【実施例1】
【0017】
図1は、実施例1に係る対象物検出装置のラインセンサ1、スリット2及び監視対象空間3からラインセンサ1に入射する光の関係を示している。
ラインセンサ1は、長さ28.5mmで長手方向に2068個の受光素子が並んでおり、ほぼ水平に設置される。
スリット2は、幅40mm、高さ25mm、厚さ1mmの平板の中央に側辺と平行に長さ11mm、幅1mmの細長い孔を開けて形成されており、ラインセンサ1の長手方向に延びる直線4を含み監視対象空間3に向かって水平に延びる延長平面5と垂直に交差している。すなわち、スリット2は鉛直方向に配置されている。
また、延長平面5とスリット2はスリット2の中央で交差している。
【0018】
そして、
図1に示すように監視対象空間3の背面が平面の壁6であると仮定した場合、ラインセンサ1で輝度を計測できる監視対象空間3は、ラインセンサ1の左端とスリット2の下端を通る直線が壁6と交差する点R1、ラインセンサ1の右端とスリット2の下端を通る直線が壁6と交差する点L1、ラインセンサ1の左端とスリット2の上端を通る直線が壁6と交差する点R3、ラインセンサ1の右端とスリット2の上端を通る直線が壁6と交差する点L3、スリット2の下端及びスリット2の上端の6点で囲まれる空間となる。
【0019】
監視対象空間3の壁6の幅X及び高さYは、
図2に示すようにラインセンサ1の長さをx、スリット2の長さをy、ラインセンサ1とスリット2の距離をd、スリット2と壁6の距離をDとし、スリット2の幅sを無視した場合、次の式で表される。
X=x×D/d
Y=y×D/d
【0020】
なお、検知できる幅Xはスリット2の幅s及び平板の厚さtにも関係し、検知できる角度をθ(deg)とすると、θ及びXは次の式で求められる。
θ=arctan{d/(x/2+s/2)}
ただし、下限はarctan(t/s)
X=2×D×tan(90°−θ)
ここで、実施例1においては、d=15.47mm、t=1mm、x=28.5mmであるので、これらの値を上記の式に代入するとともにs=0とすると、θ=47°となる。
そして、arctan(1/s)が47°となるsは0.92mmと計算されるので、sが0.92mm以上あれば、検知角度θが下限にかかることはない。そのため、実施例1においてはスリット幅を1mmとしてある。
【0021】
監視対象空間3に対象物が無い場合に、ラインセンサ1の左端にある受光素子S1に入射する光強度は、
図1に示すように、R1からR2を通ってR3に至る線上の壁で反射される光の強度の和となり、ラインセンサ1の中央にある受光素子S2に入射する光強度は、同じく
図1のC1からC2を通ってC3に至る線上の壁で反射される光の強度の和となり、ラインセンサ1の右端にある受光素子S3に入射する光強度は、同じく
図1のL1からL2を通ってL3に至る線上の壁で反射される光の強度の和となる。
【0022】
図3は、監視対象空間3に対象物が無い場合において、各受光素子で発生する電荷量に対応するADU値のグラフである。横軸は受光素子が左側から何番目かを示し、縦軸の単位はADUである。
受光素子で発生する電荷量は入射する光の強度によって変化するので、
図3は各受光素子によって検知される光強度を示すグラフということができる。
【0023】
図4は、監視対象空間3の右側に対象物が存在している場合における
図3と同様のグラフである。
通常、対象物は壁より反射率が低いので、
図1から分かるように、監視対象空間3の右側に対象物が存在している場合、その対象物の存在している位置に対応するラインセンサ1の左側にある受光素子によって検知される光強度が下がることとなる。
そのため、グラフの左側の一部において点線で示す
図3のグラフよりADU値が下がっている。
【0024】
図5は、監視対象空間3の中央に対象物が存在している場合における
図3と同様のグラフである。
この場合、グラフの中央において点線で示す
図3のグラフよりADU値が下がっている。
【0025】
図6は、監視対象空間3の左側に対象物が存在している場合における
図3と同様のグラフである。
この場合、グラフの右側の一部において点線で示す
図3のグラフよりADU値が下がっている。
【0026】
図4〜6においては、対象物が監視対象空間3の左右方向のどこに存在しているかによって、その位置に対応した部分のADU値が下がっているが、対象物が光を発している場合や、反射率の高いものである場合には、
図3のグラフよりADU値が上がる場合もある。
しかし、いずれにしても対象物が存在している場合には、
図3のグラフに対して何らかの変動が生じるので、
図3のグラフにおけるADU値(背景値)と実測されたADU値(実測値)との差分を検証すれば、対象物が監視対象空間3の左右方向のどこに存在しているかを判別することができる。
また、本実施例1では監視対象空間3の鉛直方向における光強度の和を各受光素子で検出するので、立っていた対象物が倒れたりして横になった場合、左右方向の限定された位置のADU値が非常に低い状態から、左右方向の対象物が倒れている位置のADU値が少し低い状態に変化することになる。そして、このようなADU値の変化を把握することによって、対象物が立った状態から横になった状態に変化したことを判別することもできる。
【0027】
以上の説明は、背景値と実測値との差分を検証する背景差分法についてのものであるが、背景値が変化しやすい環境である場合には、実測値を時系列的に記憶しておき、現在のADU値と直前に実測されたADU値とのフレーム間差分値を検証するフレーム間差分法を用いた方が、正確に対象物の動作状態を検知することができる。
【0028】
例えば、
図1の監視対象空間3を右側から左側に対象物が移動した場合、ADU値は
図4、
図5、
図6の順に変化するが、
図5を現在、
図4を直前として
図5のADU値と
図4のADU値との差分をとれば
図7に示すフレーム間差分値のグラフとなり、
図6を現在、
図5を直前として
図6のADU値と
図5のADU値との差分をとれば
図8に示すフレーム間差分値のグラフとなる。
この例では、フレーム間差分値がマイナスになっているところが対象物の直前の位置、プラスになっているところが対象物の現在の位置と対応している。
すなわち、
図7からは対象物が向かって右寄りの位置からほぼ中央に移動したことが分かり、
図8からは対象物がほぼ中央の位置から向かって左寄りの位置に移動したことが分かる。
【0029】
ただし、フレーム間差分法では対象物が静止していると、現在のADU値と直前に実測されたADU値との差分は0となるため、対象物の検知ができない。
そこで、そのような場合においては、背景差分法を用いて対象物の有無や位置の検証を行うように切り替える。
なお、フレーム間差分法によって対象物が静止する直前の位置を特定できる場合において、背景差分法による対象物の有無や位置の検証を行うように切り替えた時、その特定された位置以外で有意な背景差分値が生じていれば、そこは背景の輝度が変化している箇所と考えられるので、その箇所について
図3に示す監視対象空間3に対象物が無い場合におけるADU値を補正すると外乱光の影響を軽減できる。
【0030】
図9は、実施例1に係る対象物検出装置の全体構成を示す図である。
実施例1に係る対象物検出装置は、監視対象空間3からの光を絞り込むスリット2と、スリット2を通過した光の強度を検出するラインセンサ1と、ラインセンサ1の各受光素子における受光量に応じた光強度信号を受けて、監視対象空間3内における対象物の有無、位置及び動作状態を判別し、その報知を行うための情報を送信する判別手段7を備えている。
【0031】
判別手段7は、監視対象空間に対象物が無い場合においてラインセンサ1の各受光素子が検知した光強度信号(以下「背景値信号」という。)を記憶する背景値記憶手段8と、所定時間毎にラインセンサ1の各受光素子が検知した光強度信号(以下「実測値信号」という。)を受光素子毎の時系列データとして記憶する実測値記憶手段9と、受光素子毎の時系列データに基づいてフレーム間差分法により対象物の動作状態を判別するか、背景値信号と一時点における実測値信号に基づいて背景差分法により対象物の有無、位置及び動作状態を判別するかして、それらの判別結果に基づく報知情報を作成するCPU10と、CPU10からの報知情報に基づいて表示制御情報を表示手段12に送信する表示制御手段11を有している。
【0032】
表示手段12は、表示制御手段11からの表示制御情報を受信して、対象物の有無、位置及び動作状態についての情報を表示するものであって、対象物検出装置とともに設けても良いし、対象物検出装置から離れた位置に設けても良い。
表示装置12には、対象物の有無、位置及び動作状態を表示するが、その表示態様としては、(1)文字や記号による表示、(2)監視対象空間3を示すエリア表示を行うとともに、そのエリア表示内に対象物の有無や位置に応じた画像の表示を行うビジュアル表示、(3)光強度信号をグラフ化した表示等がある。
そして、これらの表示態様の中から利用者のニーズに合わせて1つ又は複数の表示を適宜選択して表示させれば良い。
【0033】
また、判別手段7は実測値記憶手段9を有しているので、判別装置7に対する指示入力手段を追加することにより、過去の指定した時間における対象物の有無、位置及び動作状態についての情報を表示手段12に表示させることもできる。
さらに、指定した時間から所定時間ずつ前又は後の時間における対象物の有無及び位置を、連続的に表示させることによって、対象物の動作状態を追跡することができる。
そうした場合、所定時間を長くとれば、長時間にわたる対象物の動作状態の追跡を短時間で行うことができ、逆に所定時間を短くとれば、特に注視したい時間における対象物の動作状態の詳細な追跡を行うことができる。
【実施例2】
【0034】
図10は実施例2に係る対象物検出装置のラインセンサ1a及び1b、スリット2a及び2b並びに監視対象空間3からラインセンサ1a及び1bに入射する光の関係を示している。
実施例2に係る対象物検出装置は、一次元輝度分布検知装置を上下に配置したものであり、上側の一次元輝度分布検知装置はラインセンサ1a及びスリット2aを有し、背景の輝度分布が変化しやすい空間に向けて配置され、下側の一次元輝度分布検知装置はラインセンサ1b及びスリット2bを有し、背景の輝度分布が変化しにくい空間に向けて配置されている。
そして、スリット2a及び2bは、監視対象空間3を適宜上下方向に分割し、ラインセンサ1a及び1bが所望の空間のみから光を受光できるようにするため、それぞれの長さ(上端及び/又は下端の高さ)を調節できるようになっている。
また、それぞれの一次元輝度分布検知装置は、上下に組み合わせられるようにするため、下縁面に溝条、上縁面に突条が形成されている。
なお、その他の構成は、
図1に示す実施例1に係る対象物検出装置と同様である。
【0035】
図11は、実施例2に係る対象物検出装置の全体構成を示す図である。
なお、スリットとラインセンサが2つある以外は、実施例1に係る対象物検出装置と同様の構成となっているので、スリットとラインセンサ以外については同じ番号を用いる。
そして、実施例2に係る対象物検出装置は、輝度分布が変化しやすい監視対象空間3からの光を絞り込むスリット2a、スリット2aを通過した光の強度を検出するラインセンサ1a、輝度分布が変化しにくい監視対象空間3からの光を絞り込むスリット2b、スリット2bを通過した光の強度を検出するラインセンサ1b、ラインセンサ1a及び1bの各受光素子における受光量に応じた光強度信号を受けて、監視対象空間3内における対象物の有無、位置及び動作状態を判別し、その報知を行うための情報を送信する判別手段7を備えている。
【0036】
判別手段7は、監視対象空間に対象物が無い場合においてラインセンサ1a及び1bの各受光素子が検知した光強度信号(背景値信号)を記憶する背景値記憶手段8と、所定時間毎にラインセンサ1a及び1bの各受光素子が検知した光強度信号(実測値信号)を受光素子毎の時系列データとして記憶する実測値記憶手段9と、受光素子毎の時系列データに基づいてフレーム間差分法により対象物の動作状態を判別するか、背景値信号と一時点における実測値信号に基づいて背景差分法により対象物の有無、位置及び動作状態を判別するかして、それらの判別結果に基づく報知情報を作成するCPU10と、CPU10からの報知情報に基づいて表示制御情報を表示手段12に送信する表示制御手段11を有している。
【0037】
そして、実施例2においては、上側の一次元輝度分布検知装置は背景の輝度分布が変化しやすい空間に向けて配置されているので、ラインセンサ1aが検知した光強度信号に基づく対象物の判別においては通常フレーム間差分法を用い、フレーム間差分法で対象物の動作状態が判別できない場合又はできなくなった場合に背景差分法に切り替えて対象物の有無、位置及び動作状態の判別を行う。
また、下側の一次元輝度分布検知装置は背景の輝度分布が変化しにくい空間に向けて配置されているので、ラインセンサ1bが検知した光強度信号に基づく対象物の判別においては背景差分法を用いて対象物の有無、位置及び動作状態の判別を行う。
なお、表示制御手段11、表示装置12及び表示装置12への表示態様等については、実施例1に係る対象物検出装置と同様である。
【0038】
実施例1及び2の対象物検出装置に関する変形例を列記する。
(1)実施例1及び2においては、スリット2(実施例2においてはスリット2a及び2b)を有する一次元輝度分布検知装置を用いたが、スリットに代えてロッドレンズとしても良く、使用環境に応じてスリットとロッドレンズを選択できるようにしても良い。
そして、スリットとロッドレンズを選択できるようにする場合、スリットの背面側にマウント部材を設け、ロッドレンズや可視光のみ又は赤外光のみを透過可能なカバー体を着脱可能に保持できるようにしても良く、また、スリットに隣接させてロッドレンズを設けるとともにどちらか一方を遮蔽できるようにしても良い。
【0039】
(2)実施例1及び2においては、ラインセンサ1(実施例2においてはラインセンサ1a及び1b)を水平方向に、スリット2(実施例2においてはスリット2a及び2b)を鉛直方向に配置しているが、利用環境(例えば対象物が上下に移動する場合)によっては、ラインセンサを鉛直方向、スリットを水平方向に配置しても良い。
(3)実施例1及び2においては、ラインセンサ1(実施例2においてはラインセンサ1a及び1b)及びスリット2(実施例2においてはスリット2a及び2b)を独立に配置しているが、両者を所定の位置関係が保たれるように支持する支持部材を設けても良い。
そうした場合、その支持部材を適宜の位置に配置することで、ラインセンサとスリットを容易に適正な位置関係に置くことができる。
特に、実施例2においては、ラインセンサ1a及び1bが所望の空間のみから光を受光できるようにするため、ラインセンサとスリットとの位置関係を調整できるようにする調整部材を設けるとより良い。
【0040】
(4)実施例1及び2の実測値記憶手段9は、所定時間毎にラインセンサ1(実施例2においてはラインセンサ1a及び1b)の各受光素子が検知した実測値信号を順次時系列データとして記憶しているが、少なくとも現時点及び現時点より所定時間前における実測値信号を受光素子毎に記憶できるものであれば良い。
また、時系列データが実測値記憶手段9の容量を超えた場合には、古いデータを削除したり一定時間以上経過した時系列データを間引いたりして新たなデータを記憶できるようにすれば良い。
(5)実施例1及び2においては、対象物の有無、位置及び動作状態を表示手段12で報知しているが、表示手段12に代えて又は追加してスピーカーを設けても良い。
そうした場合、表示による報知に代えて又は追加して、音による報知を行うことができる。
【0041】
(6)実施例2においては、監視対象空間3の上側に背景の輝度分布が変化しやすい空間があり、監視対象空間3の下側に背景の輝度分布が変化しにくい空間があるという想定で上下に2つの一次元輝度分布検知装置を配置し、ラインセンサ1aが検知した光強度信号に基づく対象物の判別においては通常フレーム間差分法を用い、ラインセンサ1bが検知した光強度信号に基づく対象物の判別においては背景差分法を用いたが、2つの一次元輝度分布検知装置の配置は、監視対象空間3の状況に応じて、左右に配置しても良く、交差する面の各々に対向させて配置しても良い。
また、3つ以上の一次元輝度分布検知装置を配置しても良い。
【0042】
(7)実施例2においては、一次元輝度分布検知装置のスリット2a及び2bの長さ(上端及び/又は下端の高さ)を調節できるようにしたが、長さは調整できなくても良い。
そして、スリット2a及び2bの長さが調整できない場合には、スリット2aとラインセンサ1a又はスリット2bとラインセンサ1bとの距離を調整して、監視対象空間3が適切に上下方向に分割されるようにすれば良い。
(8)実施例2の一次元輝度分布検知装置には、上下に組み合わせられるようにするため、下縁面に溝条、上縁面に突条を形成したが、溝条や突条は形成しなくても良く、溝条や突条に代えて他の接続手段を用いても良い。
また、他の接続手段を用いる場合には2つの一次元輝度分布検知装置の位置関係を適宜変更できるようにするとより良い。