれぞれ有している。
【0023】
図3は、免震ダンパを示す平面図である。
【0024】
免震構造物3に設けられた第一取付軸6Aと第一取付部軸6Aに接続される第一アーム7Aの第一取付軸6Aに対する反対側の回転中心とを通る直線と、非免震構造物4に設けられた第二取付軸6Bと前記第二取付軸6Bに接続される第二アーム7Bの第二取付軸6Bに対する反対側の回転中心とを通る直線とは、平面視で交差している。即ち、地震動が入力されていない初期配置状態では、第一アーム7Aと、第二アーム7Bとは、鋭角を成している。
【0025】
図4は、免震ダンパの増速機および減速機構を示す縦立断面図である。
【0026】
第一アーム7Aの他端の下面には、増速機8と接続される軸10が下方に向かって立設している。第二アーム7Bの一端の上面には、減衰機構9が固定されている。
【0027】
増速機8は、ケーシング11内に複数の歯車12A〜12Cを収容している。歯車12Aは、第一アーム7Aの他端から下方に向かって立設した軸10に固定される。
【0028】
図5は、増速機を示す横断面図である。
【0029】
歯車12Bは、二段歯車であり、上部歯車が歯車12Aに接続されると共に下部歯車が歯車12Cに接続される。
【0030】
図4に戻る。歯車12Cは、減衰機構9のフライホイール14の軸の先端に固定されている。歯車12A〜12Cの歯数比は、12A>12B>12Cとなっている。増速機8は、第一アーム7Aの軸10から入力される回転量を増幅して減衰機構9に伝達する。
【0031】
減衰機構9は、ケーシング13内に第一アーム7Aおよび第二アーム7Bの回転軸とに平行をなす回転軸を有するフライホイール14を回転自在に収容している。ケーシング13は、円筒中空状に形成されおり、第二アーム7Bの一端の上面に固定されている。ケーシング13の上部中央には、フライホイール14の軸の先端が挿通される開口が設けられており、フライホイール14の軸の先端に固定された歯車12Cは、ケーシング13外に配置される。ケーシング13内には、粘性体15が充填されている。
【0032】
以上のように構成された免震システムの動作について、
図6〜10を用いて説明する。
【0033】
図6は、
図1で示した免震システムに地震動が作用した際の動作状態を示す正面図である。
【0034】
地震動が非免震構造物4に入力されると、積層ゴム1および免震ダンパ2が変形し、免震構造物3が免震応答によって紙面右側に変位することによって、免震構造物3と非免震構造物4との間で相対変位を生じる。この免震システムでは、免震応答時に、積層ゴム1の変形による免震構造物3の固有周期の長周期化と、免震ダンパ2の減衰力とによって、免震構造を適用しない場合と比較して、免震構造物4に伝達される地震荷重が低減される。
【0035】
図7は、
図3の免震ダンパの動作状態を示す平面図である。
【0036】
免震応答による免震構造物3の変位によって、免震構造物3に固定された第一取付パネル5Aが紙面右方向に移動すると、非免震構造物4に固定される取付パネル5Bとの間で相対変位が生じる。リンク機構を構成する第一アーム7Aおよび第二アーム7Bは、第一取付パネル5Aと第二取付パネル5Bとの間で生じる相対変位に即して開閉動作する。その開閉動作によって生じる第一アーム7Aと第二アーム7Bとの成す角の変化が、回転運動として増速機8を介して減衰機構9に伝達され、減衰力が発揮される。詳細には、前述したように、第一アーム7Aから立設される軸10の回転が、増速機8内の歯車12Aから歯車12Bを経て歯車12Cへと歯車比に応じて回転数が増加されつつ伝達され、歯車12Cを固定するフライホイール14が回転する。フライホイール14の回転運動によって発生する回転慣性は、免震構造物3の応答を長周期化するように作用するため、免震構造物3の応答が低減する。さらに、減衰機構9のケーシング13内には、粘性体15が充填されており、フライホイール14の回転運動によって粘性体15が掻き乱されることによって粘性減衰を生じることによって減衰力が作用する。
【0037】
ここで、
図3の初期配置状態において、第一取付軸6Aと第一取付部軸6Aに接続される第一アーム7Aの第一取付軸6Aに対する反対側の回転中心とを通る直線と、第二取付軸6Bと前記第二取付軸6Bに接続される第二アーム7Bの第二取付軸6Bに対する反対側の回転中心とを通る直線とは、平面視で交差している。それは、第一取付軸6Aと第二取付軸6Bとを平面視で同一位置に配置すると、第一取付軸6Aに接続された第一アーム7Aと、第二取付軸6Bに接続された第二アーム7Bとが平面視で重なった状態となるため、リンク機構が動作しなくなるからである。これにより、免震ダンパ2が、第一アーム7Aと第二アーム7Bとが平面視で重なって動作しなくなることを避けることができる。
【0038】
図8は、紙面上方向に地震が作用した場合の免震ダンパの応答状態を示す平面図である。
【0039】
免震ダンパ2は、免震構造物3および非免震構造物4に回転自在に接続されているため、オイルダンパや回転慣性質量ダンパのように動作が一方向に限定されなく、
図7,8に示したように、水平面上のあらゆる方向に動作して減衰性能を発揮することができる。
【0040】
図9は、紙面右上方向に強大な地震が作用した場合に、免震ダンパが最大ストロークまで応答した状態である。
【0041】
免震ダンパ1の最大ストロークは、第一アーム7Aと第二アーム7Bとの長さを足し合わせた長さである。
図3に示した初期配置状態を参照すると、免震ダンパ1は、最大ストロークの半分の長さで初期配置が可能であり、配置性に優れている。さらに、ストロークを両アーム7A,7Bの長さによって設定でき、減衰力を増速機8および減衰機構9の調整によって設定できるため、応答変位や減衰性能の要求仕様に応じて容易に設計変更が可能である。
【0042】
図10は、比較的小さい地震によって免震構造物3が紙面右上方向に僅かに応答する場合の免震ダンパの応答状態である。
【0043】
免震ダンパ1では、
図4に示したように、増速機8によって回転量が増幅されて減衰機構9に伝達されるため、大きな変位が発生しない場合にも、フライホイール14が回転するため、減衰力を得ることができる。そのため、大きな変位に対応するため、大ストロークに応じた設計をした場合においても、比較的小さい地震動が作用した際にも、減衰力を作用させる設計が可能である。
【0044】
本実施例によれば、免震ダンパ2は、免震構造物3に設けられた第一取付軸6Aと、非免震構造物4に設けられた第二取付軸6Bと、互いに回転自在に接続された第一アーム7Aおよび第二アーム7Bにより構成され、一端が第一取付軸6Aに対して回転自在に接続され、他端が第二取付軸6Bに対して回転自在に接続されるリンク機構と、両アーム7A,7Bが接続され、リンク機構の動作により当該リンク機構の各回転軸と平行をなす回転軸を有するフライホール14が回転して減衰力を生じる減衰機構9とを備える。
【0045】
これにより、免震ダンパ2は、両アーム7A,7Bが地震時に免震構造物3と非免震構造物4との相対変位に即して開閉すると共に、両アーム7A,7Bの開閉動作によりフライホイール14が回転動作を生じることによって減衰力が発揮される。つまり、免震ダンパ2は、オイルダンパや回転慣性質量ダンパのように動作方向が一方向に限定されるものではなく、
水平面上のあらゆる方向に動作して減衰性能を発揮することができる。さらに、両アーム7A,7Bの長さによってストロークを調整できるだけでなく、アーム長を足し合わせた長さとして最大ストロークが求めることができ、両アーム7A,7Bで構成される免震ダンパ2では、初期配置状態で最大ストロークの半分の長さの寸法で設置が可能となり、設置寸法を小さくすることができる。このように、水平面上のあらゆる方向に対して減衰性能を発揮でき、かつ、最大ストロークに対する初期配置の寸法が小さいため、配置性に優れている。したがって、大変位に対応可能で、且つ水平面上のあらゆる方向に減衰力を発揮することができ、配置性に優れている。
【0046】
複数のアームのうち減衰機構9に接続される第一アーム7Aと、減衰機構9とは、フライホイール14の回転速度を増速する増速機8を介して接続される。これにより、減衰機構9および増速機8によって減衰力をそれぞれ調整することができ、免震ダンパ2の設計が容易となる。さらに、増速機8によって回転を増幅して減衰機構9に伝達することができ、大きな変位が発生しない場合にも、効果的に減衰を付与することが可能である。
【0047】
減速機構9は、フライホイール14を収容するケーシング13と、フライホイール14とケーシング13との間に充填される粘性体15と、を有する。これにより、粘性体15によって減衰力を調整することができ、免震ダンパ2の設計が容易となる。
【0048】
減速機構9は、第一アーム7Aおよび第二アーム7B同士の間に配置されるので、両アーム7A,7Bの何れの回転動作にも効果的に減衰を付与することが可能である。
【0049】
本実施例では、上記構成に限定をするものではなく、例えば、免震ダンパ2は、水平方向に対して交差した方向に配置されても良い。即ち、リンク機構の各回転軸およびフライホール14の回転軸が水平方向に傾いていても良い。
【0050】
さらに、増速機8は、第一アーム7Aまたは第二アーム7Bの少なくとも一方に接続されてもよいし、設けなくてもよい。
【0051】
さらに、第一取付軸6Aまたは第二取付軸6Bは、第一取付パネル5Aを介せずに免震構造物3または非免震構造物4に直接設けられてもよい。
【実施例2】
【0052】
実施例2に係る免震ダンパの構成について説明する。
【0053】
図11は、実施例2に係る免震ダンパを示す正面図である。本実施例を含む以下の各実施例は実施例1の変形例に相当する。したがって、実施例1との相違点を中心に述べる。
【0054】
本実施例に係る免震ダンパ2は、実施例1と比較した場合に、減衰機構9および増速機8の設置位置および数量が変更されている。即ち、実施例1の免震ダンパ2では、減衰機構9が、第一アーム7Aと第二アーム7Bとの間に設けられていた。それに対し、実施例2に係る免震ダンパ2では、減衰機構9Aが、免震構造物3と第一取付軸6Aとの間に設けられ、減衰機構9Bが、非免震構造物4と第二取付軸6Bとの間に設けられる。
【0055】
具体的には、実施例2の免震ダンパ2では、免震構造物3に固定される取付パネル5Aに減衰機構9Aが固定され、減衰機構9Aに増速機8Aが接続され、増速機8Aに第一取付軸6Aが接続され、第一取付軸6Aに第一アーム7Aの一端が接続され、第一アーム7Aの他端が第二アーム7Bの一端に回転自由に接続する軸10に接続している。さらに、非免震構造物4に固定される取付パネル5Bに減衰機構9Bが固定され、減衰機構9Bに増速機9Bが接続され、増速機9Bに第二取付軸6Bが接続され、第二取付軸6Bに第二アーム7Bの他端が接続され、第二アーム7Bの一端が第一アーム7Aに回転自由に接続される軸10に接続している。
【0056】
図12は、
図11の動作状態を示す正面図である。
【0057】
ここで、地震時の応答として、免震構造物3が水平方向に同心円状の軌跡を描く振れ回り挙動が発生する場合がある。その際には、免震構造物3と非免震構造物4との相対変位が一定のままとなり、第一アーム7Aと第二アーム7Bとの成す角が変化しないため、実施例1のように第一アーム7Aと第二アーム7Bとの接続部に減衰機構9を設けた場合、減衰力を得ることができない。
【0058】
本実施例によれば、各取付パネル5A、5Bに、減衰機構9A、9Bおよび増速機8A、8Bがそれぞれ設けられることによって、両アーム7A,7Bの両端を回転軸としたリンク機構が形成され、免震構造物3と非免震構造物4との相対変位に即して両アーム7A,7Bが開閉し、この開閉動作による回転動作が減衰機構9A、9Bに伝達されることによって減衰力が発揮される。したがって、振れ回り挙動の場合でも減衰機構9A、9Bに回転動作が作用するために、減衰力を得ることができる。
【0059】
本実施例では、上記構成に限定をするものではなく、例えば、減衰機構9A,9Bは、免震構造物3と第一取付軸6Aとの間、または非免震構造物4と第二取付軸6Bとの間の何れか一方に配置されてもよいし、設けなくてもよい。
【実施例3】
【0060】
実施例3に係る免震ダンパについて説明する。
【0061】
図13は、第3実施例に係る免震ダンパを示す正面図、
図14は、
図13の動作状態を示す正面図である。
【0062】
本実施例に係る免震ダンパ2は、三本のアーム7A〜7Cを有し、減衰機構9A〜9Dおよび増速機8A〜8Dを4個ずつ有している点が、実施例1および実施例2と相違する。
【0063】
免震構造物2および非免震構造物3それぞれに固定される取付パネル5A,5Bに減衰機構9A,9Bおよび増速機8A,8Bそれぞれが接続され、増速機9Aに第一アーム7Aの一端が接続されると共に増速機9Bに第二アーム7Bの他端が接続されている点は、第2実施例と同じ構成である。本実施例に係る免震ダンパ2では、さらに、第一アーム7Aの他端および第二アーム7Bの一端それぞれにも、減速機構9C,9Dおよび増速機8C、8Dがそれぞれ接続されており、減速機構9Cと増速機8Dとが第三アーム7Cで接続されている。
【0064】
本実施例によれば、最大ストロークが第一アーム7A、第二アーム7Bおよび第三アーム7Cの和として得られるため、より大きな相対変位に対応が可能となる。三本のアーム7A〜7Cで構成される免震ダンパ2では、回転動作時に第一〜第三アーム7A〜7Cに作用する曲げ荷重が二本のアーム7A,7Bで構成した場合と比較して小さくなるため、合理的なアーム断面形状の設計が可能となる。初期配置状態の寸法が最大ストロークの1/3となるため、配置性に優れている。回転が可能な全ての可動部位に減速機構9A〜9Dおよび増速機8A〜8Dが設けられることから、振れ回りを含む水平面上のあらゆる方向の応答に対して減衰力を発揮することが可能である。
【0065】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0066】
上記実施例では、免震装置として積層ゴム1が免震構造物3と非免震構造物4との間に設けられることによって免震効果を発揮したが、免震装置は、積層ゴム1に限定されず、例えば、すべり支承や転がり支承であってもよい。
【0067】
さらに、上記実施例では、二本または三本のアーム7を有していたが、アーム7の本数は、これに限定されず、例えば、四本以上であってもよい。
【0068】
さらに、上記実施例では、3つの歯車12A〜12Cによって増速機8を構成し、回転角を増加させたが、増速機構8は、これに限定されず、例えば、遊星歯車や波動歯車装置であってもよい。
【0069】
さらに、上記実施形態では、フライホイール14および粘性体15によって構成される減衰機構9によって減衰効果を発揮したが、この構成に限定されず、例えば、粘性体の抵抗を利用するものやオリフィス減衰を付与する機構であってもよい。
【0070】
さらに、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得る。