(58)【調査した分野】(Int.Cl.,DB名)
前記支持部材が、各々、前記ベースから所定の角度で突出し、前記支持部材の各々の前記角度は、前記ベースの端部までの前記支持部材の近さに基づいて決定され、且つ、各支持部材の前記角度は、前記支持部材が、部品の製造中に前記エッジブリーザの前記上部オープン構造に加えられた、コラム圧縮を経験し、押し付け力に対抗することを保証する、請求項2に記載のエッジブリーザ。
前記支持部材の遠位部分を相互連結する第2の複数の横部材であって、前記ベースの上方に第2のオープン構造を形成する、第2の複数の横部材を更に備える、請求項2に記載のエッジブリーザ。
前記エッジブリーザが、硬化されている複合製品から、前記エッジブリーザを通して、真空ラインの中へ気体を引き出す、前記真空ラインに連結されている、請求項2に記載のエッジブリーザ。
前記支持部材を通過させて気体を引き出すことが、各々が、前記ベースから突出し、且つ、オープンなパターン化された構造を支持する、複数の支持部材を通過させて気体を引き出すことを含む、請求項14に記載の方法。
【発明を実施するための形態】
【0014】
図面及び下記の記載により、本開示の具体的な例示的実施形態が示される。したがって、当業者は、本明細書に明示的に記載又は図示されていない様々な装置を考案して本開示の原理を実施することができるが、それらは本開示の範囲に含まれることを理解されたい。更に、本明細書に記載の如何なる実施例も、本開示の原理の理解を助けるためのものであって、それらの具体的に記載された実施例や諸条件を限定しないものとして理解されるべきである。結果として、本開示は、下記の具体的な実施形態又は実施例に限定されず、特許請求の範囲及びその均等物によって限定される。
【0015】
図1は、例示的な一実施形態における真空バッグ製造システム100のブロック図である。システム100は、複合部品(例えば、航空機の翼などの繊維強化複合部品又は任意の他の適切な構成要素)を強化及び/又は硬化させるための真空バッグ技術を利用することができる、構成要素及び/又は装置の任意の組み合わせを備える。システム100は、硬化プロセスの間の圧力及び熱(例えば、華氏数百度及び/又は90PSI)に耐え、且つ、空気及び揮発性の気体がシステム100に入り且つ(例えば、真空ホース160を介して)システム100から出て行くためにそこを通るところの内部通路を画定もする、エッジブリーザ(130、132、134、136)を利用するように改良されてきた。
【0016】
この実施形態では、システム100が、製造の間にその周りに部品140が適合するところの表面を形成する硬質ツール110を含む。
図1で示されるように、部品140は、真空バッグ120を介してツール110上の適所に保持され、真空バッグ120は、端部密封剤220を介してツール110にテーピング/密封され、且つ、エッジブリーザ130、132、134、及び136のみならずツール140も覆う。エッジブリーザ(130、132、134、136)は、硬化プロセスからの空気及び揮発性の気体が真空バッグ120内で移動するための通路を提供する。その後、これらの揮発性の気体は、真空ライン160のためのフィッティング(fitting)として動作するポート150を介して、真空バッグ120から出て行く。本実施形態では、真空ライン160が、コンプレッサ170によって動力供給される。
【0017】
一実施形態では、動作の間に、コンプレッサ170が真空バッグ120に対して約1気圧の負の圧力を生成し得る。これは、部品140がツール110に適合するように、部品140に対して真空バッグ120を押し付ける。これは、真空バッグ120が、エッジブリーザ(130、132、134、136)に対して緊密に適合することももたらす。これは、部品140が硬化する際に、ツール110の外形に対して部品140が緊密に保持されるという利点を提供し、さもなければ硬化プロセスの間に形成され得る揮発性の気体及び空気の泡を素早く引き出すという利点も提供する。硬化プロセス自体が、相当な量の圧力及び/又は熱が加えられることを更に含み得る。システム100のエッジブリーザ(130、132、134、136)は、真空ホース160によって加えられる圧力下での崩壊に耐える幾何学的形状を示すように改良されてきた。エッジブリーザ(130、132、134、136)の更なる詳細が、以下の
図7〜
図10に関連して説明され、一方、システム100の動作の更なる詳細が、
図2〜
図5に関連して説明される。
【0018】
図2〜
図5は、例示的な一実施形態で組み立てられるシステム100の切断断面側面図である。この図は、
図1の要素2によって表わされる。したがって、システム100の更なる描写が、
図2〜
図5に関連して提供され、それらは、真空バッグ製造を容易にするために、様々な構成要素が組み立てられ得る順序を説明する。
図2は、静止状態のツール110を示す。ツール110の上面111は、硬化プロセスの間及び/又は後に、ツール110上に配置された部品がツール110に結合しないことを保証するために、離型剤で被覆され得る。
【0019】
図3では、エッジブリーザ(例えば、132、134)が、部品140と共にツール110上に配置される(本実施形態では、部品140が、層/プライ142及び144とコア146とから成るけれども、更なる実施形態では、コア146の代わりに硬い積層複合チャージが用いられ得る)。任意の適切な複合構造が、部品140のために利用され得る。エッジブリーザ132及び134は、部品140の近くに配置され、部品140近傍の空気が部品140から吸い出されるためのレーンとして働く。これは、(図示せぬ)泡が、部品140の硬化と干渉しないことを保証する。
【0020】
図4は、端部密封剤220(例えば、両面テープ)がエッジブリーザ(例えば、132、134)の周縁でツール110上に付けられたことを示し、且つ、分離膜180が部品140に付けられ、表面ブリーザ190が分離膜180並びにエッジブリーザ132及び134上に付けられたことを更に示している。分離膜180は、部品140が他の構成要素にくっつくことを妨げる、透過性のテフロン層を備え得る。エッジブリーザ(130、132、134、136)は、表面ブリーザ190と組み合わされて、硬化の前及び/又は間に、空気及び揮発性の気体が部品140から安全に送り出されるための通路を形成する。具体的には、表面ブリーザ190が、そこを通って空気が移動しシステムから出るための、多孔質のレーンを提供する。
【0021】
図5によれば、部品140は分離膜180によって覆われている。表面ブリーザ190とその下の構成要素は、真空バッグ120によってツール110上に密封され、真空バッグ120は、端部密封剤220を介してツール110に取り付けられる。プローブパッド210が、フィッティング150の近くに小さいブリーザチャネルを提供し、フィッティング150に真空ホース160が取り付けられる。その後、真空ホース160は、真空バッグ120から空気を引き出し、それによって、部品140をツール110上に押し付ける。その後、熱及び/又は圧力が加えられ、部品140を硬化/固化させる。
【0022】
図2〜
図5で示されるように、部品140上にレイアップを追加及び硬化させるプロセスは、複数の層を追加及び硬化させる繰り返しのプロセスとして継続され、新しい「グリーン」層が部品140に追加され且つ硬化され、その後、更に新しい「グリーン層」が再び追加され得る。この技術を利用して、製造業者は、部品140が完成するまで、例えば、数千の層から成るインチの厚さを部品140に一度に追加することができる。
【0023】
システム100の動作の例示的な詳細が、
図6に関連して説明される。本実施形態では、部品140が、直ちに硬化されるべきだが、未だツール110上に配置されていないことを想定する。
【0024】
図6は、例示的な一実施形態における真空バッグ製造システム100を利用するための方法600を示すフローチャートである。方法600のステップは、
図1のシステム100を参照しながら説明されるが、方法600が、他の真空バッグ製造システムでも実行され得ることを当業者は理解するだろう。本明細書に記載のフローチャートのステップは、網羅的なものでなく、図示されていない他のステップを含み得る。本明細書に記載のステップは、他の順序でも実施され得る。
【0025】
図6によれば、(複合チャージを備えた)部品140が、ツール110上面に配置され/横たえられる(ステップ602)。その後、例えば、
図7〜
図10で説明される改良された幾何学的形状に適合するエッジブリーザ(130、132、134、136)が、部品140と共に使用されるために選択され、複合チャージの外周に沿って配置/位置決めされる(ステップ604)。例えば、これらのエッジブリーザ(130、132、134、136)。その後、
図2〜
図5に関連して上述されたように、真空バッグ120を備えた真空チャンバが、複合チャージ及びエッジブリーザ(130、132、134、136)の周りに設けられる(ステップ606)。真空ホース160を介して真空チャンバ内で真空が引かれ(ステップ608)、エッジブリーザ132のベースから突出する支持部材を通過させて、複合チャージから気体が引き出される。エッジブリーザ132の性質が、エッジブリーザ132の支持部材及びベースの性質と共に、以下で詳細に説明される。部品140を統合された全体へと固化させるためにも、(例えば、部品140の内側の硬化剤/樹脂に、熱及び/又は圧力が加えられることを介して)部品140は硬化され得る。
【0026】
図7〜
図10は、例示的な一実施形態における改良されたエッジブリーザ132単独の詳細な図である。具体的には、
図7はエッジブリーザ132の斜視図であり、
図8は前面図であり、
図9は側面図であり、且つ、
図10は上面図である。
【0027】
図7によれば、エッジブリーザ132は、製造されている製品の特性に応じて変動し得る長さ(L)の細長い本体133を有する。エッジブリーザは、幅(W)も有する。更に、本実施形態では、エッジブリーザ132が、そこを通って空気が自由にエッジブリーザ132に出入りし得るところの、オープンメッシュを形成する、オープンなパターン化された上面/構造830を画定する。丸められた端部キャップ834も、
図7で示されている。端部キャップ834は、エッジブリーザ132を滑らかに終端させるように働くことによって、(例えば、
図1で示されるような)真空バッグ120が、エッジブリーザ132の周りを圧縮し且つ傷付け、真空バッグ120を破裂させる潜在的な機会を低減させる。
【0028】
1以上の流量計890が、エッジブリーザ132内で内的にエッジブリーザ132と連結され得るか、又はエッジブリーザ(例えば、
図1で示される130、132、134、及び136)間でエッジブリーザ132と連結され得るかの何れかである。
図8は、例示的な一実施形態におけるエッジブリーザ132の切断断面図を示す。具体的には、
図7のビュー矢印(view arrow)8によって視界が示されている。
図8で示されるように、構造830は、円弧状の形態の断面を有する。
図8は、エッジブリーザ132が、各々がベース810から突出した/突き出た、複数の内部の硬質支持部材/ピラー820を含むことを示している。ベース810から各支持部材820が突出する角度が、ベース810の端部812からの支持部材820の距離に応じる。短く言うと、各支持部材820は、構造830(及び/又は表面/構造840)に接する線とほぼ垂直な角度で構造830と接触するように角度が付けられている。
【0029】
構造830は、それ自体で硬く、且つ、支持部材820間に編み込まれた複数の横/縦部材832から作られており、一方で、構造840は、支持部材820を相互連結する複数の横部材842から作られている。横部材832及び842は、ベース810に近い部分824ではなく、ベース810から遠位にある部分822において、支持部材820に固定されている。短く言うと、一実施形態では、構造830によって画定された円弧の半径が、構造840によって画定された円弧の半径よりも大きい。構造830と840との間の空間は、セル870へと更に分割され、部品(例えば、部品140)を硬化させるために使用された過剰な樹脂が、(ページの中へ、且つ、エッジブリーザ132の長さに沿って)通路892及び894を通る気流と大して干渉することなしに、セル870内に蓄積され得る。本明細書で使用される際に、構造830及び840は、圧力に対抗するそれらの断面強度が相当なものである(例えば、90PSI及び相当な熱に耐えることができる)ように説明される。そうは言っても、エッジブリーザ132が、かなり狭く(例えば、1インチの半分未満)且つかなり長い(例えば、何フィートもの)幾何学的形状を示すときに、エッジブリーザ132は、その長さに沿って未だある程度柔軟であり得る。
【0030】
壁860が、ベース810の中央814の近くで、エッジブリーザ132の長さを通って/沿って(すなわち、長手方向に)走る、中空の円筒形状トンネル864を画定する。この実施形態では、流量計(例えば、
図7の流量計890)のための配線862が、トンネル860内に配置される。配線862は、流量計890を(例えば、直列に)接続し、流量計(例えば、890)が配置された様々な場所でのエッジブリーザ132内の気流の測定を可能にする。今度は、これが、エッジブリーザ132の近傍での漏れが素早く突き止められることを可能にする。何故ならば、同じエッジブリーザ内の隣接する流量計890間の流量における突然の変動は、隣接する流量計890間でシステムに空気が予期されずに入ったか、又は隣接する流量計890間の何れかの場所で気流が排出されたことを示し得るからである。壁860から突出しているのは支持部材850であり、それらは、更なる実施形態で、壁860から放射状に広がり得る。各支持部材850及び/又は820の角度は、支持部材850/820が、部品の製造中にエッジブリーザ132のオープンなパターン化された構造830に加えられる、コラム圧縮(column compression)を経験し、且つ、その押し付け力に対抗することを保証する。
【0031】
圧縮荷重が支持部材820及び850に加えられる負荷の下では、エッジブリーザ132が、同様なやり方でトラス又はスペースフレームに力を分散させ、一方、その間に、少なくとも一部の横部材832及び/又は842は、引張荷重量を受ける(その他の横部材832及び842は、圧縮状態に置かれ得る)。すなわち、エッジブリーザ132の荷重の下で、横部材832及び/又は842の少なくとも一部は引張状態に置かれ、一方、支持部材820及び850は圧縮状態に置かれる。
【0032】
長期間にわたり押し付け力及び高温に抵抗することができる軽量で再使用可能な構造を提供するという点において、
図8で示されるようなエッジブリーザ132は有利である。エッジブリーザ132の軽量の性質は、特に、大きい複合部品(例えば、航空機の翼)に対して、エッジブリーザ132が先行技術のエッジブリーザよりも人間工学的に配置し易いことも保証する。
図9は、構造830及び840を示し、それらは実際上かなりオープンであり、気流が通路892を介してエッジブリーザ132に自由に入ることを可能にする。構造830は、遮断されることがなく、ほぼ連続的である。一方、対照的に、支持体820が、構造830の下方にある構造840の連続性を遮断する。
図10は、上述の様々な構成要素を示す、エッジブリーザ132の上面図である。エッジブリーザ132に対して本明細書で示される個別の特徴は、非常に小さい。例えば、一実施形態では、各支持部材820の直径が約0.01インチである。
【0033】
エッジブリーザ132は、3Dプリンティング、溶融性コア製造プロセスの利用、ポリジェット製造、ステレオリソグラフィー(SLA)、熱溶解積層法(FDM)、選択的レーザ焼結(SLS)、選択的レーザ溶融(SLM)、電子ビーム溶融(EBM)、ロストワックス鋳造、溶融性コア鋳造などの、任意の適切なプロセスを介して製造され得る。例えば、一実施形態では、エッジブリーザ(130、132、134、136)が、アクリルウレタンのフォトポリマーから成る単一の統合された3次元(3D)プリントされた部品である。そのような一実施形態は、特に、押し付け力に対する抵抗性を有し、したがって、事実上再使用可能であり得る。また更なる一実施形態では、各エッジブリーザ(130、132、134、136)が、ベース810及び1以上のオープン構造(830、840)を備えるが、如何なる支持体820又は850も含まない。そのような一実施形態では、各エッジブリーザ(130、132、134、136)が、真空バッグ(例えば、120)からの圧縮に抵抗するために、オープン構造(830、840)の円弧形状の圧縮抵抗性を頼りにする。また更なる別の一実施形態では、トンネル960が存在し得ず、且つ、オープン構造のための何れかの数のパターンが、エッジブリーザ(130、132、134、136)のために画定され得る。
【0034】
図11は、3Dプリンティングを介してエッジブリーザを製造するための方法1100を示す。例えば、方法1100は、1以上のエッジブリーザをプリントするために、任意の適切な3Dプリンターによって実施され得る。該方法は、ステップ1102で構造材料(例えば、3Dプリンティング材料)を加熱して液体にすること、ステップ1104で該液体を積み重ねてベースを形成すること、及びステップ1106でベースが固まるのを待つことを含む。形成されたベースを用いて、該方法は、液体を繰り返し1つのパターンで積み重ねて、ベースから突出する複数の支持部材を形成することであって、各支持部材がベースに近接した一部分及びベースから遠位にある一部分を備える、形成することを含む、ステップ1108へ続く。ステップ1110は、液体を1つのパターンで積み重ねて、支持部材の遠位部分を相互連結する複数の横部材を形成し、ベース上方にオープンなパターン化された構造を形成することを含む。ステップ1112は、液体が完成したエッジブリーザへと固まるのを待つことを含む。
【0035】
図12は、例示的な一実施形態における真空バッグ製造システムのブロック図である。
図12で示されているように、ツール110は、システム100の底層を形成し、その上に、端部密封剤220、エッジブリーザ132及び134、並びに部品140が配置される。エッジブリーザ132と134は、各々、ベース1202、支持部材1204、及び横部材1206を備える。部品140は、下側層/プライ144、コア146、及び上側層/プライ142を備える。部品140は、分離膜180によって覆われている。分離膜180、並びにエッジブリーザ130、132、134、及び136上に、表面ブリーザ190が載置される。表面ブリーザ190とその下の構成要素は、真空バッグ120によってツール110上に密封され、真空バッグ120は、端部密封剤220を介してツール110に取り付けられる。プローブパッド210が、フィッティング150の近傍に小さいブリーザチャネルを提供し、フィッティング150に真空ホース160が取り付けられ、且つ、真空ホース160が真空バッグ120を貫通する。真空ホース160は、真空ポンプ170によって動力供給される。
【0036】
図面を更に具体的に参照しながら、本開示の実施形態を、
図13に示す航空機の製造及び保守方法1300、及び
図14に示す航空機1302に照らして説明する。製造前段階では、例示的な方法1300が、航空機1302の仕様及び設計1304と、材料の調達1306とを含み得る。製造段階では、航空機1302の構成要素及びサブアセンブリの製造1308と、システムインテグレーション1310とが行われる。その後、航空機1302は、認可及び納品1312を経て運航1314に供され得る。顧客により運航されている期間に、航空機1302には、(修正、再構成、改修なども含み得る)定期的な整備および保守1316が予定される。
【0037】
一実施形態では、部品140が、機体118の一部分を備え、エッジブリーザ130、132、134、及び136の使用を介して、構成要素及びサブアセンブリの製造1308の間に製造される。その後、部品140は、システムインテグレーション1310において航空機へと組み立てられ、その後、摩耗が部品140を使用不可能にするまで運航1314において利用され得る。その後、整備及び保守1316では、部品140が、捨てられ且つ新しく製造された部品140と交換され得る。エッジブリーザ(130、132、134、136)は、部品140を製造するために、構成要素及びサブアセンブリの製造1308を通して利用され得る。エッジブリーザ(130、132、134、136)は、摩耗又は損傷した部品140を修理又は調整するために、整備及び保守1316のためにも潜在的に利用され得る。
【0038】
方法1300の工程の各々は、システムインテグレータ、第三者、及び/又はオペレータ(例えば、顧客)によって実行され又は実施され得る。本明細書の目的のために、システムインテグレータは、限定しないが、任意の数の航空機製造者、及び主要システムの下請業者を含むことができ、第三者は、限定しないが、任意の数のベンダー、下請業者、及び供給業者を含むことができ、オペレータは、航空会社、リース会社、軍事団体、サービス機関などであり得る。
【0039】
図14で示されるように、例示的な方法1300によって製造される航空機1302は、複数のシステム1320及び内装1322を有する機体1318を含み得る。高次のシステム1320の例には、推進システム1324、電気システム1326、油圧システム1328、及び環境システム1330のうちの1以上が含まれる。任意の数の他のシステムも含まれ得る。航空宇宙産業の例を示しているが、本発明の原理は、自動車産業などの他の産業にも適用され得る。
【0040】
本明細書中で具現化される装置及び方法は、製造及び保守方法1300の任意の1以上の段階において採用され得る。例えば、製造段階1308に対応する構成要素又はサブアセンブリは、航空機1302の運航中に製造される構成要素又はサブアセンブリと類似の方法で作製又は製造され得る。また、1以上の装置の実施形態、方法の実施形態、又はそれらの組み合わせは、例えば、航空機1302の組み立てを実質的に効率化するか、又は航空機1302のコストを削減することにより、製造段階1308及び1310において利用され得る。同様に、装置の実施形態、方法の実施形態、又はそれらの組み合わせのうちの1以上を、航空機1302の運航中に、例えば限定しないが、整備及び保守1316に利用することもできる。
【0041】
本明細書で説明された様々な動作のうちの何れかは、ハードウェア、ソフトウェア、ファームウェア、又はこれらの何らかの組み合わせとして実装された、コンピュータ制御が可能な要素によって管理/制御され得る。例えば、真空ポンプ170又は(図示せぬ)ロボットアームの動作は、専用の内部ハードウェアによって制御され得る。専用ハードウェア要素は、「プロセッサ」、「コントローラ」、又は類似の何らかの用語で称され得る。プロセッサによって提供される場合、単一の専用プロセッサによって、単一の共有プロセッサによって、又はそれらのうちの幾つかが共有であり得る複数の個別のプロセッサによって、機能が提供され得る。更に、「プロセッサ」又は「コントローラ」という用語の明確な使用は、ソフトウェアの実行が可能なハードウェアのみを表すと解釈されるべきでなく、非限定的に、デジタル信号プロセッサ(DSP)、ハードウェア、ネットワークプロセッサ、特定用途向け集積回路(ASIC)若しくは他の回路、フィールドプログラマブルゲートアレイ(FPGA)、ソフトウェア記憶用のリードオンリメモリ(ROM)、ランダムアクセスメモリ(RAM)、不揮発性ストレージ、ロジック、又は何らかの他の物理的ハードウェア構成要素若しくはモジュールなどを黙示的に含み得る。
【0042】
また、ある要素が、その要素の機能を実施するためにプロセッサ又はコンピュータによって実行可能な指示命令として実装され得る。指示命令の幾つかの例は、ソフトウェア、プログラムコード、及びファームウェアである。指示命令は、その要素の機能をプロセッサに実施させるように、プロセッサによって実行されるときに動作可能である。指示命令はプロセッサによって可読な記憶装置に記憶され得る。記憶装置の幾つかの例は、デジタル若しくは半導体メモリ、磁気ディスク及び磁気テープなどの磁気記憶媒体、ハードドライブ、又は光学可読デジタルデータ記憶媒体である。
【0043】
したがって、要約すると、本発明の第1の態様により下記が提供される。
A1
硬質材料から形成された複合製造のためのエッジブリーザを備え、前記エッジブリーザが、
円弧を画定する断面を有する上部オープン構造を有する細長い本体、及び
前記上部構造の下にあり、且つ、前記細長い本体の長さに沿って延在する、前記細長い本体内の中空の通路を備え、
前記上部構造が、空気が通過して入り得るところのオープンメッシュを形成する複数の開口部を画定する、装置。
A2
ベース、
前記ベースから突出する複数の支持部材であって、各支持部材が、前記ベースの近傍にある一部分及び前記ベースから遠位にある一部分を備えた、複数の支持部材、並びに
前記支持部材の前記遠位部分を相互連結して、前記上部構造を形成する、複数の横部材を更に備える、条項A1に記載のエッジブリーザ。
A3
前記上部構造が、前記支持部材に荷重を分散させて、前記支持部材を圧縮状態に置く間に、前記横部材にも荷重を分散させて、前記横部材のうちの少なくとも1つを引張状態に置くように構成される、条項A2に記載のエッジブリーザ。
A4
前記上部構造が、前記ベースを円弧状に覆う、条項A2に記載のエッジブリーザ。
A5
前記支持部材が、各々、前記ベースから所定の角度で突出し、前記支持部材の各々の前記角度は、前記ベースの端部までの前記支持部材の近さに基づいて決定され、且つ、各支持部材の前記角度は、前記支持部材が、部品の製造中に前記エッジブリーザの前記上部構造に加えられた、コラム圧縮を経験し、押し付け力に対抗することを保証する、条項A2に記載のエッジブリーザ。
A6
前記支持部材の遠位部分を相互連結する第2の複数の横部材であって、前記ベースの上方に第2のオープン構造を形成する、第2の複数の横部材を更に備える、条項A2に記載のエッジブリーザ。
A7
前記ベースの中央を通って連続する中空の円筒形状トンネルを画定する壁を更に備える、条項A2に記載のエッジブリーザ。
A8
前記壁から突出する複数の支持部材を更に備える、条項A7に記載のエッジブリーザ。
A9
前記エッジブリーザを通る気流を測定するように構成された流量計を更に備える、条項A6に記載のエッジブリーザ。
A10
前記ベース、前記支持部材、及び前記横部材が、統合されている、条項A6に記載のエッジブリーザ。
A11
前記ベース、前記支持部材、及び前記横部材が、統合されており、前記エッジブリーザが、3次元(3D)プリンターからプリンティングを介して製造される、条項A2に記載のエッジブリーザ。
A12
前記上部構造が、格子状の構造を備える、条項A2に記載のエッジブリーザ。
A13
前記エッジブリーザが、硬化されている複合製品から、前記エッジブリーザを通して、真空ラインの中へ気体を引き出す、前記真空ラインに連結されている、条項A2に記載のエッジブリーザ。
【0044】
本発明の更なる態様により、下記が提供される。
B1
複合製造システムであって、
複合材料部品を支持するように構成された表面を有する硬質ツール、
前記硬質ツール上のエッジブリーザであって、
ベースと、
前記ベースから突出する複数の支持部材と、
前記ベースから遠位にある前記支持部材の部分を相互連結して、前記ベースを覆う上部構造を形成する、複数の横部材とを備える、エッジブリーザ、
前記エッジブリーザ上に配置された表面ブリーザ、並びに
前記エッジブリーザ、前記表面ブリーザ、及び前記ツールの一部分を、周囲大気から密封する真空バッグを備える、システム。
B2
前記上部構造が、前記ベースを円弧状に覆う、条項B1に記載のシステム。
B3
前記支持部材が、各々、前記ベースから所定の角度で突出し、前記支持部材の各々の前記角度が、前記ベースの端部までの前記支持部材の近さに基づいて決定される、条項B1に記載のシステム。
B4
前記支持部材の遠位部分を相互連結する第2の複数の横部材であって、前記ベースの上方に第2の上部構造を形成する、第2の複数の横部材を更に備える、条項B1に記載のシステム。
B5
前記ベースの中央を通って連続する中空の円筒形状トンネルを画定する壁を更に備える、条項B1に記載のシステム。
B6
前記トンネルから突出する複数の支持部材を更に備える、条項B5に記載のシステム。
B7
前記エッジブリーザを通る気流を測定するように構成された流量計を更に備える、条項B5に記載のシステム。
B8
前記ベース、前記支持部材、及び前記横部材が、統合されている、条項B1に記載のシステム。
B9
オープンなパターン化された構造が、格子状の構造を備える、条項B1に記載のシステム。
B10
前記上部構造が、前記支持部材に荷重を分散させて、前記支持部材を圧縮状態におく間に、前記横部材にも荷重を分散させて、前記横部材のうちの少なくとも1つを引張状態に置くように構成される、条項B1に記載のシステム。
【0045】
本発明の更なる態様により、下記が提供される。
C1
複合製品を製造するための方法であって、
ツール上に複合チャージを配置すること、
前記複合チャージの外周に沿ってエッジブリーザを配置すること、
前記チャージ及び前記エッジブリーザの周りに真空チャンバを作り出すこと、
前記真空チャンバ内で真空引きすること、及び
前記エッジブリーザのベースから突出する支持部材を通過させて、前記複合チャージから気体を引き出すことを含む、方法。
C2
前記複合チャージ及び前記エッジブリーザ上に表面ブリーザを配置することを更に含む、条項C1に記載の方法。
C3
前記複合チャージを硬化させることを更に含む、条項C1に記載の方法。
C4
前記支持部材を通過させて気体を引き出すことが、各々が、前記ベースから突出し、且つ、オープンなパターン化された構造を支持する、複数の支持部材を通過させて気体を引き出すことを含む、条項C1に記載の方法。
C5
前記エッジブリーザが、気体が通過して前記エッジブリーザに自由に出入りし得るところの、円弧形状の断面を示す、条項C4に記載の方法。
C6
前記複合チャージ上に分離膜を付けることを更に含む、条項C1に記載の方法。
C7
前記真空チャンバ内で真空引きする間に、前記エッジブリーザの前記支持部材を圧縮状態に置き、前記エッジブリーザの横部材を引張状態に置くことを更に含む、条項C1に記載の方法。
【0046】
本発明の更なる態様により、下記が提供される。
D1
エッジブリーザを製造するための方法であって、
構造材料を加熱して液体にすること、
前記液体を積み重ねてベースを形成すること、
前記ベースが固まるのを待つこと、
前記液体を繰り返し1つのパターンで積み重ねて、前記ベースから突出する複数の支持部材を形成することであって、各支持部材が前記ベースに近接した一部分及び前記ベースから遠位にある一部分を備える、形成すること、
前記液体を1つのパターンで積み重ねて、前記支持部材の前記遠位部分を相互連結する複数の横部材を形成し、前記ベース上方にオープンなパターン化された構造を形成すること、及び
前記液体が完成したエッジブリーザへと固まるのを待つことを含む、方法。
【0047】
具体的な実施形態が本明細書に記載されたが、本開示の範囲はそれらの具体的な実施形態よって限定されるものでない。本開示の範囲は、下記の特許請求の範囲及びその均等物によって規定されるものである。