特許第6892967号(P6892967)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ バーブ サージカル インコーポレイテッドの特許一覧

特許6892967ロボット手首を制御するためのシステム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6892967
(24)【登録日】2021年6月1日
(45)【発行日】2021年6月23日
(54)【発明の名称】ロボット手首を制御するためのシステム及び方法
(51)【国際特許分類】
   A61B 34/30 20160101AFI20210614BHJP
   B25J 9/16 20060101ALN20210614BHJP
【FI】
   A61B34/30
   !B25J9/16
【請求項の数】14
【全頁数】30
(21)【出願番号】特願2020-520781(P2020-520781)
(86)(22)【出願日】2018年5月18日
(65)【公表番号】特表2020-536685(P2020-536685A)
(43)【公表日】2020年12月17日
(86)【国際出願番号】US2018033478
(87)【国際公開番号】WO2019221754
(87)【国際公開日】20191121
【審査請求日】2020年4月13日
【早期審査対象出願】
(73)【特許権者】
【識別番号】516133124
【氏名又は名称】バーブ サージカル インコーポレイテッド
【氏名又は名称原語表記】Verb Surgical Inc.
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100107537
【弁理士】
【氏名又は名称】磯貝 克臣
(72)【発明者】
【氏名】ハリーリー アリレザ
(72)【発明者】
【氏名】ニア コサリ シナ
【審査官】 菊地 康彦
(56)【参考文献】
【文献】 米国特許出願公開第2008/0046122(US,A1)
【文献】 国際公開第2010/109932(WO,A1)
【文献】 特開2010−076012(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/30−34/37
B25J 3/00
(57)【特許請求の範囲】
【請求項1】
ロボット手術中にロボット手術ツールを制御する方法であって、
ロボット手術ツールの遠位エンドエフェクタであって、ロボット手首と、互いに対して回動するように前記ロボット手首に結合された2つの遠位エンドエフェクタ部材であって各遠位エンドエフェクタ部材は張力がかけられる時に力を与える一対の相反ケーブルを介してロボット的に操作される2つの遠位エンドエフェクタ部材と、を有する遠位エンドエフェクタの所望の状態のための入力を受信する工程と、
1または複数のプロセッサによって、前記所望の状態に基づいて、各対の相反ケーブルの変位を計算する工程と、
1または複数のプロセッサによって、前記計算された変位に基づいて、前記ロボット手首及び前記遠位エンドエフェクタ部材を駆動するための位置制御用の第1指令を生成する工程と、
1または複数のプロセッサによって、前記所望の状態が前記2つの遠位エンドエフェクタ部材間の所望の把持力を含むか否かを判別する工程と、
前記所望の状態が前記所望の把持力を含む時、1または複数のプロセッサによって、前記所望の把持力の判別に応じて、前記所望の把持力と前記2つの遠位エンドエフェクタ部材間の現在の把持力とに基づいて、前記一対の相反ケーブルの少なくとも1つに張力をかけるための把持力制御用の第2指令を生成する工程と、
1または複数のプロセッサによって、前記位置制御用の第1指令に、前記把持力制御用の第2指令を加えることによって、複合指令を生成する工程と、
1または複数のプロセッサによって、前記複合指令に基づいて前記所望の状態をもたらすべく前記遠位エンドエフェクタを駆動する工程と、
を備え、
前記2つの遠位エンドエフェクタ部材間の前記現在の把持力は、ロードセルまたはトルクセンサを用いての前記一対の相反ケーブルにおける現在の張力の測定に基づいて推定され、
前記複合指令は、前記遠位エンドエフェクタの様々な自由度のために同時の把持力制御及び位置制御を提供する
ことを特徴とする方法。
【請求項2】
前記所望の状態は、前記ロボット手首の所望のピッチ角、前記遠位エンドエフェクタの所望のヨー角、及び、前記遠位エンドエフェクタの前記2つの対向する部材間の所望の顎角、のうちの少なくとも1つを含む
ことを特徴とする請求項1に記載の方法。
【請求項3】
前記所望の状態が前記所望の顎角を含む時、前記所望の状態が所望の把持力を含むか否かを判別する工程は、前記所望の顎角を閾値と比較する工程を含む
ことを特徴とする請求項2に記載の方法。
【請求項4】
前記閾値は、物体を把持する時、または、何らの物体をも把持せずに互いに接触する時、の前記遠位エンドエフェクタの前記2つの対向する部材間の接触顎角である
ことを特徴とする請求項3に記載の方法。
【請求項5】
前記接触顎角は、前記2つの対向する遠位エンドエフェクタ部材間の前記現在の把持力の前記推定と、現在の顎角度の推定と、に基づいて決定される
ことを特徴とする請求項4に記載の方法。
【請求項6】
各対の相反ケーブルが、少なくとも1つのアクチュエータによって張力をかけられる
ことを特徴とする請求項1に記載の方法。
【請求項7】
前記変位を計算する工程は、更に、
前記少なくとも1つのアクチュエータの現在の位置及び/または速度、並びに、各対の相反ケーブルにおける現在の張力、を測定する工程と、
前記ロボット手首のピッチ角、前記遠位エンドエフェクタのヨー角、前記遠位エンドエフェクタの前記2つの対向する部材間の顎角、及び、前記測定に基づく現在の把持力、の少なくとも1つの現在の状態を推定する工程と、
を有することを特徴とする請求項6に記載の方法。
【請求項8】
前記複合指令は、前記少なくとも1つのアクチュエータを駆動する
を更に備えたことを特徴とする請求項6に記載の方法。
【請求項9】
各対の相反ケーブルにおける張力をモニタリングする工程と、
各対の相反ケーブルにおいて所定の最小張力を維持してケーブルの弛みを防止する工程と、
を更に備えたことを特徴とする請求項1に記載の方法。
【請求項10】
一対のアクチュエータと当該一対のアクチュエータによって張力がかけられる時に力を与える一対の相反ケーブルとによって各々が操作される2つの対向する顎部を有するエンドエフェクタ、を先端に有するロボット手術ツールと、
前記ロボット手術ツールに結合された1または複数のプロセッサを有する制御部と、
を備え、
前記プロセッサは、
入力モジュールから、前記エンドエフェクタの所望の状態をもたらす入力であって、前記エンドエフェクタのピッチ角及びヨー角並びに前記2つの顎部間の顎角を含む入力を受容し、
前記一対のアクチュエータの位置、及び、前記一対の相反ケーブルにおける張力、を測定し、
前記ピッチ角及び前記ヨー角に基づいて前記エンドエフェクタの所望の位置を決定し、並びに、前記顎角に基づいて前記2つの顎部間の所望の把持力を決定し、
前記所望の位置と前記測定された位置及び張力とに基づいて、前記一対のアクチュエータの各々のための第1駆動指令を生成し、
前記一対の相反ケーブルにおける前記測定された張力に基づいて、前記2つの対向する顎部間の現在の把持力を推定し、
前記所望の把持力と前記推定された現在の把持力との間の差に基づいて、前記一対のアクチュエータの各々のための第2駆動指令を生成し、
前記第1駆動指令及び前記第2駆動指令の和に基づく複合駆動指令を用いて、前記所望の位置及び前記所望の把持力をもたらすべく前記一対のアクチュエータを駆動する
ように構成されている
ことを特徴とする手術ロボットシステム。
【請求項11】
2つの把持部材を有する手術ツールの遠位エンドエフェクタと、
前記遠位エンドエフェクタの前記2つの把持部材間の入力顎角を受容するための入力部と、
1または複数のプロセッサと、
を備えたロボット手術ツール制御システムであって、
各把持部材は、個々に張力がかけられる時に当該各把持部材の反対向きの回動をもたらす一対の相反ケーブルを介してロボット的に操作され、
前記1または複数のプロセッサは、
当該手術ツールを駆動するための位置制御用の第1指令を生成し、
前記受容された入力顎角が前記2つの把持部材間の所望の把持力を示すか否かを判別し、
前記所望の状態が前記所望の把持力を含む時、前記所望の把持力の判別に応じて、前記所望の把持力と推定される現在の把持力との間の差に基づいて、各把持部材のために前記一対の相反ケーブルの少なくとも1つに張力をかけるための把持力制御用の第2指令を生成し、
前記位置制御用の第1指令に、前記把持力制御用の第2指令を加えることによって、複合指令を生成し、
前記所望の把持力をもたらすべく前記生成された複合指令に基づいて前記一対の相反ケーブルの前記少なくとも1つに張力をかける
ように構成されており、
前記現在の把持力は、ロードセルまたはトルクセンサを用いての前記一対の相反ケーブルにおける現在の張力の測定に基づいて推定され、
前記生成された複合指令は、前記遠位エンドエフェクタの様々な自由度のために同時の把持力制御及び位置制御を提供する
ことを特徴とするシステム。
【請求項12】
前記入力は、前記入力顎角が閾値よりも小さい時に所望の把持力を示し、
前記閾値は、前記遠位エンドエフェクタが物体を把持している時の前記2つの把持部材間の接触顎角、または、前記遠位エンドエフェクタが物体を把持してない時の零度、である
ことを特徴とする請求項11に記載のシステム。
【請求項13】
前記接触顎角は、前記2つの把持部材間の前記現在の把持力の前記推定と、現在の顎角度の推定と、に基づいて決定される
ことを特徴とする請求項12に記載のシステム。
【請求項14】
前記プロセッサは、更に、
前記受容された前記入力顎角が所望の顎角を示すことを判別することに応答して、前記遠位エンドエフェクタの各把持部材のための前記一対の相反ケーブルの変位を決定し、
前記決定された変位に基づいて前記所望の顎角をもたらすべく前記一対の相反ケーブルを介して前記遠位エンドエフェクタを駆動する
ことを特徴とする請求項11に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、ロボティクス及び制御システムに関し、より具体的には、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するためのシステム及び方法に関する。
【背景技術】
【0002】
腹腔鏡手術などの低侵襲手術(MIS)は、外科手術中の組織損傷を減らすことを意図した技術を含んでいる。例えば、腹腔鏡手術は、典型的には、患者(例えば、腹部)に幾つかの小さな切開を作成する工程と、当該切開を通して前記患者に1または複数の手術ツール(例えば、エンドエフェクタや内視鏡)を導入する工程と、を備えている。次いで、内視鏡によって提供される視覚補助とともに、導入された手術ツールを使用して、外科手術が実行され得る。
【0003】
一般に、MISは、患者の瘢痕の低減、患者の痛みの軽減、患者の回復期間の短縮、患者の回復に伴う医療費の削減など、複数の利点を提供する。最近の技術開発により、リモートオペレータからの指令(コマンド)に基づいて手術ツールを操作するための1または複数のロボットアームを含むロボットシステムで、より多くのMISが実行され得る。ロボットアームは、例えば、その遠位端で、手術用エンドエフェクタ、撮像装置、患者の体腔や臓器等へのアクセスを提供するためのカニューレ、等といった様々なデバイスを支持し得る。ロボットMISシステムでは、ロボットアームによって支持された手術ツールの高い位置決め精度を確立及び維持することが望ましい。
【0004】
ロボットアーム用に支持される新しいクラスの手術器具は、同様の設計を共有し得て、例えば、ツールは、ロボット手首と1または複数の顎部とを有するエンドエフェクタと、当該エンドエフェクタをツール駆動部内のアクチュエータに結合するためのプーリ及びケーブルシステムと、を備え得て、当該ツール駆動部は、エンドエフェクタの多軸運動(例えば、ピッチ及びヨー)を駆動可能である。エンドエフェクタは、手術タスクの中でも特に、把持、切断、縫合、を実行するために相反ケーブルを介して作動される複数の顎部を含み得る。ロボット手首を任意の角度位置に高精度に動かしながら顎部間の把持力を制御する能力は、ロボット手術器具の使いやすさの基本的な要件である。現在のところ、4線式の相反ロボット手首に関して、これを達成できる既知の方法はない。
【発明の概要】
【0005】
全体的に、幾つかの例において、遠位端にエンドエフェクタを有するロボット手術ツールを、ロボット手術中に制御するためのシステム及び方法である。エンドエフェクタは、ロボット手首と、互いに対して回動するように前記ロボット手首に結合された2つの部材であって各部材は張力がかけられる時に力を与える一対の相反ケーブルを介してロボット的に操作される2つの部材と、を有し得る。当該システムは、エンドエフェクタの所望の状態のための入力を受信し、前記所望の状態に基づいて、エンドエフェクタの各部材のための前記一対の相反ケーブルの変位を計算する。当該システムは、次いで、前記計算された変位に基づいて、前記ロボット手首及び前記エンドエフェクタ部材を駆動するための第1指令を生成する。当該システムは、次いで、前記所望の状態が前記2つのエンドエフェクタ部材間の所望の把持力を含むか否かを判別する。当該システムは、前記所望の把持力の判別に応じて、前記所望の把持力と前記2つのエンドエフェクタ部材間の現在の把持力とに基づいて、エンドエフェクタの部材のために前記一対の相反ケーブルの少なくとも1つに張力をかけるための第2指令を生成する。当該システムは、前記第1指令及び/または前記第2指令に基づいて前記所望の状態をもたらすべく前記エンドエフェクタを駆動する。
【0006】
幾つかの例において、前記所望の状態は、前記ロボット手首の所望のピッチ角、前記エンドエフェクタの所望のヨー角、及び、前記エンドエフェクタの前記2つの対向する部材間の所望の顎角、のうちの少なくとも1つを含み、前記所望の状態が所望の把持力を含むか否かを判別する工程は、前記所望の顎角を閾値と比較する工程を含む。前記閾値は、物体を把持する時、または、何らの物体をも把持せずに互いに接触する時、の前記エンドエフェクタの前記2つの対向する部材間の接触顎角であり、前記接触顎角は、前記2つの対向する部材間の現在の把持力の推定、及び、現在の顎角度の推定、に基づいて決定される。前記2つのエンドエフェクタ部材間の前記現在の把持力は、前記一対の相反ケーブルにおける現在の張力の測定に基づいて推定される。
【0007】
幾つかの例において、前記一対の相反ケーブルの各々が、少なくとも1つのアクチュエータによって張力をかけられ、前記変位を計算する工程は、更に、前記少なくとも1つのアクチュエータの現在の位置及び/または速度、並びに、前記一対の相反ケーブルにおける現在の張力、を測定する工程と、前記ロボット手首のピッチ角、前記エンドエフェクタのヨー角、前記エンドエフェクタの前記2つの対向する部材間の顎角、及び、前記測定に基づく現在の把持力、の少なくとも1つの現在の状態を推定する工程と、を有する。当該システムは、更に、前記少なくとも1つのアクチュエータを駆動するために、前記第1指令及び前記第2指令に基づいて複合指令を生成する工程を備え得る。当該システムは、また、前記一対の相反ケーブルにおける張力をモニタリングし得て、前記一対の相反ケーブルの各々において所定の最小張力を維持してケーブルの弛みを防止し得る。
【0008】
全体的に、幾つかの例において、手術ロボットシステムが、遠位端にエンドエフェクタを有するロボット手術ツールを備えている。当該エンドエフェクタは、2つの対向する顎部を有し、その各々が、アクチュエータによって張力をかけられる時に力を与える一対の相反ケーブルを介して、少なくとも1つのアクチュエータによって操作される。当該システムは、また、ロボット手術ツールに結合された1または複数のプロセッサを有する制御部を備える。当該システムは、入力モジュールから、エンドエフェクタの所望の状態をもたらす指令を受容する。ツールの所望の状態は、エンドエフェクタのピッチ角及びヨー角並びに前記2つの顎部間の顎角の少なくとも1つを含み得る。当該システムは、次いで、前記ビッチ角及び前記ヨー角に基づいて前記エンドエフェクタの所望の位置を決定し、並びに、前記顎角に基づいて前記2つの顎部間の所望の把持力を決定する。前記所望の位置及び前記所望の把持力に基づいて、エンドエフェクタの所望の状態をもたらすべく、制御部が前記少なくとも1つのアクチュエータを駆動する。
【0009】
全体的に、幾つかの例において、例示的なロボット手術ツール制御システムは、2つの把持部材を有するエンドエフェクタを有する手術ツールを備える。各把持部材は、個々に張力がかけられる時に当該各把持部材の反対向きの回動をもたらす一対の相反ケーブルを介してロボット的に操作される。当該ツール制御システムは、また、1または複数のプロセッサと、当該プロセッサに結合された入力部と、を備える。当該システムは、エンドエフェクタの2つの把持部材間の入力顎角を受容する。当該システムは、次いで、受容された入力顎角が2つの把持部材間の所望の把持力を示すか否かを判別する。当該システムは、入力顎角が所望の把持力を示すという判別に応じて、前記所望の把持力と推定される現在の把持力との間の差に基づいて、各把持部材のために前記一対の相反ケーブルの少なくとも1つに張力をかけるための指令を生成する。前記一対の相反ケーブルの少なくとも1つが、前記所望の把持力をもたらすべく、張力をかけられ得る。さもなければ、受容された入力が所望の顎角を示すと判別される場合、当該システムは、エンドエフェクタの各把持部材のための前記一対の相反ケーブルの変位を決定し、前記決定された変位に基づいて前記所望の顎角をもたらすべく前記一対の相反ケーブルを介してエンドエフェクタを駆動する。
【0010】
ロボット手術ツールの位置及び把持力を制御するためのシステム及び方法の他の変形例が、本明細書において説明される。
【図面の簡単な説明】
【0011】
図1図1は、本技術の特徴に従う、手術用ロボットシステムを備えた例示的な手術室環境を示す図である。
【0012】
図2図2は、本技術の特徴に従う、ロボットアーム、ツール駆動部、及び、ロボット手術ツールが装填されたカニューレ、の1つの例示的な設計を示す概略図である。
【0013】
図3A図3A及び図3Bは、それぞれ、本技術の特徴に従う、隣接する装填されたツールを伴う場合及び伴わない場合の、例示的なツール駆動部を示す概略図である。
図3B図3A及び図3Bは、それぞれ、本技術の特徴に従う、隣接する装填されたツールを伴う場合及び伴わない場合の、例示的なツール駆動部を示す概略図である。
【0014】
図4A図4A及び図4Bは、本技術の特徴に従う、ロボット手首、一対の対向する顎部、並びに、ロボット手首及び一対の顎部をツール駆動部のアクチュエータに結合するためのプーリ及びケーブルシステム、を有する例示的な把持具のエンドエフェクタを示す概略図である。
図4B図4A及び図4Bは、本技術の特徴に従う、ロボット手首、一対の対向する顎部、並びに、ロボット手首及び一対の顎部をツール駆動部のアクチュエータに結合するためのプーリ及びケーブルシステム、を有する例示的な把持具のエンドエフェクタを示す概略図である。
【0015】
図5A図5A及び図5Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システムを示すブロック図である。
図5B図5A及び図5Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システムを示すブロック図である。
【0016】
図6図6は、本技術の特徴に従う、ロボット手術ツール制御システムの例示的な入力処理モジュールを示すブロック図である。
【0017】
図7図7は、本技術の特徴に従う、ロボット手術ツール制御システムの例示的な把持制御モジュールを示すブロック図である。
【0018】
図8A図8A及び図8Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システムを示す詳細なブロック図である。
図8B図8A及び図8Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システムを示す詳細なブロック図である。
【0019】
図9】本技術の特徴に従う、2つの対向する部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための例示的なプロセスを示すフローチャートである。
【0020】
図10】本技術の特徴に従う、2つの対向する部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための別の例示的なプロセスを示すフローチャートである。
【0021】
図11】本技術の特徴に従う、2つの対向する部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための更に別の例示的なプロセスを示すフローチャートである。
【発明を実施するための形態】
【0022】
本発明の様々な特徴の実施例及び変形例が、本明細書に記載され、添付の図面に示されている。以下の説明は、本発明をこれらの実施形態に限定することを意図するものではなく、当業者が本発明を作成して使用することを可能にすることを意図している。
【0023】
手術用ロボットアームのエンドエフェクタの角度位置及び把持力を制御するためのシステム及び方法が開示される。ロボット手首及び1または複数の顎部(ジョー)を含むエンドエフェクタが、金属ケーブルまたはワイヤを介してアクチュエータに結合され得る。ワイヤは、例えば、ワイヤ対の一方のワイヤを引っ張るとワイヤ対の他方のワイヤに反対向きの力が生じる、というワイヤ対で機能し得る。従って、ロボット手首は、相反ロボット手首であり得る。制御アルゴリズムは、アクチュエータからの位置及び速度のフィードバック、並びに、4本のワイヤ上のロードセルからの力のフィードバック、を使用し得る。アクチュエータコントローラは、位置と電流のフィードフォワードモードで実行し得る。フィードフォワード電流は、把持力制御部によって提供され得る。把持力制御部は、4本のワイヤの力を利用して把持力を判別し、モータへの追加電流を調整して所望の把持力を達成することができる。適用される手術用ロボット器具は、とりわけ、把持具、鉗子、はさみ、針ドライバ、リトラクタ、ペンチ、及び、焼灼器、を含む。
【0024】
図1は、本技術の特徴に従う、手術用ロボットシステム100を備えた例示的な手術室環境を示す図である。図1に示すように、手術用ロボットシステム100は、外科医コンソール120、制御タワー130、及び、手術用ロボットプラットフォーム110(例えば、テーブルまたはベッド等)に位置する1または複数の手術用ロボットアーム112、を含む。エンドエフェクタを有する手術用ツールが、手術処置を実行するために、ロボットアーム112の遠位端に取り付けられている。ロボットアーム112は、テーブルに取り付けられたシステムとして示されているが、他の形態では、ロボットアームは、カート、天井または側壁、または他の好適な支持面、に取り付けられ得る。
【0025】
一般に、外科医または他のオペレータなどのユーザは、ユーザコンソール120を使用して、ロボットアーム112及び/または手術器具を遠隔操作することができる(例えばテレオペレーション)。図1に示すように、ユーザコンソール120は、ロボットシステム100と同じ手術室に配置され得る。他の環境では、ユーザコンソール120は、隣接する部屋または近くの部屋に配置され得るか、あるいは、異なる建物、都市、または国の遠隔地から遠隔操作され得る。ユーザコンソール120は、座席122、足で操作される制御部124、1または複数の手持ち式ユーザインタフェース装置126、及び、例えば患者の体内の手術部位のビューを表示するように構成された少なくとも1つのユーザディスプレイ128、を含み得る。例示的なユーザコンソール120に示されるように、座席122に座ってユーザディスプレイ128を見る外科医が、足で操作される制御部124及び/または手持ち式ユーザインタフェース装置126を操作して、ロボットアーム112及び/または当該アームの遠位端に取り付けられた手術器具を遠隔制御することができる。
【0026】
幾つかの変形例では、ユーザが手術ロボットシステム100を「ベッド上方」(OTB)モードで操作することもでき、当該モードでは、ユーザは患者側におり、ロボット駆動ツール/それに取り付けられたエンドエフェクタ(例えば、片手に保持された手持ち式のユーザインタフェース装置126を用いて)と、手動の腹腔鏡ツールと、を同時に操作する。例えば、ユーザの左手が、手持ち式のユーザインタフェース装置126を操作してロボット手術コンポーネントを制御し得て、一方、ユーザの右手が、手動の腹腔鏡ツールを操作し得る。従って、これらの変形例において、ユーザは、患者に、ロボット支援MISと手動腹腔鏡手術との両方を実行し得る。
【0027】
例示的な処置または手術中、患者は、無菌状態に準備されてドレープで覆われ、麻酔をかけられる。手術部位への初期アクセスは、当該手術部位へのアクセスを容易にするために、収納形態または撤回形態のロボットシステム100を用いて手動で実行され得る。アクセスが完了すると、ロボットシステムの初期の位置決め及び/または準備が実行され得る。当該処置中、ユーザコンソール120内の外科医が、足で操作される制御部124及び/またはユーザインタフェース装置122を利用して、様々なエンドエフェクタ及び/または撮像システムを操作して手術を実行し得る。手術テーブルにおいて、滅菌ガウンを装着した担当者によって、手技支援も提供され得る。当該担当者は、組織の引き込み、1または複数のロボットアーム112に関する手動での再配置またはツール交換、を含むがこれらに限定されないタスクを実施し得る。ユーザコンソール120で外科医を支援するために、滅菌されていない担当者が存在する場合もあり得る。処置ないし手術が完了すると、ロボットシステム100及び/またはユーザコンソール120は、ロボットシステム100の洗浄及び/または滅菌、並びに/または、電子的でもハードコピーでも例えばユーザコンソール120を介したヘルスケア記録の入力または印刷、を含むがこれらに限定されない、1または複数の術後手順を容易にする状態に構成または設定され得る。
【0028】
一部の態様では、ロボットプラットフォーム110とユーザコンソール120との間の通信は、制御タワー(管制塔)130を介してなされ得る。制御タワー130は、ユーザコンソール120からのユーザコマンドをロボット制御コマンドに変換し得て、ロボットプラットフォーム110に送信し得る。制御タワー130は、また、ロボットプラットフォーム110からの状態及びフィードバックをユーザコンソール120に送り返し得る。ロボットプラットフォーム110、ユーザコンソール120、及び管制塔130間の接続は、有線及び/または無線の接続を介してなされ得て、専有的であり得て、及び/または、様々なデータ通信プロトコルのいずれかを使用して実行され得る。手術室の床及び/または壁または天井に、選択的に、任意の有線接続が組み込まれ得る。手術用ロボットシステム100は、手術室内のディスプレイ並びにインターネットや他のネットワークを介してアクセス可能なリモートディスプレイを含む、1または複数のディスプレイにビデオ出力を提供し得る。ビデオ出力またはフィードは、また、プライバシーを保証するべく暗号化され得て、ビデオ出力の全てまたは一部は、サーバまたは電子医療記録システムに保存され得る。
【0029】
図2は、本技術の特徴に従う、ロボットアーム、ツール駆動部、及び、ロボット手術ツールが装填されたカニューレ、の1つの例示的な設計を示す概略図である。図2に示すように、例示的な手術用ロボットアーム112は、複数のリンク(例えば、リンク202)と、当該複数のリンクを互いに対して作動させるための複数の作動関節モジュール(例えば、関節204)と、を含み得る。関節モジュールは、ピッチジョイントまたはロールジョイントなど、様々なタイプを含み得て、これらは、特定の軸回りの他のリンクに対する隣接リンクの動きを実質的に制限し得る。図2の例示的な設計には、ロボットアーム112の遠位端に取り付けられたツール駆動部210も図示されている。ツール駆動部210は、手術器具220(例えば、内視鏡、ステープラ等)を受け入れて案内するために、その端部に結合されたカニューレ214を含み得る。手術器具(または「ツール」)220は、当該ツールの遠位端にエンドエフェクタ222を含み得る。ロボットアーム112の複数の関節モジュールは、ツール駆動部210を位置決め及び方向付けるために作動され得る。ツール駆動部210は、ロボット手術のためにエンドエフェクタ222を作動させる。
【0030】
(ツール駆動部とツール)
図3A及び図3Bは、それぞれ、本技術の特徴に従う、隣接する装填されたツールを伴う場合及び伴わない場合の、例示的なツール駆動部を示す概略図である。図3A及び図3Bに示すように、一変形例では、ツール駆動部210は、長手方向軌道312を有する細長ベース(または「ステージ」)310と、長手方向軌道312に摺動可能に係合されるツールキャリッジ320と、を含み得る。ステージ310は、ロボットアームの遠位端に連結して、ロボットアームの関節が空間内においてツール駆動部210を位置決め及び/または方向付けるように構成され得る。更に、ツールキャリッジ320は、ツール220のツールベース352を受け入れるように構成され得て、ツールベース352は、当該ツールベース352からカニューレ214を通って延び、エンドエフェクタ222(図示せず)が遠位端に配置されたツールシャフト354を含み得る。
【0031】
また、ツールキャリッジ320は、例えば作動される駆動部によって操作及び制御されるケーブルシステムまたはワイヤを介して、エンドエフェクタの関節運動のセットを作動し得る(「ケーブル」及び「ワイヤ」という用語は、本願全体で交換可能に使用される)。ツールキャリッジ320は、作動される駆動部の様々な形態を含み得る。例えば、回転軸駆動部は、中空ロータと、少なくとも部分的に中空ロータ内に配置された遊星歯車ギヤと、を備えたモータを含み得る。複数の回転軸駆動部が、任意の好適な態様で配置され得る。例えば、ツールキャリッジ320は、キャリッジの幅を縮小してツール駆動部のコンパクト性を高めるためにわずかに互い違いに配置された、ベースに沿って縦方向に延びる2列配置の6つの回転駆動部322A〜322Fを含み得る。図3Bに示すように、回転駆動部322A、322B、及び322Cは、全体に第1列に配置され、回転駆動部322D、322E、及び322Fは、全体に第1列からわずかに長手方向にオフセットされた第2列に配置される。
【0032】
図4A及び図4Bは、本技術の特徴に従う、ロボット手首、一対の対向する顎部、並びに、ロボット手首及び一対の顎部をツール駆動部のアクチュエータに結合するためのプーリ及びケーブルシステム、を有する例示的な把持具のエンドエフェクタを示す概略図である。以下のツールモデルとコントローラの設計は、例示的な手術ロボット把持具を参照して説明されるが、位置と把持力との制御用に提案される制御システムは、ロボット手首を介してツールシャフトに結合されたエンドエフェクタを含む任意のツールに適用され得る。それは、エンドエフェクタの多軸運動(例えば、ピッチ及びヨー)を許容する。同様のツールは、把持具(グラスパー)、把持器(グリッパー)、鉗子、針ドライバ、リトラクタ、焼灼器、を含むが、これらに限定されない。
【0033】
図4Aに示されるように、一対の対向する顎部401A及び401Bは、第1軸410に沿った延長車軸412を介してロボット手首の第1ヨーク402に移動可能に連結されている。第1ヨーク402は、第2軸420に沿った第2延長車軸422を介してロボット手首の第2ヨーク403に移動可能に連結され得る。一対の顎部401A及び401Bは、各々、延長車軸412を介して、プーリ415A及び415Bとそれぞれ結合または一体的に形成され得て、両方の顎部は軸410回りを回転できる。プーリ425A、425B、425C、及び425Dは、延長車軸422に連結され、軸420回りを回転する。プーリ425A、425B、425C、及び425Dは、ヨーク402の一方側の第1セットのプーリ425B及び425C、及び、ヨーク402の他方側の第2セットのプーリ425A及び425D、に配置されている。プーリ425A及び425Cは、外側プーリであり、プーリ425B及び425Dは、内側プーリである。同様に、第3セットのプーリ435A、435B、435C、及び435Dが、第3延長車軸432に連結され、軸420に平行な軸430回りを回転する。
【0034】
把持具220は、軸410回りで様々な態様で顎部401A及び401Bの一方または両方を動かすように作動され得る。例えば、顎部401A及び401Bは、互いに対して開閉可能であり得る。顎部401A及び401Bはまた、把持具220のヨー運動を提供するために、一対として一緒に回転するように作動され得る。また、第1ヨーク402、プーリ415A及び415B、並びに、顎部401A及び401Bは、軸420回りに回転し得て、把持具220のピッチ運動を提供することができる。ロボット手首及び/またはツール顎部のこれらの動きは、4本の独立したケーブル405A〜405Dを制御することにより実現され得る。図4Aに示されるように、ケーブル405Aは、プーリ415Aの一方側から開始し得て(または終端し)、プーリ425A及び435Aに沿って延び、ケーブル405Bは、プーリ415Aの他方側で終端し、プーリ425B及び435Bを介して延びるように構成されている。同様に、別の対のケーブル405C及び405Dが、顎部401Bに結合され得る。例えば、ケーブル405Cは、プーリ415Bの一方側からプーリ425C及び435Cまで延び、ケーブル405Dは、プーリ425D及び435Dを経由して、プーリ415Bの反対側で終端する。第3セットのプーリ435A、435B、435C及び435Dは、ケーブル405A〜405Dを第2セットのプーリ425A〜425Dに固定し続け、ケーブルがプーリ425A〜425Dに対して滑ったり摺動したりしないように、配置されている。
【0035】
4本の独立したケーブルを介して把持具220の動作を制御することには、幾つかの利点がある。1つの利点は、6本のケーブル(または6本のケーブル端を有する3本のケーブルループ)を使用する典型的な市販の設計と比較して、ツールベース352からロボット手首まで延びるケーブルの数の低減であり得る。ケーブルの数が少ないと、ツールサイズを低減でき、手首アセンブリの複雑さを軽減できる。これは、最小侵襲の外科手術、あるいは、非外科的な用途にも、利益をもたらし得る。更に、2つまたは3つのケーブルループの代わりに4つの独立したケーブルを配置することで、ケーブルに事前に張力をかける必要無しで各ケーブルの張力を独立して制御できるだけでなく、手首の関節の可変のコンプライアンス及び外部負荷に対する感度の向上が可能になる。更に、各ケーブルの張力を個別に再調整できるため、ツールの性能が更に向上する。
【0036】
図4A及び図4Bに示されるように、把持具220は、プーリ415A、415B、425A、425B、425C、及び425Dの1または複数に動きを与え、それによって第1ヨーク402及び/または顎部401A、401Bの一方または両方に動きを与えることによって、把持(例えば、顎部は軸410回りに独立に回転する)、ヨー(例えば、顎部は軸410回りに一緒に回転する)、ピッチ(例えば、顎部は軸420回りに回転する)などの様々な態様で、顎部401A及び401Bを動かすように作動され得る。ケーブル405A〜405Dは、2つの相反(拮抗)ペアにグループ化され得る。すなわち、相反ペアの一方のケーブルが作動ないし張力をかけられ、他方のケーブルが緩められる時、顎部が一方向に回転する。他方のケーブルのみに張力がかかっている場合、顎部は反対方向に回転する。
【0037】
例えば、ケーブル405A及び405Bは、顎部401Aを動かすための第1相反対であり、ケーブル405C及び405Dは、顎部401Bを制御するための第2相反対である。ケーブル405Bが緩められている間にケーブル405Aに(例えば、回転駆動部322a〜322fの少なくとも1つによって)張力がかけられると、顎部401Aは閉じる(反対側の顎部401Bに向かって移動する)。他方、ケーブル405Bに張力がかけられて、ケーブル405Aが緩められると、顎部401Aが開く(反対側の顎部401Bから離れる)。同様に、張力がかけられて他方のケーブルが緩められている時、ケーブル405Cは顎部401Bを閉じ(反対側の顎部401Aに向かって移動する)、ケーブル405Dは顎部401Bを開く(反対側の顎部401Aから離れる)。別の例として、顎部が閉じられた後(互いに接触する)、(ケーブル405Bとケーブル405Dが緩められている間に)、ケーブル405Aとケーブル405Cの両方に張力をかけ続けることにより、顎部401Aと顎部401Bとの間の把持力が達成され得る。
【0038】
相反ペアの両方のケーブルが同時に張力をかけられ、他のペアの両方のケーブルが緩められている場合、プーリ415Aまたはプーリ415Bは回転しない。代わりに、第1ヨーク402が、顎部401A及び401Bと共に、プーリ415A及び415Bによって力を付与されて、軸420回りにピッチング移動する。例えば、一対のケーブル405A及び405Bが両方とも同時に張力をかけられて、一対のケーブル405C及び405Dが緩められると、顎部が(ヨーク402と共に)紙面外へピッチング移動する。両方のケーブル405C及び405Dが同時に張力をかけられ、対405A及び405Bが緩められたままである時、顎部は紙面内へとピッチング移動する。
【0039】
図4Bは、本技術の特徴に従う、把持具220の様々な動きのための例示的な角度定義を示す概略図である。これらの角度は、軸410及び420、並びに、第1ヨーク402の軸452及び第2ヨーク403の軸453、を基準として定義されている。例えば、図4Bに示されるように、軸452と軸453との間の角度(θ1)は、軸420回りのヨーク402の回転角を表し得て、それは、把持具220のピッチ角度(θpitch)としても定義され得る(図4Aでは、顎部が基準位置にとどまっていてピッチ移動がないため、ヨーク402の軸452がヨーク403の軸453上に重なっている。)加えて、角度(θ2)及び(θ3)が、顎部401A及び401Bの各々と(原点としての)ヨーク402の軸452との間の角度を、それぞれ表し得る。軸452の側を区別するために、角度(θ2)及び(θ3)は異なる符号を取り得る。例えば、図4Bに示すように、角度(θ2)は負であり、角度(θ3)は正である。
【0040】
制御タスクを実行するために、関節角度のための一貫した座標フレームを定義することが、しばしば有益である。例えば、顎角(θjaw)を2つの顎部401A、401B間の角度として更に定義し得て、ヨー角度(θyaw)を軸452と顎角の二等分線との間の角度として更に定義し得る。従って、以下が成り立つ。
図4Bの角度と新たに定義された角度との間の変換は、以下の通りである。
【0041】
更に、プーリの幾何学的特性について、以下の命名が確立され得る。
a)r11は、ケーブル405A及び405Cがそれぞれ載っている外側プーリ425A及び425Cの半径である。
b)r12は、ケーブル405B及び405Dがそれぞれ載っている内側プーリ425B及び425Dの半径である(r11は、r12に等しくてもよいし、等しくなくてもよい)。
c)r21は、ケーブル405Aが載っている側のプーリ415Aの半径である(図4Aに示されるプーリ415A及び車軸412の中心に対して)。
d)r22は、ケーブル405Bが載っている側のプーリ415Aの半径である(図4Aに示されるプーリ415A及び車軸412の中心に対して)。
e)r31は、ケーブル405Cが載っている側のプーリ415Bの半径である。
f)r32は、ケーブル405Dが載っている側のプーリ415Bの半径である。
前記の例示的な対称設計では、r31=r21、r32=r22、r21≠r22図4Aに示される)であるが、他の幾つかの設計では、r31=r21=r32=r22であって、r11=r12であり得る。
【0042】
ケーブルの張力(ξ[4×1])を関節トルク(τ[3×1])に関連付ける基本的な方程式は、以下で表される。
マトリックス(B)は、以下の形式を有する。
(ξ1,ξ2,ξ3,ξ4)は、それぞれ、ケーブル405A、405B、405C、及び405Dのケーブル張力に対応する。
【0043】
式(3)において、(τ[3×1])は、ケーブルによって加えられる仮想的な関節トルクのベクトルであり、関節が摩擦を克服して外力に逆らって動くことを引き起こし得るものである。ベクトル(τ[3×1])は、3つの成分を有する。
ここで、(τ1)は、ピッチ関節トルクであり、(τ2)及び(τ3)は、それぞれ顎部401A、401Bの関節トルクである。
【0044】
理想的なケーブルの変位(ケーブルの弾性はないと仮定)と顎角とに関連する運動学的関係は、以下の通りである。
ここで、(q[4×1])は、ケーブル405A〜405Dの理想的な変位を含む4要素ベクトルであり、(θ[3×1])は、図4Bに示された角度のベクトルである。
【0045】
ケーブルが弾性を有する実際のケースでは、実際のケーブル変位と理想的なケーブル変位とが、以下のように関係している。
ここで、keは、N/m単位でのケーブルの弾性定数である(全てのケーブルが類似していると仮定)。
【0046】
(制御システム設計)
以下に説明されるのは、ロボット手術器具の遠位のエンドエフェクタの角度位置と把持力とを制御する方法及びシステムである。エンドエフェクタは、ロボット手首及び一対の対向する部材(例えば、顎部または爪部)を含み得て、各々の部材は2つの相反(拮抗)ワイヤによって作動されて開位置と閉位置との間で移動可能である。合計4本のワイヤが、各々、図3及び図4に図示され対応する部分において説明されるように、独立したアクチュエータまたはモータによって駆動され得る。制御システムは、アクチュエータからの位置及び速度のフィードバック、並びに、4本のワイヤ上で測定された力のフィードバック、を含むフィードバックループを含み得て、所望の位置及び把持力をもたらし得る。幾つかの実装では、アクチュエータコントローラは、位置プラスフィードフォワード電流のモードを実行し得る。例えば、位置制御部が、位置フィードバックに基づいて遠位エンドエフェクタを空間内の所望の角度位置に駆動し得て、把持力制御部が、4本のワイヤ上のロードセルによって測定された把持力に基づいて追加のフィードフォワード電流を提供し得て、対向する部材間の所望の把持力を達成し得る。
【0047】
図5Aは、本技術の特徴に従う、手術ツールを制御するための高レベル制御システムを示すブロック図である。当該制御システムは、入力部560、制御部562、プラント部564、出力部568、及び、出力部568と制御部562との間のフィードバック経路上のセンサ及び推定器566、を含む。プラント部564は、ツールアクチュエータ及びエンドエフェクタ(例えば、図5Bのアクチュエータユニット510並びにケーブル及びリストリンク512)を含み得る。制御部562は、メモリ上に格納されたソフトウェア指令によって構成される1または複数のプロセッサを含み得て、入力部560に応答してプラント部564の動きを計算し得る。それは、手術ツールのエンドエフェクタの所望の動きを示し得る。制御部562によってこのように生成される指令は、ツールアクチュエータを駆動し得て、エンドエフェクタの所望の動きを促進し得る。エンドエフェクタの位置、速度、ケーブル張力、把持力などの出力568は、センサ及び推定器566によって直接測定または推定され得て、閉ループ制御のために制御部562にフィードバックされ得る。
【0048】
図5Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システム500を示すブロック図である。ロボット制御システム500は、入力処理ユニット502、アクチュエータ指令生成部504、位置制御部506、把持力制御部508、1または複数のアクチュエータユニット510並びに/またはケーブル及びリストリンク512を含むプラント部、スラック制御部514、位置推定器522、及び、把持力推定器524、を備える。図に示されているのと比較して、追加的なコンポーネント(構成要素)、異なるコンポーネント、あるいは、より少ないコンポーネント、が使用され得る。特許請求の範囲の趣旨または範囲から逸脱することなく、コンポーネントの配置及びタイプの変更がなされ得る。
【0049】
入力処理ユニット502及びアクチュエータ指令生成部504は、エンドエフェクタの所望の角度位置を受け入れ、当該所望の角度位置を対応するアクチュエータ位置指令(逆運動学アルゴリズムを介して)及び/または把持力指令に変換する。それらの指令は、位置制御部506及び/または把持力制御部508に出力される。例えば、入力される所望の角度位置は、ピッチ角(θpitch)、ヨー角(θyaw)及び顎角(θjaw)を含み得る。所望の顎角の入力は、当該角度が閾値以上である場合、位置制御指令として扱われ得る。当該閾値は、両方の顎部がその間にある物体にちょうど同時に接触する角度に対応する。把持する物体がない場合、閾値は、顎部が互いに接触し始める零度である。閾値より小さい任意の所望の顎角に対しては、入力は所望の把持力指令に変換され得て、把持力制御部508に伝送され得て、位置指令に加えての電流指令を生成し得て所望の把持力を達成し得る。
【0050】
図6は、本技術の特徴に従う、ロボット手術ツール制御システムの入力処理ユニット502及びアクチュエータ指令生成部504の例示的設計を示すブロック図である。幾つかの実装において、所望のピッチ角(θpitch_d)610及び所望のヨー角(θyaw_d)612は、常にエンドエフェクタの所望の位置として扱われ、入力としてアクチュエータ指令生成部504に直接渡される。一方、その入力がエンドエフェクタのための所望の位置の指令であるのか所望の力の指令であるのかを判別するために、所望の顎角(θjaw_d)614は、最初に入力処理ユニット502によって閾値(θth)616に対して比較される。入力処理ユニット502に提供される閾値(θth)616は、所定の値であり得て、あるいは、動的に決定され得る(例えば、把持力推定器524による)。閾値の決定方法の詳細は、以下でさらに説明される。
【0051】
例えば、入力処理ユニット502によって判別される時に所望の顎角(θjaw_d)614が閾値(θth)616より低い場合、当該所望の顎角(θjaw_d)614は、把持力指令として解釈されて、当該角度の値は、所望の把持力(Fgrip_d)622に変換されて把持力制御部508に出力される。当該所望の把持力は、所望の顎角(θjaw_d)614及び/または閾値(θt)616の関数に基づいて決定されてもよい。この関数は、線形関数、指数関数、二次関数、または、任意の他の適切な関数、であり得る。他方、所望の顎角(θjaw_d)614が閾値(θth)616を超えている場合、それは位置指令として解釈され、所望のピッチ角(θpitch_d)610及び所望のヨー顎角(θyaw_d)612と共に位置入力としてアクチュエータ指令生成部504に渡される。
【0052】
続いて、アクチュエータ指令生成部504は、逆運動学を使用して、位置制御部506がエンドエフェクタを作動させるための位置指令(xcmd1)620を生成する。アクチュエータ指令生成部504はまた、フィードバック角度位置(θfb)618(例えば、位置推定器522から)を受信し得て、フィードバックに基づいて、生成された位置指令(xcmd1)620を調整し得る(例えば、ケーブル弾性を補償する)。
【0053】
ここで図5Bに戻る。位置制御部506は、アクチュエータユニット510上の位置センサ及び/または速度センサから位置フィードバックを受容し得る。アクチュエータとロボット手首との間の運動学的関係により、所望のアクチュエータ位置を達成することが、ロボット手首の所望の位置を導くことができる。従って、非ゼロ定常偏差タイプ(non−zero steady−state error type)のコントローラが位置制御部506で採用されることが好ましい。なぜなら、ゼロ定常タイプ(zero steady−state type)のコントローラは正確な位置を強制することによって把持力制御部と「戦う」ことができてしまって(これによりプロセス中の電流指令を飽和状態にする)所望の把持力の達成を困難にするからである。好適な非ゼロ定常偏差コントローラの例は、比例プラス微分(PD)コントローラを含む。PDコントローラは、把持力制御部が所望の把持力を生成するために必要な把持具顎部のコンプライアンスを許容する。次いで、把持力制御部508は、(位置制御部506とは対照的に)把持力制御中の顎部閉鎖の自由度のコンプライアンスを支配する主要因となり得る。
【0054】
アクチュエータユニット510は、力によって長さが変化し得る弾性ケーブル(またはワイヤ)を介してロボット手首に結合されているため、アクチュエータの位置と手首の動きとの間の純粋な運動学的関係のみに基づく推定は、正確ではない場合がある。位置推定器522は、推定アルゴリズムでケーブル弾性を考慮することにより(例えば、カルマンフィルターを使用して)、手首関節の位置及び速度のより正確な推定値をアクチュエータ指令生成部504及び把持力推定器524に提供し得る。推定された位置と速度の情報は、摩擦の推定と同様、手首の正確な位置決めに利用され得る。
【0055】
幾つかの実装では、把持力制御部508は、ケーブルワイヤ上のロードセルまたはトルクセンサによって測定されたケーブル張力のフィードバックを取得する。この時、把持力推定器524によってアルゴリズムが使用され得て、ケーブルで測定された張力値に基づいて顎部間の把持力を推定し得る。把持力制御部508は、推定値を所望の把持力と比較し得て、当該所望の把持力を達成するために追加の電流コマンドを生成し得る。あるいは、力/トルクを感知するロードセルからの測定値の代わりに、把持力制御部508は、幾つかの推定技術と組み合わせて、フィードバックとしてモータ電流を使用し得て、把持力生成のための追加の電流コマンドを生成し得る。
【0056】
前述のように、エンドエフェクタは、その各々が独立したモータによって作動される4本の独立したケーブルを介してツール駆動部に結合され得る。特に、エンドエフェクタは、ロボット手首及び一対の対向する顎部材を含み得て、各顎部材は開位置と閉位置との間で移動可能である。幾つかの実装では、モータは電流によって駆動され得る。電流指令は、2つの部分を含み得る:駆動電流の第1部分が関節角制御部506からのものであり得て、第2部分が把持力制御部508からのものであり得る。2つの電流指令が合計され得て、アクチュエータユニット510に送信され得る。
【0057】
図7は、本技術の特徴に従う、ロボット手術ツール制御システムの例示的なアクチュエータユニット510及びその入力/出力を示すブロック図である。アクチュエータユニットは、各々が対応するアクチュエータないしモータ704を駆動する、1または複数の低レベルアクチュエータないしモータ駆動部702を含み得る。アクチュエータユニットでは、追加のコンポーネント、異なるコンポーネント、またはより少ないコンポーネント、が使用され得る。幾つかの実装では、アクチュエータないしモータ704は、電流駆動DCモータである。低レベルアクチュエータないしモータ駆動部702は、位置制御部506からの所望の電流指令(iposition_d)710と把持力制御部508からの所望の電流指令(igrip_d)712との合計である入力電流指令(id)714を受容する。次いで、アクチュエータないしモータ駆動部702は、アクチュエータないしモータ704を駆動し得て、それは出力電流(imotor)718でエンドエフェクタを駆動する。モータ704の状態、例えば電流(imotor)718は、モータ駆動部702にフィードバックされ得る。所望の電流指令(iposition_d)710、(igrip_d)712を合計することにより、アクチュエータユニット510は、1または複数のモータを駆動し得て、エンドエフェクタの所望の動き及び/または把持力をもたらし得る。
【0058】
ロボット手首の相反特性により、異なるモータの所望の把持力指令(igrip_d)712は相反的(拮抗的)であり得て、例えば、アクチュエータを閉じる場合は正であり得て、アクチュエータを開く場合は負であり得る。追加の電流指令が、2つの閉鎖アクチュエータにおいて顎部を閉じるための既存の電流指令に追加されて、及び、2つの開放アクチュエータにおいて顎部を開けるための電流指令から差し引かれる、ということが有利な場合がある。他の実装では、追加の電流指令は、閉鎖ケーブルを制御するための2つの閉鎖アクチュエータにのみ送信され得るが、これは、性能低下に帰結し得る。後者のシナリオでは、把持力を制御するために入力顎角、例えば所望の顎角(θjaw_d)614、が使用される際の閾値(θth)616が、重要になり得る、すなわち、当該閾値が正確な接触角に設定される必要がある。そうでないと、把持力を増大させながら顎部が近づくにつれて、開放ケーブルがより強く抵抗し得る。アクチュエータ及びケーブル力の飽和のため、把持具の閉鎖が不可能になるポイントに到達する場合がある。従って、摩擦を推定し、接触角を推定するために、別個の推定器が必要とされ得て、その結果、閾値が決定され得て、入力処理ユニット502に提供され得る。
【0059】
あるいは、把持力制御部508は、モデルを使用し得て、所望の把持力を生成するために必要とされる追加の電流を計算し得る。更に、位置制御部506によって生成される電流指令に追加及び/または減算され得る追加の電流設定点を生成する代わりに、把持力制御部508は、2つの閉鎖ケーブル位置設定点に追加され2つの開放ケーブル位置設定点から減算される追加の位置設定点を提供し得る(設定点は、単純には、所望の角度位置などの、システムの重要な変数の所望値または目標値である)。
【0060】
図5Bに戻って、弛み制御部514は、ケーブルの張力がゼロ(または弛みを補償するための所定の正の値)を決して下回らないことを保証するタスクを実行し得る。ケーブルは、エンドエフェクタの張力のみの部材であり、負の力を加えることはできない。また、ケーブルが弛む時、ケーブルの両端間の運動学的関係が保持されない。従って、どのような状況下でもケーブルの張力がゼロになることを防止することが望ましい。この目標を達成するために、弛み制御部514は、ケーブル上のロードセルからの力の値を監視し得て、当該力の値の最小値を所定の閾値と比較し得る。全てのケーブルに亘って最小の力の値が閾値を下回る場合、弛み制御部514は、全てのアクチュエータに追加の位置コマンドを生成し得て、所望の最小の張力が維持されることを保証し得る。これらの追加の位置指令は、把持力を変更したり手首に不所望の動きを生じさせたりしないように、リストケーブルシステムのヌルスペース内に吸収される(bin)する必要がある。あるいは、弛み制御部は、追加の位置指令の代わりに、リストケーブルシステムのヌルスペースの大きさで、アクチュエータに追加の電流を提供し得る(同一のアクチュエータを仮定)。どちらの場合でも、ケーブル上の所望の最小の力を維持するべく、比例プラス積分(PI)コントローラなどのゼロ定常タイプ(zero steady−state type)のコントローラが弛み制御部514として配備され得る。
【0061】
次の段落は、例示的な制御システムの各コンポーネントの入力、出力、及び機能に関して、例示的な制御アルゴリズムをより詳細に説明する。提案される方法論は、エンドエフェクタを駆動するアクチュエータの位置プラスフィードフォワード電流制御の使用に依存し得る。位置制御部は、ケーブルを介して空間内の所望の位置設定点にエンドエフェクタを駆動し得て、追加のフィードフォワード電流が、2つのエンドエフェクタ部材間に所望の把持力をもたらすべく追加され得る。
【0062】
図8Aを参照すると、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための例示的な制御システム800Aを示す詳細なブロック図である。この説明は、制御システムを特定の実装に限定することを意図するものではなく、当業者が本発明を作成及び使用することを可能にすることを意図している。更に、制御システム及び方法は、より多くのまたはより少ないコンポーネント(構成要素)を含んでいてもよい。これらのコンポーネントの各々は、様々な目的で、互いと共に使用され得るし、個別に使用され得る。例えば、例示的な制御システム500と同様に、制御システム800Aは、入力処理ユニット502、アクチュエータ指令生成部504、位置制御部506、把持力制御部508、弛み制御部514、位置推定器522、把持力推定器524、及び、4つのアクチュエータユニット(モータ及び駆動部)510、を備えている。制御システム800Aにおいては、ケーブル512Aとリストリンク512Bとが分離されており、接触予測ユニット526が、制御システム500(図5Bに示されている)に追加されている。
【0063】
制御システム800Aは、所望の角度の入力801、802、803を取得し得る。
3つの入力角のうち、所望のピッチ角(θpitch_d)801及び所望のヨー角(θyaw_d)802は、アクチュエータ指令生成部504に直接渡される。
所望の顎角(θjaw_d)803は、入力処理ユニット502に提供され、接触予測ユニット526によって推定され得る閾値(
)844と比較される。
【0064】
前述したように、エンドエフェクタの入力ピッチ角801(図4Bの軸420回りの回転)及びヨー角802(図4Bに示されるように軸452と顎部の中間点との間の角度)は、位置制御部506によって位置モードで制御され得る。入力顎角(2つの顎部材間の角度)は、所望の顎角803が閾値844よりも小さいか大きいかに応じて異なって解釈され得る。入力処理ユニット502によって判別される際に所望の顎角803が閾値844未満である場合、所望の把持力(Fgrip_d)804が把持力制御部508に対して生成される。所望の把持力は、所望の顎角803及び/または閾値844の関数に従って決定され得る。この関数は、線形関数、指数関数、二次関数、または、他の関数であり得る。所望の顎角803は、比較の結果に関係なく、位置指令の一部としてアクチュエータ指令生成部504に渡されてもよいが、閾値844よりも大きい場合にのみ位置指令として扱われる。
【0065】
閾値844は、顎部の2つの部材が互いにちょうど接触する際、あるいは、それらの間に物体が把持されている際の、角度値に対応する。換言すれば、入力顎角は、当該閾値によって、角度位置指令から把持力指令に切り替えられる。閾値844は、所定の値(例えば、零度)であり得る。好ましくは、閾値は、把持される物体との接触が最初に生じる実際の顎角を推定することにより、リアルタイムで決定される。例えば、接触予測ユニット526は、当該閾値を決定するために、顎角及び把持力の値の推定に基づいて、接触が起こる事例を検出及び/または予測し得る。次に、決定された閾値は、入力顎角を解釈するために、入力処理ユニット502に渡される。アクチュエータ指令生成部504の出力は、位置制御部506が4つのケーブル変位を生成するための変位指令(xcmd)806を含み得て、これは4つのアクチュエータユニット(またはモータ)510に適用され得る。
【0066】
ベクトル
で所望の角度を表すことにより、式(2)を用いて、当該ベクトルを関節空間の所望の角度θd[3×l]に変換可能である。
ここで、下付き文字「_d」は、対応する入力及び変換されたパラメータの所望の値を示す。把持力が望まれる場合、顎角の入力は、所望の把持力(Fgrip_d)804に変換され得て、把持力制御部508に送られ得る。
【0067】
アクチュエータ指令生成部504は、関節角度(
)841の推定に関して位置推定器522からのフィードバックを受容し得る。関節角度の一次推定値は、式(7)を使用して、アクチュエータ(モータ)の位置(x[4×1])831及びケーブル張力(ξ[4×1])833の測定値から見積もられ得る。
ここで、keは、N/m単位でのケーブルの弾性定数であり、ケーブル張力(ξ[4×1])833は、式(3)に定義されており、(x[4×1])831は、アクチュエータユニット510上の位置センサ測定値のベクトルである。
【0068】
幾つかの実装では、制御システム800Aは、所望の関節位置(ピッチ及びヨー)を達成するために閉ループ制御を採用し得る。
閉ループ制御方式では、アクチュエータ指令生成部504が、位置推定器522からの角度位置を監視し続け、所望の関節角が達成されるまでその位置指令(xcmd1)805を調整し続け得る。代替的に、アクチュエータ指令生成部504は、開ループ制御を実行し得て、式(5)に基づく逆運動学技術を利用して4つのモータの所望の変位を取得し得る。
ここで、B及びθd[3×1]は、それぞれ、式(4)及び式(10)に定義されている。ケーブルの弾性の影響を考慮して、4つのモータの所望の変位は、式(9)を使用して更に改善され得る。
【0069】
更に、図8に示されるように、位置設定点または指令(xcmd)806は、2つの成分の合計であり得る:
ここで、第1成分(xcmd1)805は、前述のアクチュエータ指令生成部504によって生成され得て、第2成分(xcmd2)は、弛み制御部514によって提供され得る。
【0070】
第2変位指令(xcmd2)854は、(例えば、4本のケーブル512A上のロードセルからの)ケーブル張力(ξ[4×1])833のフィードバックに基づいて、弛み制御部514によって生成され得る。ケーブル張力フィードバック(ξ[4×1])833の中の最小の張力値(ξmin)851が、最初に「最小」ユニット514Aによって決定される。
【0071】
次に、弛み制御部は、最小値(ξmin)851を所望の最小張力値(ξmin_d)と比較して、追加の変位指令(us)852を生成し得る。4本のケーブル全てに最小の所望の張力を維持する目的で、ゼロ定常偏差タイプ(zero steady−state error type)のコントローラが採用され得る。このようなコントローラは、個別のドメインで、次の形式を取り得る(状態空間(state−space)や非線形などの他の形式も可能である)。
ここで、C(z)は、入力(ξmin)851から出力(us)852への制御部伝達関数であり、zはz変換パラメータである。更に、パラメータai及びbiは、実数であり、C(z)の分子及び分母の対応する多項式は、厳密に単位円の内側に根を有しており、z=+1においては根を有しない。パラメータm、n及びpは、制御部伝達関数C(z)が適切であることを保証するために、p>0、及び、m≦n+p、である整数である。
【0072】
比例プラス積分(PI)コントローラは、C(z)の特殊なケースであり、前述のように4本のケーブルの最小の張力を調整するために使用され得て、時間領域で次の形式を取り得る。
ここで、kps及びkisは、それぞれ、比例ゲイン及び積分ゲインである。
【0073】
ケーブルの張力を調整して最小の張力を維持する一方で関節角度位置または把持力を乱さないようにするには、位置指令(xcmd2)854がリストケーブルシステムのヌルスペース内である必要がある。これを達成するために、スカラー変位(us)852は、行列(B)のヌルスペースによって更に乗算され得る。従って、2番目の変位指令(Xcmd2)854は、次の形式を取り得る。
ここで、(c)853は、最小の張力を伴うケーブルに対応するその要素が単位(すなわち1)に等しくなるように、ヌルスペースベクトルをスケールする定数である。
【0074】
あるいは、弛み制御部514は、位置制御部506に提供される追加の位置指令(xcmd2)854の代わりに、(リストケーブルシステムのヌルスペースの大きさで)アクチュエータ510を直接駆動する追加の電流を含む指令を生成し得る。そのような実装では、追加の電流の指令が(icmd)コンポーネント821〜824の各々に追加され得る。
【0075】
位置制御部506が使用され得て、所望のアクチュエータ位置を達成することができ、その結果、運動学的関係を通して、手首の所望の位置を得ることができる。各モータに送られる電流指令を調整するために、位置制御部506は、アクチュエータの位置及び/または速度センサないし速度推定器からのフィードバックに依存し得る。更に、モータ510の各々が、追加のまたはより少ない電流と組み合わされた位置制御部506からの電流設定点ないし指令を受容し得る。追加のまたはより少ない電流は、把持力制御部508からのスケーリングベクトル(ci[4×l]=[cl234]T)の各値(ci)816〜819に依存する。
【0076】
位置制御部506は、位置設定点ないし指令(Xcmd)806、並びに、位置(x[4×1])及び速度(
)832のフィードバックに基づいて、電流指令(icmd1[4×l])を生成し得る。
好ましくは、位置制御部506は、前述のように、非ゼロ定常偏差コントローラで実装され得る。このようなコントローラは、個別のドメインで、次の形式を取り得る(状態空間(state−space)や非線形などの他の形式も可能である)。
ここで、C(z)は、入力(xcmd)806と出力(icmd1)811〜814との間の制御部伝達関数であり、zはz変換パラメータである。更に、パラメータai及びbiは、実数であり、C(z)の分子及び分母の対応する多項式は、厳密に単位円の内側に根を有しており、z=+1においては根を有しない。パラメータm及びnは、制御部伝達関数C(z)が適切であることを保証するために、m≦nである整数である。
【0077】
比例プラス微分(PD)コントローラは、式(19a)のC(z)の特殊なケースであり、電流指令(icmd1)811〜814を生成するために使用され得る。これにより、式(19b)で示されるように、4つのアクチュエータへの電流指令の最初の成分は、以下のように生成され得る(時間領域で表現される)。
ここで、(kp)及び(kd)は、制御部ゲインであり、(x[4×1])831は、式(12)で定義されたアクチュエータ位置の4タプルベクトルであり、(
)は、アクチュエータ速度の4タプルベクトルであり、これは、直接的な速度センサ測定値または位置の導関数からの推定値であり得る。
【0078】
把持力制御部508は、把持力をもたらすべく、アクチュエータ510の各々について、位置制御部506からの電流指令(icmd1[4×1])と組み合わされ得る第2電流指令(icmd2[4×1])815を生成し得る。第2電流指令(icmd2[4×1])815は、所望の把持力入力(Fgrip_d)804及び把持力推定器524によって提供される把持力フィードバック(
)843に基づいて、把持力制御部508によって生成され得る。
【0079】
Lが顎部の回転軸から把持荷重印加点までの顎部の長さを定義すると仮定すると、2つの顎部材間の把持力は次式を用いて推定され得る。
ここで、(τ2)及び(τ3)は、式(1)からの2つの顎要素の関節トルクである。式(3)からの関節トルクで置き換えて、式(4)を用いることで、次式を得ることができる。
式(21)は、ケーブル512A上のロードセルまたはトルクセンサを使用して、ケーブルの力が直接測定されることを前提としている。ケーブルの力の値は、高度な推定アルゴリズムと組み合わせて(例えば、カルマンフィルターを使用して)、(
)832などのモータ電流及びモータ状態を用いることで、間接的に推定されてもよい。
【0080】
把持力推定値(
)843が得られると、把持力制御部508は、当該値を所望の把持力値(Fgrip_d)804と比較し、所望の把持力を達成するために、第2電流指令(icmd2)815を生成し得る。
把持力を制御する目的で、式(16a)に示されているものと同様のゼロ定常偏差タイプ(zero steady−state error type)のコントローラが採用され得る。この場合、C(z)は、入力(Fgrip_d)804と出力(icmd2)815との間の制御部伝達関数になる。C(z)のある特別な場合は、比例プラス積分(PI)コントローラを含み、これは、把持力を調整するために使用され得て、時間領域で次の形式を取り得る。
ここで、kps及びkisは、それぞれ、比例ゲイン及び積分ゲインである。
【0081】
従って、スカラーの第2電流指令(icmd2)815は、個々のゲイン増幅器816〜819を通過し得て、スケーリングされた電流指令をもたらし得て、それが、電流指令(icmd1[4×1])811〜814にそれぞれ追加され得る。組み合わされた電流指令(icmd)の各成分
)821〜824が、その後、アクチュエータまたはモータ510に適用され得る。例えば、第2電流指令(icmd2)815は、顎部を閉じる2つのアクチュエータの電流指令に追加され得て、また、顎部を開ける2つのアクチュエータへの電流指令から減算され得る。実装に応じて、スケーリングベクトル(Ci[4×2])の各成分(ci)816〜819に、異なる値が選択され得る。次式は、4つのモータのための様々な例示的な電流指令設定を示している。これは、様々な性能に帰結し得る。



【0082】
幾つかの実装では、把持力制御アルゴリズムは、ケーブル張力測定に基づく推定ではなく、モデルを使用し得て、所望の把持力を生成するために必要とされる追加の電流を計算し得る。当該モデルは、モータの位置や電流などの既知のパラメータに基づいて、把持力を予測し得る。
図8Bは、本技術の特徴に従う、ロボット手術ツールのエンドエフェクタの位置及び把持力を制御するための代替的な制御システム800Bを示す詳細なブロック図である。制御システム800Bでは、図8Aに示されるように電流指令に追加される及び減算されるべき追加の電流設定点(icmd2)を生成する代わりに、把持力制御部508は、2つの閉鎖ケーブル位置設定点に追加される及び2つの開放ケーブル位置設定点から減算されるべき(またはその逆の)、図8Bに示される(xcmd3)807などの追加の位置設定点を生成し得る。従って、位置制御部506への位置入力指令(xcmd)806は、3つの成分を含み得る:前述のアクチュエータ指令生成部504によって生成される第1成分(xcmd1)805、弛み制御部514によって提供される第2成分(xcmd2)、及び、把持力制御部508によって計算される第3成分(xcmd3)807。複合位置指令(xcmd)806が、アクチュエータユニット510を駆動する電流指令(icmd)を生成するために位置制御部506に提供される。
【0083】
図9は、本技術の特徴に従う、2つの対向する部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための例示的なプロセス900を示すフローチャートである。もっとも、当該手術ツール制御システムによって実行されるプロセス900は、制御部の動作の例示的な説明のみを提供し、より多くのまたはより少ない工程がプロセス中に含まれ得て、及び/または、それらの工程は図9に示されるブロック順序とは異なる1または複数の順序で生じ得る。
【0084】
第1に、手術ツール制御システムは、ロボット手術ツールのエンドエフェクタの所望の状態の入力を受容する(902)。エンドエフェクタは、遠位端にロボット手首を有し、当該ロボット手首に連結されて互いに回転する2つの部材を有する。所望の状態は、ロボット手首の所望のピッチ角、エンドエフェクタの所望のヨー角、及び、エンドエフェクタの2つの対向する部材間の所望の顎角、等の所望の角度を含み得る。例えば、図5に示されるツール制御システム500では、入力処理ユニット502は、ロボット手首及びエンドエフェクタ部材の所望の角度位置を受容し得る。2つの対向する部材の各々は、張力をかけられたときに力を与える一対の相反(拮抗)ケーブルを介してロボット的に操作され得る。例えば、図4Aに示されている把持具220のエンドエフェクタは、一対の顎部401A、401Bを含み、ケーブル405A、405Bが顎部401Aを操作するための第1の相反対(拮抗対)である。個々に張力をかけられる時、ケーブル405Aが顎部401Aを閉じ、ケーブル405Bが顎部401Aを開く。
【0085】
ツール制御システムは、続いて、所望の状態に基づいて、エンドエフェクタの各部材の相反ケーブルの対の変位を計算し得る(904)。所望の顎角が所望の把持力を示す場合、所望のピッチ角及びヨー角に応じて、変位が計算される。それ以外の場合、変位の計算は、所望のピッチ角、ヨー角及び顎角に対応する。両方の場合において、ツール制御システム内の位置制御部506は、図8A及び図8Bに示されるように、少なくとも1つのアクチュエータの現在の位置及び/または速度の測定値に基づいて計算を行い得る。次に、制御システムは、計算された変位に基づいて、ロボット手首及びエンドエフェクタ部材を駆動するための第1指令を生成し得る(906)。例えば、図8A及び図8Bのアクチュエータ指令生成部504は、所望のピッチ及びヨー角(並びに、それが所望の把持力の代わりに所望の角度を表す場合の顎角)に基づいて、変位または位置指令(xcmd1)を生成し得る。制御システムは、一対の相反ケーブルの張力を監視し、ケーブルの所定の最小張力を維持するため、図8A及び図8Bの弛み制御部514など、ケーブルの弛みを防止するための別のフィードバック制御ループを選択的に採用し得る。弛み制御部514からの出力(xcmd2)は位置指令(xcmd1)と合計され得て、位置制御部506に位置設定点として提供され得る。
【0086】
次に、手術ツール制御システムは、所望の状態がエンドエフェクタの2つの対向する部材間の所望の把持力を含むか否かを判別(決定)し得る(908)。幾つかの実装では、所望の状態が所望の把持力を含むか否かを判別することは、所望の顎角を閾値と比較することを伴い得る。閾値は、物体を把持する時、または、物体を把持しないで互いに接触する時(すなわち零度)、のエンドエフェクタの2つの対向する部材間の接触顎角であり得る。例えば、把持具220が物体を把持していない時、接触角は零度である。接触角は、例えば、把持されるべき物体のサイズに基づいて、事前に決定され得る。代替的または追加的に、接触角は、動的に決定され得るか、あるいは、現在の顎角の推定及び/または2つの対向する部材間の現在の把持力の推定に基づいて例えば図8A及び図8Bに示される接触予測ユニット526によって予測され得る。所望の顎角が閾値よりも小さい時、当該所望の顎角は、エンドエフェクタの2つの対向する部材間の所望の把持力の指標及び範囲(程度)の両方として解釈され得る。
【0087】
所望の状態が所望の把持力を含むという判別(決定)に応じて(例えば、所望の顎角が閾値より小さい時)、ツール制御システムは、所望の顎角によって示される所望の把持力と2つのエンドエフェクタ部材間の現在の把持力とに基づいて、エンドエフェクタの一部材のために一対の相反ケーブルの少なくとも一方に張力をかけるための第2指令を生成し得る(910)。前述のように、エンドエフェクタの一部材(例えば、図4Aの顎部401A)に対する一対の相反ケーブル(例えば、図4Aのケーブル405A、405B)の各々は、例えば図3Bに示される回転駆動部322A〜322Fのような少なくとも1つのアクチュエータによって引っ張られ得るないし張力をかけられ得る。第2指令は、所望の把持力と把持力推定器524からの現在の把持力の推定値843との間の差に基づいて、例えば、図8A及び図8Bに示される把持力制御部508によって、計算され得る。現在の把持力の推定値843は、一対の相反ケーブル上の現在の張力の測定値833と、位置推定器522からの角速度842と、を考慮し得る。
【0088】
ブロック912において、ツール制御システムは、第1指令及び/または第2指令に基づいて、エンドエフェクタを駆動して所望の状態を達成する。図8Aに示されるような幾つかの実装では、ツール制御システムは、エンドエフェクタを駆動するために、計算された変位に基づいて少なくとも1つのアクチュエータに対する第1電流指令(icmd1)を生成し得る。所望の顎角が所望の把持力を示すと判別される場合、当該所望の把持力と推定された現在の把持力とに基づいて、少なくとも1つのアクチュエータに対して第2駆動指令(icmd2)が生成される。アクチュエータユニット510への実際の入力は、例えば、少なくとも1つのアクチュエータを駆動するための第1駆動指令及び第2駆動指令に基づく複合指令であり得る。複合指令は、式(23)〜式(26)に示されるように、第1指令及び第2指令の任意の線形結合であり得る。図8Bに示されるような他の幾つかの実装では、把持力制御部508が、追加の変位ないし位置指令(xcmd3)を出力し、これが、アクチュエータ指令生成部504及び弛み制御部514からの位置設定点と組み合わされて、複合位置指令(xcmd)を生成し得る。当該複合位置指令は、アクチュエータユニット510を駆動するための電流指令を生成するために位置制御部506に入力され得る。
【0089】
図10は、本技術の特徴に従う、2つの対向する部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための別の例示的なプロセス1000を示すフローチャートである。この例では、手術ロボットシステムは、遠位端にエンドエフェクタを有するロボット手術ツールを備えている。エンドエフェクタは、2つの対向する顎部を有しており、その各々が、アクチュエータによって張力をかけられる時に力を付与する一対の相反(拮抗)ケーブルを介して、少なくとも1つのアクチュエータによって操作される。当該システムはまた、ロボット手術ツールに結合された1または複数のプロセッサを含む制御部を備えていてもよい。
【0090】
当該制御部は、入力モジュールから、ロボット手術ツールのエンドエフェクタの所望の状態をもたらすための入力を受容し得る(1002)。当該入力は、エンドエフェクタのピッチ角及びヨー角、並びに、エンドエフェクタの2つの顎部間の顎角、のうちの少なくとも1つを含み得る。次に、当該制御部は、ピッチ角及びヨー角に基づいてエンドエフェクタの所望の位置を決定し、且つ、顎角に基づいてエンドエフェクタの2つの顎部間の所望の把持力を決定する(1004)。所望の位置及び所望の把持力に基づいて、制御部は、エンドエフェクタの所望の位置及び顎部間の所望の把持力を含むツールの所望の状態をもたらすべく、少なくとも1つのアクチュエータを駆動し得る(1006)。
【0091】
幾つかの実装では、ツールの所望の状態をもたらすために、制御部は、少なくとも1つのアクチュエータの現在の位置と、一対の相反ケーブル上の現在の張力と、を測定し得て、当該少なくとも1つのアクチュエータの第1駆動指令を生成し得る。制御部は、更に、一対の相反ケーブル上の測定される張力に基づいて、エンドエフェクタの2つの対向する部材間の現在の把持力を推定し得て、少なくとも1つのアクチュエータに対する第2駆動指令を生成し得る。第1及び第2駆動指令が組み合わされ得て、ツールを所望の状態に駆動し得る。
【0092】
図11は、本技術の特徴に従う、2つの把持部材を有するエンドエフェクタを備えたロボット手術ツールを制御するための更に別の例示的なプロセス1100を示すフローチャートである。図11に示すように、例示的なロボット手術ツール制御システムは、2つの把持部材を有するエンドエフェクタを有する手術ツールを備え、その各々は、個々に張力をかけられる時に各把持部材の反対向きの回動をもたらす一対の相反ケーブルを通じて、ロボット的に操作される。ツール制御システムは、1または複数のプロセッサと、当該プロセッサに結合された入力部と、をも備える。
【0093】
ツール制御システムは、エンドエフェクタの2つの把持部材間の入力顎角を受容し得る(1102)。次に、ツール制御システムは、受容された入力顎角が2つの把持部材間の所望の把持力を示しているか否かを判別し得る(1104)。例えば、所望の顎角が閾値よりも小さい時、指令は所望の把持力を示し、ここで、当該閾値は、エンドエフェクタが物体を把持している時の2つの把持部材間の接触角であり得る。幾つかの実装では、当該接触角は、2つの把持部材間の現在の把持力の推定値と現在の顎角の推定値に基づいて判別(決定)され得る。
【0094】
所望の顎角が所望の力を示すという判別に応じて、ツール制御システムは、所望の把持力と現在の把持力の推定値との間の差に基づいて、各把持部材の相反ケーブル対の少なくとも一方に張力をかける指令を生成し得る(1106)。例えば、入力顎角は、当該入力顎角度が閾値よりも小さい時、所望の把持力を示す。当該閾値は、エンドエフェクタが物体を把持している時の2つの把持部材間の接触顎角、または、物体を把持していない時の零度である。接触角は、2つの把持部材間の現在の把持力の推定値と現在の顎角の推定値とに基づいて決定され得る。幾つかの実装では、2つの把持部材間の現在の把持力は、一対の相反ケーブル上の現在の張力の測定値に基づいて推定され得る。次いで、所望の把持力をもたらすべく、一対の相反ケーブルの少なくとも一方に張力がかけられ得る(1108)。
【0095】
さもなければ、受容された入力が実際に所望の顎角であると判別される場合(例えば、入力顎角が閾値を超える場合)、ツール制御システムは、エンドエフェクタの各把持部材の一対の相反ケーブルの変位を決定し得て(1110)、当該決定された変位に基づいて所望の顎角をもたらすべく一対の相反ケーブルを介してエンドエフェクタを駆動し得る(1112)。
【0096】
前述の記載は、説明の目的で、本発明の完全な理解を提供するべく、特定の用語(命名)を使用した。もっとも、本発明を実施するために、特定の詳細は要求されないことが、当業者には明らかであろう。従って、本発明の特定の実施形態の前述の記載は、例示及び説明の目的で提示されている。それらは、本発明を開示された正確な形態に限定することを意図していない。明らかに、前述の教示を考慮して、多くの修正及び変形が可能である。実施形態は、本発明の原理及びその実際の適用を最もよく説明するために選択されて説明されており、それによって、他の当業者が、企図される特定の用途に適した様々な修正を伴って本発明及び様々な実施形態を最大限に利用することを可能にしている。以下の特許請求の範囲及びそれらの均等物が本発明の範囲を定義することが意図されている。
【0097】
前述の方法、デバイス、処理、及びロジックは、多くの異なる態様で、ハードウェア及びソフトウェアの多くの異なる組み合わせで、実装され得る。制御部及び推定器は、電子回路を有し得る。例えば、実装の全てまたは一部は、中央処理装置(CPU)、マイクロコントローラまたはマイクロプロセッサ等の指示プロセッサを含む回路、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス(PLD)またはフィールドプログラマブルゲートアレイ(FPGA)、個別ロジックや、アナログ回路成分、デジタル回路成分ないしそれらの両方を含む他の回路成分を含む回路、または、それらの任意の組み合わせ、であり得る。当該回路は、例として、個別の相互接続されたハードウェア成分を含み得て、及び/または、単一の集積回路ダイ上で組み合わされ得て、複数の集積回路ダイ間に分散され得て、あるいは、共通パッケージ内の複数の集積回路ダイの複数チップモジュール(MCM)に実装され得る。
【0098】
回路は更に、当該回路による実行のための指令(命令)を含み得るか、あるいは、それにアクセスし得る。当該指令は、フラッシュメモリ、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、消去可能プログラマブル読み取り専用メモリ(EPROM)など、一時的な信号ではない有形の記憶媒体に記憶され得るし、あるいは、コンパクトディスク読み取り専用メモリ(CDROM)、ハードディスクドライブ(HDD)、または他の磁気または光学ディスクなどの磁気または光学ディスク上に記憶され得るし、他の機械読み取り可能な媒体内または当該媒体上に記憶され得る。コンピュータープログラム製品などの製品は、記憶媒体と、当該記憶媒体内または当該記憶媒体上に記憶された指令と、を含み得て、当該指令は、デバイス内の回路によって実行される時、前述のまたは図面内に図示された処理のいずれかをデバイスに実装させ得る。
【0099】
実装は、複数のプロセッサ及びメモリ間のような、複数のシステムコンポーネント間の回路として配布され得て、選択的に複数の分散処理システムを含む。パラメータ、データベース、及び他のデータ構造が、個別に記憶及び管理され得て、単一のメモリまたはデータベースに組み込まれ得て、多くの異なる態様で論理的及び物理的に編成され得て、多くの異なる態様で実装され得て、リンクリスト、ハッシュテーブル、配列、レコード、オブジェクト、または暗黙的なストレージ機構のようなデータ構造を含み得る。プログラムは、単一のプログラムの一部(サブルーチンなど)であり得て、個別のプログラム群であり得て、幾つかのメモリ及びプロセッサに亘って分散され得て、あるいは、共有ライブラリ(例えば、動的リンクライブラリ(DLL))などのライブラリ内のように多くの異なる態様で実装され得る。DLLは、例えば、回路によって実行される時に前述のまたは図面に図示された処理のいずれかを実行する指令を記憶し得る。
【0100】
また、本明細書で説明された様々な制御部は、処理回路、マイクロプロセッサまたはプロセッサ、及び、コンピュータ可読媒体、の形態を取り得る。当該コンピュータ可読媒体は、例えば、(マイクロ)プロセッサ、論理ゲート、スイッチ、特定用途向け集積回路(ASIC)、プログラマブルロジックコントローラ、及び、組み込みマイクロコントローラ、によって実行可能なコンピュータ可読プログラムコード(例えばファームウェア)を記憶する。制御部は、以上に説明されフロー図に示された様々な機能を実行するために、ハードウェア及び/またはファームウェアと共に構成され得る。また、また、制御部の内部にあると示されているコンポーネントの幾つかは、制御部の外部にも記憶され得るし、他のコンポーネントが使用されてもよい。
図1
図2
図3A
図3B
図4A
図4B
図5A
図5B
図6
図7
図8A
図8B
図9
図10
図11