特許第6894987号(P6894987)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エレクタ、インク.の特許一覧

特許6894987適応型放射線療法に対する3次元位置特定及び追跡
<>
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000008
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000009
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000010
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000011
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000012
  • 特許6894987-適応型放射線療法に対する3次元位置特定及び追跡 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6894987
(24)【登録日】2021年6月8日
(45)【発行日】2021年6月30日
(54)【発明の名称】適応型放射線療法に対する3次元位置特定及び追跡
(51)【国際特許分類】
   A61N 5/10 20060101AFI20210621BHJP
【FI】
   A61N5/10 P
   A61N5/10 F
   A61N5/10 H
   A61N5/10 M
【請求項の数】20
【全頁数】26
(21)【出願番号】特願2020-15(P2020-15)
(22)【出願日】2020年1月1日
(62)【分割の表示】特願2017-540138(P2017-540138)の分割
【原出願日】2016年1月21日
(65)【公開番号】特開2020-54875(P2020-54875A)
(43)【公開日】2020年4月9日
【審査請求日】2020年1月1日
(31)【優先権主張番号】14/607,654
(32)【優先日】2015年1月28日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】517150065
【氏名又は名称】エレクタ、インク.
【氏名又は名称原語表記】ELEKTA,INC.
(74)【代理人】
【識別番号】100087479
【弁理士】
【氏名又は名称】北野 好人
(72)【発明者】
【氏名】ハン シャオ
(72)【発明者】
【氏名】シュウ エン
【審査官】 安田 昌司
(56)【参考文献】
【文献】 特表2010−517655(JP,A)
【文献】 特表2007−517610(JP,A)
【文献】 米国特許出願公開第2009/0034819(US,A1)
【文献】 特開2013−202242(JP,A)
【文献】 国際公開第2014/155232(WO,A1)
【文献】 特表2013−544137(JP,A)
【文献】 米国特許出願公開第2013/0316318(US,A1)
【文献】 国際公開第2014/054393(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
A61B 34/00−34/20
(57)【特許請求の範囲】
【請求項1】
患者の関心領域の3次元標的を追跡するためのモデルを生成するコンピュータで実施される方法であって、
前記方法は、
プロセッサにより3次元医用画像を受信するステップと、
前記3次元医用画像から前記標的を含む2次元スライスを抽出するステップと、
前記2次元スライスから1つまたはそれ以上の2次元パッチを決定するステップと、
前記1つまたはそれ以上の2次元パッチについて、前記1つまたはそれ以上の2次元パッチのそれぞれの中心から前記標的の中心までのオフセットを算出するステップと、
前記1つまたはそれ以上の2次元パッチと前記1つまたはそれ以上の2次元パッチに対して算出されたオフセットとに基づいて前記モデルを生成するステップとを有し、
前記2次元パッチは前記2次元スライス中の任意の形状の領域に対応し、前記2次元パッチのピクセル数は前記2次元スライスのピクセル数よりも少ない
ことを特徴とする方法。
【請求項2】
請求項1記載の方法において、
前記2次元スライスが、前記患者内の標的に対する動きの方向に基づいている
ことを特徴とする方法。
【請求項3】
請求項1記載の方法において、
前記方法は、更に、前記モデルと前記2次元スライスとの間の相関を決定するステップを有する
ことを特徴とする方法。
【請求項4】
請求項1記載の方法において、
前記モデルは、前記患者内の前記標的の3次元位置を推定するために使用される
ことを特徴とする方法。
【請求項5】
請求項1記載の方法において、
前記2次元スライスは、標的位置パラメータ、スライス配向パラメータ、またはスライス厚パラメータの少なくとも1つを含む
ことを特徴とする方法。
【請求項6】
請求項1記載の方法において、
前記2次元スライスは、前記標的の動きに平行または直交のいずれかである
ことを特徴とする方法。
【請求項7】
請求項1記載の方法において、
前記2次元スライスは、無線周波数パルスの周波数と前記無線周波数パルスの勾配強度とに基づいて画像取得装置から受信される
ことを特徴とする方法。
【請求項8】
請求項7記載の方法において、
前記無線周波数パルスの前記周波数が変化して前記同じ勾配強度を維持することより、前記画像取得装置から受信された前記2次元スライスの位置を変化させる
ことを特徴とする方法。
【請求項9】
請求項1記載の方法において、
前記方法は、更に、前記2次元スライス上の位置に対する信頼度スコアを含む応答マップを生成するステップであって、前記信頼度スコアは前記モデルと前記2次元スライス上の前記位置との間の相関の程度を示すステップを有する
ことを特徴とする方法。
【請求項10】
請求項9記載の方法において、
前記方法は、更に、前記2次元スライスに対して複数の応答マップを生成するステップであって、応答マップは個々のモデルに対応するステップを有する
ことを特徴とする方法。
【請求項11】
請求項10記載の方法において、
前記方法は、更に、前記2次元スライス上の特定の位置に対する前記複数の応答マップから前記信頼度スコアの加重平均を計算するステップを有する
ことを特徴とする方法。
【請求項12】
請求項11記載の方法において、
信頼度スコアのより高い加重平均は、前記モデルと前記2次元スライスの位置の間の相関の程度がより高いことを示す
ことを特徴とする方法。
【請求項13】
請求項11記載の方法において、
前記信頼度スコアの加重平均は、前記2次元スライス上の前記標的の位置の予測を提供する
ことを特徴とする方法。
【請求項14】
請求項1記載の方法において、
前記方法は、更に、
画像取得装置から、前記関心領域の複数の2次元スライスを受信するステップと、
個々の2次元スライス内で前記標的の輪郭を描くステップと、
前記対応する複数の2Dスライスに関連付けられた複数の輪郭を結合するステップと、
前記結合された複数の輪郭に基づいて前記標的の3次元構造を生成するステップと
を有することを特徴とする方法。
【請求項15】
コンピュータ実行可能な命令を記憶するメモリと、
前記命令を実行して、方法を実施するプロセッサと
を含むシステムであって、
前記方法は、
3次元医用画像を受信するステップと、
前記3次元医用画像から前記標的を含む2次元スライスを抽出するステップと、
前記2次元スライスから1つまたはそれ以上の2次元パッチを決定するステップと、
前記1つまたはそれ以上の2次元パッチについて、前記1つまたはそれ以上の2次元パッチのそれぞれの中心から前記標的の中心までのオフセットを算出するステップと、
前記1つまたはそれ以上の2次元パッチと前記1つまたはそれ以上の2次元パッチに対して算出されたオフセットとに基づく前記モデルを生成するステップとを有し、
前記2次元パッチは前記2次元スライス中の任意の形状の領域に対応し、前記2次元パッチのピクセル数は前記2次元スライスのピクセル数よりも少ない
ことを特徴とするシステム。
【請求項16】
請求項15記載のシステムにおいて、
前記2次元スライスが、前記患者内の標的に対する動きの方向に基づいている
ことを特徴とするシステム。
【請求項17】
請求項15記載のシステムにおいて、
前記方法は、更に、前記モデルと前記2次元スライスとの間の相関を決定するステップを有する
ことを特徴とするシステム。
【請求項18】
請求項15記載のシステムにおいて、
前記モデルは、前記患者内の前記標的の3次元位置を推定するために使用される
ことを特徴とするシステム。
【請求項19】
請求項15記載のシステムにおいて、
前記2次元スライスは、標的位置パラメータ、スライス配向パラメータ、またはスライス厚パラメータの少なくとも1つを含む
ことを特徴とするシステム。
【請求項20】
請求項15記載のシステムにおいて、
前記2次元スライスは、前記標的の動きに平行または直交のいずれかである
ことを特徴とするシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願との相互参照)
[0001]
本出願は、2015年1月28日に出願された「適応型放射線療法に対する移動する標的の3次元位置特定」と題された代理人整理番号第12475.0058−00000号に関連しており、その全内容は参照により本明細書に組み込まれる。
【0002】
(技術分野)
[0002]
本開示は一般に放射線療法(radiation therapy)又は放射線治療(radiotherapy)に関する。より詳細には、本開示は、放射線治療の間に使用される放射線療法の治療計画を開発する際に使用する腫瘍を3次元追跡するためのシステム及び方法に関する。
【背景技術】
【0003】
[0003]
放射線治療は、哺乳動物(例えば、ヒト及び動物)の組織に癌や他の病気を治療するために使用される。そのような放射線治療技術は、患者が、標的(例えば、腫瘍)に高強度かつ高精度に収束する多数の低強度のガンマ線により照射される、ガンマナイフ(Gamma Knife)である。他の実施形態において、線形加速器を使用する放射線治療が提供され、それにより、腫瘍が、高エネルギー粒子(例えば、電子、陽子、イオン等)により照射される。放射線ビームの配置及び線量は、腫瘍が処方された(prescribed)放射線を確実に受けるように正確に制御されなければならず、ビームの配置は、周囲の健康な組織(しばしばリスク臓器(OAR)と呼ばれる)への損傷を最小限に抑えるようなものでなければならない。
【0004】
[0004]
放射線ビームは、マルチリーフコリメータを使用することにより、腫瘍の形状に適合するように成形されてもよい(例えば、マルチリーフコリメータは、カスタマイズされた放射ビーム形状を作成するために、互いに独立して移動する複数のタングステンのリーフを含む)。放射線は「処方された(prescribed)」と呼ばれる。医師が医学の処方箋と同様に腫瘍及び周囲の器官に所定量の放射線の照射を要求するからである。
【0005】
[0005]
伝統的には、各患者に対して、放射線療法治療計画(「治療計画」)が、臨床的及び線量的な目的及び制約(例えば、腫瘍及び重要な臓器への放射線の最大、最小及び平均線量)に基づいて最適化技術を用いて生成される。治療計画手順は、標的領域(例えば、腫瘍)を識別し、腫瘍近傍の重要臓器を識別するために患者の三次元画像を使用することを含むことができる。治療プランの作成は、臨床的に許容される治療計画となるために個々の重要性(例えば、重み付け)を考慮して、プランナが、様々な治療目的又は制約(例えば、投与量ヒストグラム(DVH)目標)を遵守しようとする時間のかかるプロセスである。リスク臓器(OARs)の数が増えるにつれて(例えば、頭頸部治療では13まで)、プロセスの複雑さが増すので、この作業は、様々なリスク臓器(OARs)によって複雑になる、時間のかかる試行錯誤のプロセスである。腫瘍から遠いリスク臓器(OARs)は放射線から容易に逃げることができる一方、標的腫瘍に近いか又は重複するリスク臓器(OARs)は逃げることが困難である。
【0006】
[0006]
コンピュータ断層撮影(CT)イメージングは、従来、放射線治療のための治療計画用の画像データの1次ソースとして働く。CT画像は、患者の幾何学(ジオメトリ)の正確な表現を提供し、CT値は、放射線量計算のための電子密度(例えば、ハウンスフィールド(Hounsfield)単位)に直接変換される。しかしながら、CTを使用することは、患者を追加の放射線量にさらすことを引き起こす。CT画像に加え、磁気共鳴画像(MRI)スキャンは、CT画像と比較して優れた軟組織コントラストにより放射線療法で使用することができる。MRIは電離放射線を含まず、例えば組織の代謝及び機能のような、人体の機能情報を捕捉するために使用することができる。
【0007】
[0007]
コンピュータ断層撮影(CT)、蛍光透視、及び磁気共鳴画像(MRI)のようなイメージングシステムは、標的(例えば、器官、腫瘍、など)の位置を決定し、追跡するために使用される。MRIは、CTで使用されるような電離放射線を使用せずに優れた軟組織のコントラストを提供するので、一般的に使用されている。イメージングシステムと統合された放射線治療システムの例は、標的(例えば、腫瘍)の3次元(3D)画像を使用するMRIリナック(MRI−Linac)を含んでもよい。MRIリナックのMRI装置は、患者の組織中の水素原子核の部分的マップに対応する複数の画像を提供することができる。患者の画像は、2次元(2D)平面又は3次元(3D)体積で取得することができる。臓器や腫瘍が患者の体内を移動するので、標的の迅速かつ正確な3次元(3D)位置特定は重要である。例えば、標的器官又は腫瘍は、様々な動き(例えば、呼吸器、心臓、蠕動又は他の種類の患者の動き)により移動する。しかし、2DMRスライスは、典型的には患者の身体の特定の位置で取得され、2DMRスライスは、標的器官又は腫瘍の動きによる腫瘍/標的を含まない。したがって、標的腫瘍を取得し、腫瘍の構造及び動きを追跡するシステム及び方法は、取得された2DMRスライスが、位置、向き及び/又は厚さとして標的腫瘍を含み、臨床環境において2DMR上で可視となるように要求される。
【0008】
[0008]
この概要は、本出願のいくつかの教示の概要であり、本主題の排他的又は網羅的な処理を意図するものではない。本主題に関するさらなる詳細は、詳細な説明及び添付の特許請求の範囲に記載されている。本発明の他の態様は、以下の詳細な説明を読んで理解し、それらの一部を形成する図面を見れば当業者には明らかであり、それらの各々は限定的な意味で解釈されるべきではない。本発明の範囲は、添付の特許請求の範囲及びその法的均等物によって定義される。
【発明の概要】
【0009】
[0009]
本開示の特定の実施形態は、医用画像処理のための方法に関する。その方法は、コンピュータ実行可能な複数の命令を実行するプロセッサ装置によって実現されてもよい。その方法は、画像誘導放射線治療を受けている患者の中を移動する3次元の標的の位置を特定し、追跡する方法であって、前記患者の関心領域に対する適応フィルタモデルを受信するステップであって、前記適応フィルタモデルは追跡すべき前記標的に基づいているステップ(a)と、画像取得装置により実行され、前記患者の関心領域の2次元スライスを取得するステップ(b)と、プロセッサにより実行され、前記適応フィルタモデルを前記2Dスライスに適用するステップであって、前記適応フィルタモデルはオフセット値を含むステップ(c)と、前記プロセッサにより実行され、前記適応フィルタモデルに基づいて前記2次元スライス内の前記標的の位置を決定するステップ(d)と、前記プロセッサにより実行され、前記オフセット値に基づいて前記標的の潜在的な位置を推定するステップ(e)と、前記プロセッサにより実行され、前記ステップ(b)から前記ステップ(e)を繰り返して、画像誘導放射線治療を受けている前記患者の前記移動する標的を追跡するステップとを有する。
【0010】
[0010]
本開示の特定の実施形態は、医用画像処理システムに関する。そのシステムは、放射線療法治療計画に従って画像誘導放射線治療装置を使用して照射される移動する3次元標的を位置決めし追跡するためのシステムであって、前記システムは、プロセッサと、前記プロセッサに動作可能に結合されるメモリとを備える。前記メモリは、複数の医用画像と、複数の適応フィルタモデルと、取得プロトコルと、前記プロセッサによって実行されたときに前記プロセッサに方法を実行させるコンピュータ実行可能命令とを格納するメモリとを備える。前記方法は、前記取得プロトコルに従って2次元スライスをメモリから検索するステップ(a)と、前記プロセッサにより実行され、前記2次元スライスを特定の処理領域に変換するステップ(b)と、前記プロセッサにより実行され、前記適応フィルタモデルを前記2次元スライスに適用するステップであって、前記適応フィルタモデルはオフセット値を含むステップ(c)と、前記プロセッサにより実行され、各適応フィルタモデルに対する応答マップを生成するステップであって、前記応答マップは前記2次元スライスの各位置に対する信頼度スコアを含むステップ(d)と、前記プロセッサにより実行され、高い信頼度スコアに基づき、前記適応フィルタモデルと前記2次元スライス上の1つ又はそれ以上の位置との間の一致を特定するステップ(e)と、前記プロセッサにより実行され、前記高い信頼度スコアに基づき、前記2次元スライス内の前記標的の位置を決定するステップ(f)と、前記プロセッサにより実行され、前記オフセット値に基づき、前記標的の潜在的な位置を推定するステップ(g)と、次の2次元MRIスライスをメモリから検索し、前記ステップ(b)から前記ステップ(g)を繰り返して、画像誘導放射線治療を受けている前記患者の前記移動する標的を追跡するステップとを有する。
【0011】
[0011]
本開示の追加の目的及び利点は、以下の詳細な説明に部分的に記載され、部分的に説明から明らかであり、本開示の実施によって知ることができる。本開示の目的及び利点は、添付の特許請求の範囲において特に指摘された要素及び組合せによって実現され、達成される。
【0012】
[0012]
前述の一般的な説明及び以下の詳細な説明は例示的及び説明的なものに過ぎず、特許請求された本発明を限定するものではないことを理解されたい。
【図面の簡単な説明】
【0013】
[0013]
必ずしも一定の縮尺で描かれていない図面において、同様の参照番号は、異なる図で類似の構成要素を示すことがある。文字の接尾辞又は異なる文字の接尾辞を有する同様の数字は、同様の構成要素の異なる例を表すことができる。図面は、本明細書で論じられている様々な実施形態を例示として概略的に示すが、これに限定されるものではなく、説明及び図面と共に、開示された実施形態を説明するのに役立つ。適切な場合、同じ参照番号は同じ又は同様の部品を指すために図面全体を通して使用される。このような実施形態は実証的であり、本装置、システム、又は方法の網羅的又は排他的な実施形態を意図しない。
【0014】
[0014]
図1図1は、放射線治療のための3次元の標的の位置を特定して追跡するための例示的な放射線治療システムを示す。
【0015】
[0015]
図2図2は、図1の放射線治療システムで使用される放射線治療装置であるガンマナイフを示す。
【0016】
[0016]
図3図3は、図1の放射線治療システムで使用される放射線治療装置である線形加速器を示す。
【0017】
[0017]
図4図4は、適応フィルタモデルを生成する訓練モジュールの例示的フローチャートを示す。
【0018】
[0018]
図5図5は、患者の放射線治療中に腫瘍の位置を特定して追跡するために1つ又はそれ以上の訓練された適応フィルタモデルを使用するための例示的なフローチャートを示す。
【0019】
[0019]
図6図6は、適応フィルタモデル、応答マップ、及び患者内の標的を追跡する画像を示す図である。
【発明の詳細な説明】
【0020】
[0020]
本開示では、放射線療法治療を受けている患者の解剖学的構造内に腫瘍の位置を特定し、追跡するための放射線治療システム及び対応する方法が導入されている。具体的には、放射線治療計画中に、複数の3次元(3D)磁気共鳴画像(MRI)又は4次元(4D)磁気共鳴画像(MRI)がキャプチャされる。標的、例えば、患者の解剖学的構造における腫瘍の正確な位置は、当該技術分野において公知のセグメンテーション手法を用いて、放射線治療システムによって決定することができる。腫瘍の位置が決定された後に、システムは、複数のパッチを生成することができ、パッチの中心から腫瘍へのオフセットを決定することができる。相関又は外観のモデル化技術を使用するなどの様々な方法は、放射線治療システムで使用されて複数のパッチの選択された機能を強化し、複数の適応フィルタモデルをもたらす。これらの適応フィルタモデルは、患者の実際の「オンライン」治療中に放射線治療システムによって使用することができる。
【0021】
[0021]
このアプローチの1つの利点は、標的の腫瘍が放射線治療中に位置を特定して追跡することができることである。呼吸、心臓運動、蠕動、患者の不随意運動(例えば、咳、くしゃみなど)によって引き起こされる運動のような様々なタイプの運動や、放射線治療中に治療台上にある患者により引き起こされる自発的な運動のために、腫瘍は、典型的には、患者の解剖構造内を移動する。MRI誘導放射線療法を利用する場合、患者の解剖学的構造の画像の2次元(2D)スライス飲みが利用できる。このアプローチは、どの2次元(2D)スライスが腫瘍を含むかを決定することを可能にし、潜在的な将来の位置を推定することによって腫瘍を追跡する能力を更に有効に提供する。
【0022】
[0022]
図1は、放射線療法治療中に標的位置特定及び追跡を実行するための例示的な放射線治療システム100を示している。放射線治療システム100は、インターネット132に接続されたネットワーク130に接続された放射線治療装置110を含むことができる。ネットワーク130は、放射線治療装置110を、データベース140と、病院データベース142と、(例えば、患者情報を提供することができる)腫瘍情報システム(OIS)150と、(例えば、放射線治療装置110によって使用される放射線治療計画を生成する)治療計画システム(TPS)160と、画像取得装置170と、表示装置180と、ユーザインターフェース190に接続する。
【0023】
[0023]
放射線治療装置110は、プロセッサ112と、メモリ装置116と、通信インターフェース114とを含むことができる。メモリ装置116は、オペレーティングシステム118と、治療計画ソフトウェア120と、適応フィルタ126を生成するトレーニングモジュール124と、標的位置特定モジュール128のためのコンピュータ実行可能命令や、プロセッサ240によって実行される他のコンピュータ実行可能命令を格納することができる。
【0024】
[0024]
プロセッサ112は、メモリ装置116に通信可能に接続することができ、プロセッサ112は、それに格納されたコンピュータ実行可能命令を実行するように構成することができる。例えば、プロセッサ112は、放射線治療の投与中に患者における標的の位置を決定するために、訓練モジュール124と標的位置特定モジュール128の両方の機能を実装するために、訓練モジュール124を実行することができる。更に、プロセッサ112は、訓練モジュール124及び標的位置特定モジュール128とインターフェースすることができる治療計画ソフトウェア120(例えば、Elektaによって製造されたMonaco(登録商標)ソフトウェアなど)を実行することができる。
【0025】
[0025]
プロセッサ112は、例えば、マイクロプロセッサ、中央処理装置(CPU)、グラフィック処理ユニット(GPU)、加速処理ユニット(APU)等のような1つ又はそれ以上の汎用処理デバイスを含む、処理装置でもよい。より具体的には、プロセッサ112は、復号命令セットコンピュータ(CISC)マイクロプロセッサ、縮小命令セットコンピュータ(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、他の命令セットを実装するプロセッサ、命令セットの結合を実装するプロセッサでもよい。プロセッサ112は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、システムオンチップ(SoC)などの1つ又はそれ以上の専用処理装置であってもよい。当業者によって理解されるように、いくつかの実施形態において、プロセッサ112は、汎用プロセッサよりも専用プロセッサでもよい。プロセッサ112は、また、Intel(登録商標)により製造された、Pentium(登録商標)、Core(登録商標)、Xeon(登録商標)、又はItanium(登録商標)ファミリー、AMD(登録商標)により製造された、Turion(登録商標)、Athlon(登録商標)、Sempron(登録商標)、Opteron(登録商標)、FX(登録商標)、Phenom(登録商標)ファミリー、又は、Sun Microsystemsにより製造された様々なプロセッサのいずれかからのマイクロプロセッサのような1つ又はそれ以上の処理装置を含んでもよい。プロセッサ112は、また、Nvidia(登録商標)により製造された、GeForce(登録商標)、Quadro(登録商標)、Tesla(登録商標)ファミリー、Intel(登録商標)により製造された、GMA、Iris(登録商標)ファミリー、又は、AMD(登録商標)により製造されたRadeon(登録商標)ファミリーからのGPUのようなグラフィカル処理ユニットを含んでもよい。プロセッサ112は、また、AMD(登録商標)により製造された、Desktop A−4(6,8)シリーズ、Intel(登録商標)により製造された、Xeon Phi(登録商標)ファミリー、のような加速処理ユニットを含んでもよい。開示された実施形態は、いかなるタイプのプロセッサに限定されず、大量の画像データを識別、分析、維持、生成、及び/又は、提供する、又は、そのような画像データを操作して標的を定位及び追跡する、又は、開示された実施形態と一致する他のタイプのデータを操作するような計算命令を満たすように構成されている。更に、用語「プロセッサ」は、例えば、マルチコアデザインの1つのプロセッサ、又は、それぞれがマルチコアデザインを有する複数のプロセッサを含んでもよい。プロセッサ112は、記憶装置116に格納された一連のコンピュータプログラム命令を実行して、以下詳細に説明する様々な動作、処理、方法を実行することができる。
【0026】
[0026]
メモリ装置116は、画像取得装置179から受信した画像データ122(例えば、3D MRI、4D MRI、2Dスライス等)、又は、放射線治療装置110が使用することができる任意の他のタイプのデータ/情報を格納することができる。メモリ装置210は、コンピュータ実行可能命令が任意のフォーマットで格納される、読み出し専用メモリ(ROM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、シンクロナスDRAM(SDRAM)又はラムバスDRAM等のようなダイナミックランダムアクセスメモリ(DRAM)、スタティックメモリ(例えば、フラッシュメモリ、スタティックランダムアクセスメモリ)等を含むことができる。コンピュータプログラム命令は、プロセッサ112によってアクセスされ、ROM又は任意の他の適切な記憶位置から読み出され、プロセッサ112による実行のためにRAMにロードされることができる。例えば、メモリ116は、1つ又はそれ以上のソフトウェアアプリケーションを格納することができる。メモリ116に格納されたソフトウェアアプリケーションは、例えば、ソフトウェア制御される装置と同様の一般的なコンピュータシステムのためのオペレーティングシステム118を含むことができる。更に、メモリ116は、全体のソフトウェアアプリケーション、又は、プロセッサ112によって実行可能なソフトウェアアプリケーションの一部のみを格納することができる。例えば、メモリ装置116は、治療計画システム160によって生成された治療計画ソフトウェア120として、1つ又はそれ以上の放射線療法治療計画を格納することができる。
【0027】
[0027]
いくつかの実施形態では、メモリ装置116は機械可読記憶媒体を含むことができる。一実施形態では、機械可読記憶媒体は単一の媒体であってもよいが、用語「機械可読記憶媒体」は、1つ又はそれ以上のコンピュータ実行可能命令又はデータを保存する単一の媒体又は複数の媒体(例えば、集中型又は分散型のデータベース、及び/又は関連するキャッシュ及びサーバ)を含むと解されるべきである。用語「機械可読記憶媒体」は、また、機械による実行のための一連の命令を記憶又は符号化することができ、機械に本開示の1つ又はそれ以上の方法システムを実行させる任意の媒体を含むと解されるであろう。用語「機械可読記憶媒体」は、固体メモリ、光及び磁気媒体を含むと解されるが、それには限定されない。例えば、メモリ/記憶装置210は、1つ又はそれ以上の揮発性、非一時的、又は不揮発性の有形のコンピュータ可読媒体であり得る。
【0028】
[0028]
放射線治療装置110は、通信プロセッサ112とメモリ116に通信可能に接続された通信インターフェース114を介してネットワーク130と通信することができる。通信インターフェース114は、例えば、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、高速データ伝送アダプタ(例えば、ファイバ、USB3.0、サンダーボルト等)、無線ネットワークアダプタ(例えば、WiFiアダプタ等)、通信アダプタ(例えば、3G、4G/LTE等)等を含むことができる。通信インターフェース114は、放射線治療装置110がネットワーク130を介して遠隔に配置された構成要素などの他の機械及び装置と通信することを可能にする1つ又はそれ以上のデジタル及び/又はアナログ通信装置を含むことができる。
【0029】
[0029]
ネットワーク130は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ等)、クライアント−サーバ、ワイドエリアネットワーク(WAN)等の機能を提供することができる。したがって、ネットワーク130は、放射線治療装置110と、例えば、治療計画システム160、腫瘍情報システム150、画像取得装置170のような多くの様々な他のシステム及びデバイとの間のデータ伝送を可能にする。さらに、治療計画システム160、OIS150、及び画像取得装置170により生成されたデータは、メモリ116、データベース140、又は病院データベース142に格納されることができる。データは、必要に応じて、プロセッサ112によってアクセスされるために、通信インターフェース114を介して、ネットワーク130を介して送信/受信されることができる。
【0030】
[0030]
また、ネットワーク130は、遠隔に存在してインターネットに接続しているサーバやクライアントと通信するためにインターネット132に接続されることができる。説明したように、ネットワーク130は、他のシステムS1(134)、S2(136)、S3(138)を含むことができる。システムS1、S2、及び/又はS3は、システム100と同一であってもよいし、異なるシステムであってもよい。いくつかの実施形態では、ネットワーク130に接続された1つ又はそれ以上のシステムは、患者に放射線療法を提供する他の態様と同様に、画像取得、標的位置取得、標的追跡を共同で実行する分散コンピューティング/シミュレーション環境を形成することができる。
【0031】
[0031]
また、放射線治療システム100は、遠隔に格納された1つ又はそれ以上のプログラムを実行するためにデータベース140又は病院データベース142と通信することができる。一例として、データベース140、病院データベース142、又はその両方のデータベースは、Oracle(登録商標)データベース、Sybase(登録商標)データベース、他のデータベースのようなリレーショナルデータベースや、Hadoopシーケンスファイル、HBase、Cassandra、他のデータベースのような非リレーショナルデータベースを含むことができる。そのような遠隔プログラムは、例えば、腫瘍情報システム(OIS)ソフトウェア又は治療計画ソフトウェアを含むことができる。OISソフトウェアは、例えば、病院のデータベース142、データベース140、又はOIS150に格納することができる。治療計画ソフトウェアは、例えば、データベース140、病院データベース142、治療計画システム160、又はOIS150に格納することができる。したがって、例えば、放射線治療装置110は、病院データベース142と通信して、腫瘍情報システム150の機能を実装することができる。
【0032】
[0032]
しかし、開示された実施形態のシステム及び方法は、データベースが別々であることに限定されない。一態様では、放射線治療システム100は、データベース220又は病院データベース230を含むことができる。あるいは、データベース220及び/又は病院データベース230は、放射線治療システム100から離れて配置されてもよい。データベース140及び病院データベース142は、データベース140又は病院データベース142のメモリ装置に格納されたデータの要求を受信し、処理し、データベース220又は病院データベース230からデータを提供するように構成されたコンピューティングコンポーネント(たとえば、データベース管理システム、データベースサーバ等)を含むことができる。当業者であれば、データベース140,142は、中央方式又は分散方式のいずれかに配置された複数のデバイスを含むことができることを理解するであろう。
【0033】
[0033]
また、放射線治療装置110は、データベース140に格納された複数の各種データを送信/受信するために、ネットワーク130を介してデータベース140と通信することができる。例えば、いくつかの実施形態では、データベース140は、複数の画像(例えば、3D MRI、4D MRI、2D MRIスライス画像、CT画像、2D蛍光透視画像、X線画像、MRスキャン又はCTスキャンからの生データ、画像取得装置140から医療におけるデジタル画像と通信(DIMCOM)データ、等)を格納するように構成することができる。データベース140は、標的位置特定モジュール128、訓練モジュール124、及び治療計画ソフトウェア120によって使用されるデータを格納することができる。放射線治療装置110は、後述するように、複数の適応フィルタモデルを生成するために、データベース120から撮像データ(例えば3D MRI画像、4D MRI画像)を受信することができる。
【0034】
[0034]
さらに、放射線治療システム100は、患者の医用画像(例えば、磁気共鳴画像(MRI)画像、3D MRI、2DストリーミングMRI、4D容積型MRI、コンピュータ断層撮影(CT)画像、コーンビームCT、陽電子放射断層撮影(PET)画像、機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI)、X線画像、透視画像、超音波画像、放射線治療ポータル画像、単一光子放射断層撮影(SPECT)、など)を取得できる画像取得装置170を含むことができる。画像取得装置170は、例えば、MRI撮像装置、CT撮像装置、PET撮像装置、超音波装置、透視装置、SPECT撮像装置、又は、患者の1つ又はそれ以上の画像を取得する撮像装置である。画像取得装置170により取得された画像は、画像データ及び/又は試験データのいずれかとして、データベース140内に格納することができる。一例として、画像取得装置170によって取得された画像は、放射線治療装置110によってメモリ116に格納されることができる。
【0035】
[0035]
一実施形態では、例えば、画像取得装置140は、単一の装置として(例えば、「MRI−Linac」とも呼ばれる線形加速器と組み合わされたMRI装置)、又は、ガンマナイフと組み合された一体型MRI装置として放射線治療装置110と統合されることができる。このようなMRI−Linacは、例えば、放射線療法治療計画に従って放射線療法を所定の標的に向けるなど、患者の標的器官又は標的腫瘍の位置を決定するために使用することができる。
【0036】
[0036]
画像取得装置170は、関心領域(例えば、標的器官、標的腫瘍、又はそれら両方)のために患者の解剖学的構造の1つ又はそれ以上の画像を取得するように構成することができる。各2Dスライスは、1つ又はそれ以上のパラメータ(例えば、2Dスライスの厚さ、向き、位置、等)を含むことができる。1つ又はそれ以上のパラメータは、標的を含むように、プロセッサ112を用いて調整することができる。例えば、2次元スライスの選択された特徴は、例えば、勾配又はRF波形の特性を調整することにより、操作することができる。例えば、スライスの位置は、RFパルスの基本周波数を変更し、同じ勾配強度を維持することによって変化させることができる。さらに、スライスの向きは、例えば、物理的に異なる傾斜軸を使用して変化させることができる(例えば、選択されたスライスが適用された勾配に直交させることができる)。一例において、画像取得装置170(例えば、MRI、又はMRI−Linac)は任意の向きでの2Dスライスを得ることができる。例えば、2Dスライスの向きは、矢状方向、冠状方向、又は軸配向を含むことができる。これらの配向は、MRI又はMRI−Linacに関連付けられた磁場勾配(例えば、Gx、Gy、又はGzそれぞれ)に対応することができる。プロセッサ112は、標的器官又は標的腫瘍を含むように、2Dスライスの厚さのようなパラメータを調整することができる。一例では、スライスの厚さは、数式1を使用して、計算して調整することができる。
【0037】
[0037]
【0038】
【数1】
【0039】
[0038]
数式1において、Tは、距離単位(例えば、ミリメートル)で測定されるような2Dスライスの厚さを表す。Δωは、特定の周波数(例えば、ヘルツ「Hz」)で適用された無線周波数パルスに対応する励起帯域幅を表す。文字γは、磁気回転比(例えば、プロトンに対して、γは267.54MHz/テスラ)と呼ばれる定数を表す。Gsliceは、(例えば、テスラ/メートルで測定された)磁場勾配を表す。一例において、2Dスライスは、3D MRIボリュームとして情報から決定することができる。例えば、放射線治療装置110を使用する場合、患者が放射線療法の治療を受けている間に、このような2Dスライスは「リアルタイム」で画像取得装置170により取得することができる。
【0040】
[0039]
治療計画システム160は、治療すべき特定の患者のための放射線療法治療計画と、他の患者のための放射線療法治療計画と、他の放射線治療情報(例えば、ビーム角度、線量 - ヒストグラム - ボリューム情報、治療中に使用される放射ビーム数、ビーム角度、ビーム当たりの用量、など)とを生成し、格納することができる。例えば、治療計画システム160は、患者に適用される特定の放射線量や、他の放射線関連情報(例えば、画像誘導放射線治療(IGRT)、強度変調放射線療法として(IMRT)、定位放射線療法のような治療の種類)を提供することができる。
【0041】
[0040]
治療計画を生成することは、患者の画像にアクセスし、腫瘍のような標的の輪郭を描くために、画像取得装置170(例えば、CT装置、MRI装置、PET装置、X線装置、超音波装置など)と通信することを含む。いくつかの実施形態では、腫瘍の周囲又は腫瘍に近接した健康な組織のような1つ又はそれ以上のリスク臓器(OARs)の輪郭を描くことが求められる。したがって、リスク臓器(OAR)が標的の組織に近いとき、リスク臓器(OAR)のセグメンテーションを行う。また、標的腫瘍がリスク臓器(OAR)に近い場合(例えば、膀胱や直腸に近接した前立腺の場合)、リスク臓器(OAR)のセグメンテーションは、標的内だけでなくリスク臓器(OAR)内に対しても、治療計画システム160が線量分布を研究することを可能にする。
【0042】
[0041]
放射線療法を受けている患者の、リスク臓器(OAR)から標的器官又は標的腫瘍の輪郭を描くためには、MRI画像、CT画像、PET画像、fMRI画像、X線画像、超音波画像、放射線療法ポータル画像、SPECT画像等のような医用画像が、画像取得装置170により非侵襲的に得て、人体の内部構造を明らかにすることができる。医用画像からの情報に基づいて、3次元構造を得ることができる。また、治療計画プロセスの間に、多くのパラメータは、標的腫瘍の効率的処置(例えば、標的腫瘍が有効な治療のために十分な放射線量を受け取ることのような)とリスク臓器(OARs)への低い放射線量(例えば、リスク臓器(OARs)ができるだけ低い放射線量を受けることのような)とのバランスや、標的器官及び標的腫瘍の位置と、リスク臓器(OAR)の位置と、リスク臓器(OAR)に対する標的の動きとのバランスを達成することが考慮される。例えば、3D構造は、標的を輪郭付けすることや、各2Dレイヤ又はMRI又はCT画像のスライス内のリスク臓器(OAR)を輪郭付けすること、各2Dレイヤやスライスの輪郭を組み合わせることによって得ることができる。輪郭は、手動で(例えば、医師、線量測定士、又は医療従事者により)、又は自動で(例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造された、アトラスベースの自動セグメンテーションソフトウェア、ABAS.RTMのようなプログラムを使用して)生成することができる。特定の実施形態において、標的腫瘍又はリスク臓器(OAR)の3D構造は、治療計画システム160によって自動的に生成することができる。
【0043】
[0042]
標的腫瘍とリスク臓器(OARs)が配置され、描写された後、線量測定士、医師、又は医療従事者は、標的腫瘍と腫瘍に近接する任意のリスク臓器(OAR)(例えば、左右の耳下腺、視神経、眼、水晶体、内耳、脊髄、脳幹など)に適用される放射線量を決定することができる。放射線量が各解剖学的構造(例えば、標的腫瘍、OAR)のために決定された後、逆計画として知られているプロセスは、ボリューム描写(例えば、標的ボリューム、輪郭に敏感な構造を定義する)、標的腫瘍およびリスク臓器(OAR)周辺のマージン、線量制約(例えば、腫瘍標的に対する全線量及び任意のリスク臓器(OAR)に対するゼロ線量であること、PTVに対する線量の95%であること、それと同時に、脊髄に対する45Gy以下の線量、脳幹に対する55Gy以下の線量、視神経構造に対する54Gy未満の線量をそれぞれうけること)、ビーム角度選択、コリメータ設定、ビームオン時間、のような1つ又はそれ以上の治療計画パラメータを決定するために行うことができる。逆計画の結果は、治療計画システム160又はデータベース140に格納することができる放射線療法治療計画を構成することができる。これらの治療パラメータの一部は、相関させることができる。例えば、治療計画を変更しようとして1つのパラメータ(例えば、標的腫瘍への線量を増加させる等さまざまな目的に対する重み)を調整することは、少なくとも1つの他のパラメータに影響を与える可能性があり、それは別の治療計画の開発につながる可能性がある。したがって、治療計画システム160は、放射線治療装置110が患者への放射線治療を提供するために、これらのパラメータを有する調整された放射線療法治療計画を生成することができる。
【0044】
[0043]
また、放射線治療システム100は、表示装置180及びユーザインターフェース190を含む。表示装置180は、医用画像、インターフェース情報、治療計画パラメータ(例えば、輪郭、線量、ビーム角度、等)、治療計画、標的、標的の位置を特定及び/又は標的の追跡、又は任意の関連情報をユーザに表示する1つ又はそれ以上の表示画面を含むことができる。ユーザインターフェース190は、ユーザが放射線治療システム100に情報を入力するための、キーボード、キーパッド、タッチスクリーン又は任意のタイプのデバイスを含むことができる。
【0045】
[0044]
放射線治療装置110が解剖学的関心領域に標的腫瘍を位置特定し追跡するために、例えば、プロセッサ112は標的位置特定モジュール128を実行することができる。本開示において後述するように、標的取得モジュール120は、訓練モジュール124によって生成された適応フィルタモデル126を利用することができる。さらに、適応フィルタモデルは、特定のドメイン情報(例えば、空間領域又は周波数領域)、位置情報(例えば、ボリューム内の3D位置、3Dオフセット情報、又は2D変位情報)を含むことができる。標的位置特定モジュール128は、以下に説明するように、訓練モジュール124によって生成された少なくとも1つの適応フィルタモデル126を使用する。
【0046】
[0045]
更に、放射線治療システム100の任意の及び全ての構成要素は、実施の形態では、仮想マシン(例えば、VMWare、Hyper−V、など)として実装されてもよい。例えば、仮想マシンは、ハードウェアとして機能するソフトウェアであることができる。したがって、仮想マシンは、少なくとも1つ又はそれ以上の仮想プロセッサ、1つ又はそれ以上の仮想メモリ、一緒にハードウェアとして機能する1つ又はそれ以上の仮想通信インターフェースを含むことができる。例えば、OIS150、TPS160、画像取得装置170は、仮想マシンとして実現することができる。処理能力、メモリ、利用可能な計算能力を考えると、全体の放射線治療システムは、仮想マシンとして実現することができる。
【0047】
[0046]
図2は、放射線療法治療デバイス200、例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造されたレクセルガンマナイフ(Leksell Gamma Knife)のひとつのタイプの一例を示す。ガンマナイフは、(図1に示された)標的位置特定モジュール128を利用するように構成することができ、標的位置特定モジュール128は、(例えば、画像取得装置170から)遠隔でMRI画像にアクセスして、脳内の標的腫瘍の位置を特定することができる。一実施形態では、画像取得装置170としてのMRI装置は、ガンマナイフと統合することができる。図2に示すように。放射線治療セッションの間に、患者210は手術又は放射線療法を受ける患者の身体部分(例えば、頭部)を安定に保つために座標フレーム220を着用することができる。調整フレーム220と患者位置決めシステム230は、患者を撮像する間、又は放射線手術の間に使用することができる空間座標系を確立することができる。放射線治療装置200は、複数の放射線源250を囲む保護ハウジング240を含むことができる。放射線源250は、ビームチャンネル260を介して複数の放射線ビーム(例えば、ビームレット)を生成することができる。複数の放射線ビームは、異なる方向からアイソセンタ270に焦点を合わせるように構成することができる。個々の放射線ビームは比較的低い強度を有しているが、異なる放射線ビームからの複数の線量がアイソセンタ270に蓄積する場合、アイソセンタ270は放射線の比較的高いレベルを受信することができる。特定の実施形態では、アイソセンタ270は、腫瘍のように手術又は処置下の標的に対応することができる。
【0048】
[0047]
図3は、放射線治療装置300のタイプの他の例(例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造されたリナック(LINAC)と呼ばれる線形加速器)を示す。線形加速器300を用いて、患者302は、(図1に示された)治療計画システム160により生成された放射線療法治療計画によって決定される放射線量を受けるように患者テーブル304上に配置することができる。放射線治療計画は、患者302の解剖学的構造内に位置する標的器官又は標的腫瘍のように、ボリューム内の3D標的の位置を特定し、追跡するために使用することができる。
【0049】
[0048]
線形加速器300は、患者302の周りを回転するガントリ308に接続された放射ヘッド306を含むことができる。放射ヘッド306は、標的臓器又は標的腫瘍に向けられる放射線ビーム310を生成する。ガントリ308が回転すると、放射ヘッド306は患者302の周りに回転することができる。回転している間、放射ヘッド306は、(図1に示された)治療計画システム160により生成された治療計画に応じて腫瘍の角度と形状と大きさに応じた、複数の変化する線量の放射線を患者302に提供することができる。臓器や腫瘍が患者の体内を移動するので、標的の迅速かつ正確な3次元位置特定は重要である。例えば、標的臓器又は腫瘍は、様々な運動の種類(例えば、呼吸、心臓、蠕動又は他のタイプの患者の動き)のために移動する。したがって、線形加速器300は、標的位置特定モジュール128の使用による放射線治療中に、標的(例えば、臓器又は腫瘍)の位置を特定し、標的を追跡するように構成することができる。
【0050】
[0049]
また、患者テーブル304の下方に、フラットパネルシンチレータ検出器312が設けられており、フラットパネルシンチレータ検出器312は、患者32の身体上の標的臓器又は標的腫瘍に位置するアイソセンタ314の周りに放射ヘッド306と同期して回転する。フラットパネルシンチレータは、達成可能な最高の信号対雑音比を有する画像を取得することができ、任意の特定の放射線療法治療セッション中に患者302によって受けられた放射線の量を検証するために使用することができる(例えば、放射線療法治療が放射線治療の複数のセッションを必要とし、各セッションは通常「fraction」と呼ばれる)。さらに、このような画像は、放射ヘッド306に対する患者位置決めの幾何学的な精度を決定するために使用される。
【0051】
[0050]
放射ヘッド306によって生成されるビーム310の中心と軸316との交点は、通常「アイソセンタ」と呼ばれる。
患者302の腫瘍部位をアイソセンタ314又はアイソセンタ314に近接して配置することができるように、患者テーブル304を電動で動かすことができる。例えば、患者テーブル304は、放射線ヘッド306に位置する治療用放射線源に対して患者302の長手方向位置又は横手方向位置を上昇し、変化するように、直線加速器300の1つのそれ以上の他のコンポーネントへの相対的な位置を変更することができる。
【0052】
[0051]
一実施形態では、線形加速器300は、単一の装置(例えば、MRI−Linac)としての磁気共鳴イメージング装置のような(図1に示されている)画像取得装置170と一体化することができる。このような場合には、放射線療法治療中に患者テーブル304が挿入される孔の大きさにより限定的しか動かないように患者テーブル304が構成されている場合、MRI−Linacは、放射線源に対して患者302の位置合わせを「仮想的に」調整することができる「仮想カウチ」を含むことができる。このような実施形態では、MRI−Linacは、所定の標的に放射線治療を行うためのように、標的位置特定モジュール128を使用して、患者302内の標的の位置を決定し、標的を追跡するために使用することができる。
【0053】
[0052]
図4は、適応フィルタモデル126を生成するための訓練モジュール124のプロセス400を示す。(図1に示された)適応フィルタモデル126は、標的の位置を決定し、次に標的を追跡するために、標的位置特定モジュール128によって利用されることができる。
【0054】
[0053]
ステップ402では、(図1に示された)訓練モジュール124が、特定の患者のための関心領域の画像取得装置170から複数の画像(例えば、3DMRI、4DMRIなど)を受信する。複数の画像は、例えば、標的(例えば、標的臓器、標的腫瘍、など)を含む関心領域の3DMRI画像、又は4DMRI画像であることができる。
【0055】
[0054]
ステップ404では、プロセッサ112を用いる訓練モジュール110が、複数のMRI画像から関心領域内の標的(例えば、標的臓器、標的腫瘍、など)を含む複数のスライス(例えば、2Dスライス)を抽出するように処理する。例えば、2Dスライスの厚さは、放射線療法治療を開始する前に予め決定する(例えば、3DMRIボリューム又は4DMRIボリュームに基づく情報から決定する)ことができる。情報は、2Dスライスが周波数領域又は空間領域内にあるべきか否かを含むことができる。あるいは、患者402が放射線療法で処置されているとき(例えば、リアルタイムで)、訓練モジュール110は2Dスライス情報を受信することができる。例えば、MRI−Linacは、放射線療法で患者402を治療するために使用することができる。この放射線療法のプロセスの間、MRI−Linacは、治療プロセス中の複数の3DMRI画像や複数の4DMRI画像を取ることができる。抽出されたスライスは、標的を取り囲む患者の解剖学的構造の2Dスライスを表す。さらに、抽出された2Dスライスは、標的の運動に対して平行又は垂直のいずれかであることができる。
【0056】
[0055]
ステップ406では、プロセッサ112が、抽出された各2Dスライスに対する1つ又はそれ以上の2Dパッチを決定する。一例では、2Dパッチは、標的を含むことができる2Dスライス画像の領域に対応することができる。2Dパッチは、任意の形状に構成することができ(例えば、正方形、長方形、円形、多角形等に)、サイズを変化させることができる(例えば、32×32ピクセルのパッチ、64×64ピクセルのパッチ、等のサイズに)。説明のため、方形パッチは、例えば、512×512ピクセルである2Dスライスにおける標的に対応する32×32ピクセルとすることができる。一例では、2Dパッチは、標的についての情報と、標的を含まない領域(例えば、背景情報)に対応する情報とを含むことができる。
【0057】
[0056]
ステップ408では、プロセッサ112が、オフセット値を決定する。オフセット値は、例えば、追跡される標的の中心に2Dパッチの中心からの距離である。2Dパッチは、ドメイン情報(例えば、2Dパッチの空間領域又は周波数領域に関する情報)を含むことができる。さらに、オフセット情報は、基準点(例えば、ボリューム内の標的に対応する基準点)からの2Dパッチの変位のような情報と、標的の形状の変化(例えば、変形)に関する情報とを含むことができる。一例では、基準点は、標的の計算された中心(例えば、腫瘍の重心)を含むことができる。オフセット値は、標的を含む各2Dパッチに対して決定される。したがって、各2Dパッチは、自分の関連付けられたオフセット値を有する。複数のオフセット値及びそれらに関連するパッチは、メモリ116に格納される。
【0058】
[0057]
例えば、2Dパッチの中心が座標(例えば、[xp、yp、zp])を有し、標的腫瘍の中心が座標(例えば、[xt、yt、zt])を有すると、標的腫瘍の3D位置に関連する2Dパッチ中心のオフセットは、ベクトル(例えば、[ox、oy、oz]=[xt−xp、yt−yp、zt−zp])となることができる。したがって、プロセッサ112は、標的腫瘍を追跡することができる。追跡の間、プロセッサ112は、新たな患者セットアップのための2Dパッチの中心を見つけることができる(例えば、「オンライン/リアルタイム」を、例えば[xpnew、ypnew、zpnew]とする)。そして、プロセッサ112は、腫瘍の位置を決定することができる(例えば、[xtnew、ytnew、ztnew]=[xpnew+ox、ypnew+oy、zpnew+oz])。
【0059】
[0058]
ステップ410では、プロセッサ112が各パッチを適応フィルタモデル126に変換する、1つ又はそれ以上のタイプの適応フィルタ設計技術を用いることができる。例えば、適応フィルタ設計の以下のタイプ、マッチドフィルタ、最大マージン相関フィルタ、合成判別関数フィルタ、最小二乗フィルタ、などを使用することができる。また、適応フィルタモデル126は、ボリューム内の標的に対応する2Dパッチから決定されるドメイン情報とオフセット情報を含むことができる。
【0060】
[0059]
一般に、適応フィルタモデル126は、例えば、位置付けられた標的(例えば、腫瘍)を「モデル化」する。複数の適応フィルタモデル126を生成することができる。例えば、腫瘍の上部に対する適応フィルタモデル126と、腫瘍の中部に対する適応フィルタモデル126と、腫瘍の底部に対する適応フィルタモデル126が存在することができる。また、適応フィルタモデル126は、人体解剖学のさまざまな部分(例えば、前立腺、乳房、肺、心臓、脳のような、1つ又はそれ以上の関心のある標的臓器)のために生成することができる。また、適応フィルタモデル126は、関心のある各標的(例えば、肺内の複数の腫瘍のような特定の臓器内の1つ又はそれ以上の腫瘍、又は、がんが転移した場合には、1つ又はそれ以上の臓器内の1つ又はそれ以上の腫瘍)に対して生成することができる。
【0061】
[0060]
更に、適応フィルタモデル126は、空間領域又は周波数領域のいずれかで設計することができる。一例では、適応フィルタモデル126の2Dスライスへの適用は、周波数領域において、より計算的に効率的でありうる。適応フィルタモデル126は(図1に示される)メモリ116に格納され、続いて取得された2Dスライスに適用されるべくプロセッサ112によって検索され(例えば、2Dスライスが「リアルタイム」/「オンライン」で取得され)、患者の放射線療法治療中にターゲットの位置を予測する。
【0062】
[0061]
図5は、患者の「リアルタイム」/「オンライン」放射線療法治療中に標的を追跡するために、1つ又はそれ以上の適応フィルタモデル126を使用するためのワークフロープロセス500のための例示的なフローチャートを示す。
【0063】
[0062]
ステップ502では、プロセス500が始まり、特定の患者に対する標的腫瘍を含む関心領域に対して設計された適応フィルタモデル126を検索する標的位置特定モジュール128に、プロセッサ116を用いる(図1に示す)放射線治療装置10がアクセスする。
【0064】
[0063]
ステップ504では、プロセッサ116が、2Dスライスの初期セットを生成するために、画像取得装置170に提供するために取得プロトコルを受信する。プロトコルは、例えば、(例えば、肺、前立腺、脳、腎臓、等)と取られたスライスの位置と、(例えば、取られたスライスに平行又は垂直のような所定の潜在的な器官運動に基づく)スライスの向きと、(例えば、5mmスライス、10mmスライス、15mmスライス、等の)スライスの厚さを含むことができる。ユーザは、ユーザインターフェース190を介して提供される標的の位置の初期推定値を提供することができる。プロセッサ116は、2Dスライスを取って開始する場所の初期位置として、この初期推定値を利用することができる。あるいは、そのような位置情報は、プロセッサ116によって自動的に決定することができる。
【0065】
[0064]
ステップ506では、放射線治療装置が、画像取得装置170(例えば、MRI装置又はMRI−Linac装置)からのプロトコルに従って複数の2DMRIスライスを受信する。2D画像は、腫瘍を有する関心領域に対応させることができる。2Dスライスは、腫瘍に対して平行又は直交してもよい。2Dスライスは、腫瘍を囲むことができる。さらに、2Dスライスは、腫瘍の周囲の領域であってもよい。典型的には、MRI装置は、周波数領域での2Dスライスを提供する。
【0066】
[0065]
以下の述べるステップ508からステップ514では、プロセッサ116が、2Dスライス上の腫瘍の位置と、3Dボリューム内のその位置とを決定する。
【0067】
[0066]
ステップ508では、プロセッサ116が、周波数領域又は空間領域のいずれかに2Dスライスを変換する。2Dスライスは、適応フィルタモデル126のドメインに一致するように変換される。例えば、適応フィルタモデル126が空間領域で作成された場合、例えば、プロセッサ116は空間領域に2Dスライスを変換する。あるいは、適応フィルタモデル126が周波数領域で作成された場合、プロセッサ116は周波数領域に2Dスライスを変換する。
【0068】
[0067]
ステップ510では、プロセッサ116が適応フィルタモデル126を適用する。上述したように、適応フィルタモデル126は、訓練モジュール126によって訓練された複数の2Dパッチから生成された複数のモデルである。プロセッサ112は、2Dスライスに複数の適応フィルタモデル126を適用する。2Dスライスと適応フィルタモデルとは、例えば、同一の配向(例えば、動きの方向と直交する、動きの方向に平行である、又はそれら両方)を有する。一例では、2Dスライスに適応フィルタモデル126を適用することは、周波数領域において計算的により効率的である。適応フィルタモデル126が2Dスライスにどのように適用することができるかの例を次に示す。
【0069】
[0068]
適応フィルタモデル126は空間領域において2DテンプレートT(x、y)で表すことができ、2Dスライス(例えば、2D画像)はI(x、y)で表すことができる。適応フィルタモデル126を2Dスライスの特定の場所に適用すると、相関関係の「信頼度スコア」を与えることができる。信頼度スコアは、例えば、特定の適応フィルタモデルが2Dスライスの特定の位置にどれだけよく一致したかの指標を提供する。
【0070】
[0069]
一例では、適応フィルタモデル126が2Dスライスの特定の場所と相対的によく一致すればするほど、より高い信頼性スコアとなる。信頼度スコアは、標的腫瘍が2Dスライス内に配置されているかどうか、どこに配置されているか予測するために使用することができる。多くの様々なタイプの相関は、状況に応じて信頼度スコアを決定するために利用することができる。例えば、以下のタイプの相関を使用することができる。相互相関、正規化相互相関、又は相関係数である。これらを以下で定義する。
【0071】
[0070]
相互相関は次式で定義される。
【0072】
【数2】
【0073】
[0071]
正規化相互相関は次式で定義される。
【0074】
【数3】
【0075】
[0072]
相関係数は次式で定義される。
【0076】
[0073]
【0077】
【数4】
【0078】
(例えば、相関係数は、平均補正テンプレートと画像の正規化相互相関と同じである。)
[0074]
上式において、Pはテンプレートの空間領域を表し、Tは、それぞれ、テンプレートTとスライスIの平均値とを表す。さらに、N(x、y)とC(x、y)の両方は、例えば、−1≦N(X、Y)、C(X、Y)≪+1のように有限であり、それらの値は、完全な一致の+1に対する信頼度スコアとして解釈することができる。信頼度スコアは、例えば、上記で定義したR、N、Cのような情報を含むことができる。
【0079】
[0075]
3つの相関演算は、例えば、畳み込み定理を適用することにより、周波数領域でも行うことができる。例えば、次式である。
【0080】
【数5】
【0081】
ここで、
【0082】
【数6】
【0083】
は、それぞれ、前方フーリエ変換と逆フーリエ変換を表す。
【0084】
[0076]
ステップ512では、プロセッサ112が、2Dスライスに適応フィルタモデル126を適用した結果として、応答マップを決定する。単一の2Dスライスに対して、各応答マップが特定の適応フィルタモデルに対応している複数の応答マップを作成することができる。適応フィルタモデルと2Dスライスの両方が同じ方向を持つことができる。応答マップは、空間領域又は周波数領域で生成されることができる。2Dスライスと適応フィルタモデル126の両方は、空間領域において応答マップを生成する空間領域でなくてはならない。同様に、2Dスライスと適応フィルタモデル126の両方は、周波数領域において応答マップを生成する周波数領域でなくてはならない。応答マップは、あらゆる2Dスライスに対して作成することができる。生成された応答マップは、適応フィルタモデル126が与えられた2次元スライス内の様々な位置と一致する程度を示す画像であり得る。
【0085】
[0077]
例えば、適応フィルタモデルA(図示せず)は、2Dスライス上のあらゆる場所に、プロセッサ112を適用させることができる。各場所に対して、プロセッサ112は、例えば、適応フィルタAが2Dスライスの特定の場所とどのくらいよく一致しているかを示す信頼性スコアを決定することができる。適応フィルタモデルが2Dスライス上の場所に対してよりよく一致すればするほど、その特定の場所に対する信頼度スコアがより高く(例えば、+1に近く)なる。応答マップ画像上のより明るい領域はより良い一致、したがって、より暗い領域よりも高い信頼度スコア(例えば、2Dスライスの特定の場所における適応フィルタモデルAとの間で)を示すことができる。より明るい領域は、応答マップ内のより暗い領域よりも高い信頼度スコアを持つことができる。適応フィルタモデルAが2Dスライスに適用された後、応答マップAを生成することができる。プロセッサ112は、別の適応フィルタモデルB(図示せず)を検索し、例えば、適応フィルタモデルBをあらゆる場所に適用するプロセスを繰り返し、応答マップBを生成することができる。したがって、標的位置特定モジュールを使用するプロセッサは、2Dスライスに複数の適応フィルタモデルを適用し、メモリ116に格納することができる、複数の応答マップを生成することができる。2Dスライスの各場所で、信頼度スコアが適応フィルタモデルに対応して生成される。高い信頼度スコアは、標的腫瘍が位置する2Dスライス上の位置に対応する。
【0086】
[0078]
ステップ514では、プロセッサ112が信頼度スコアに基づいて2Dスライス上の標的腫瘍の位置を予測する。例えば、応答マップ上の特定の位置に対して、各信頼度スコアが特定の適応フィルタモデルに対応する複数の信頼度スコア値が存在し得る。腫瘍の位置を予測するために、プロセッサ112は、2Dスライス上の特定の位置の最大信頼スコア値を選択することができる。あるいは、プロセッサ112は、2Dスライス上の特定の位置い対するすべての信頼度スコアの加重平均を使用することができる。一例では、プロセッサ112は、Nを所定数として、トップN個の信頼度スコアの加重平均を計算することができる。複数の適応フィルタモデルを使用して生成された信頼度スコアを使用すると、予測の精度を高めることができる。したがって、特定の場所に対する高い信頼度スコアは、2Dスライス上の標的の位置を示すことができ、低い信頼度スコアは腫瘍がその位置にないことを示すことができる。+1に最も近い信頼度スコアは、腫瘍の一部又は腫瘍のすべてが2Dスライス上に位置していることを示すことができる。
【0087】
[0079]
プロセッサ112が2Dスライスは腫瘍を含んでいないと判断した場合、プロセス500は、矢印501によりステップ506に戻り、別の2Dスライスを取得することができる。プロセス500は、次の2Dスライスを得るために、プロセッサ112が取得プロトコルを調整するようにする。あるいは、腫瘍は、スライスの厚さ、腫瘍のサイズ、腫瘍の方向及び他のファクタに基づいて、1つ又はそれ以上の2Dスライスに含まれてもよい。例えば、腫瘍の底部が2Dスライスに含まれている場合、プロセッサ112は、続いてどの2Dスライスを取得すべきか(例えば、腫瘍の重心を含む2Dスライス又は腫瘍の上部を含む2Dスライス)を決定するオフセット情報を使用することができる。
【0088】
[0080]
例えば、特定の適応フィルタモデルとそれに対応する応答マップからの情報を使用して、プロセッサ112は、その前の2Dスライス上の腫瘍の位置を決定することができる。さらに、適応フィルタモデルに関連付けられたオフセット情報を使用して、プロセッサ112は、3Dでの腫瘍の位置(例えば、中心)を推定することができる。例えば、プロセッサ112は、腫瘍が2Dスライスと、例えば(5、10)番目のピクセル位置で交差すること、腫瘍の中心が2Dスライスの中心から法線方向で5mm離れていることを決定することができる。腫瘍の次の位置を推定するために(例えば、それが移動するにつれて腫瘍を追跡する)、又は腫瘍の形状に関するより完全な情報を取得するために(例えば、腫瘍の形状が変更されたかどうか)、プロセッサ112は、さまざまなパラメータを調整することができる(例えば、次の2Dスライスが取得される位置、その前のスライスと平行であるが異なる位置の次の2Dスライスを取得すること、その前のスライスと垂直である2Dスライスを取得すること、次のスライスの厚さを調整すること、など)。さらに、その前の適応フィルタモデルからオフセット情報を用いて、プロセッサ112は、腫瘍の次の位置を推定することもできる。したがって、プロセッサ112は、患者が放射線治療を受けるにつれ、リアルタイムで腫瘍の動きを追跡することができる。
【0089】
[0081]
ステップ516では、患者は「リアルタイム」放射線療法治療を受けるにつれ、プロセッサ112が腫瘍を追跡することができる。加えて、プロセッサ112は、複数の2Dスライスが利用される場合、腫瘍の形状を推定することができる。
【0090】
[0082]
図6は、標的(例えば、肝臓)の位置を決定するため、2DMRIスライスに適用される例示的な適応フィルタモデルを図式的に示す。図602では、空間領域における適応フィルタモデルの例が図式的に表現されている。(図1に示された)プロセッサ112は、空間領域でもある特定の2Dスライスに適応フィルタモデル602を適用する標的位置特定モジュール128を使用することができる。2Dスライスに、例示的な適応フィルタモデル602を適用することにより、プロセッサ112は、2Dスライスの各位置に対して、例示的な適応フィルタモデル602が2Dスライスの特定の位置にいかによく一致するかを決定することができる。有利には、プロセッサ112は、約300ミリ秒で各2Dスライスを計算することができる。標的位置特定モジュール128は、図604に図式的に示されている例示的な応答マップを生成する。例示的な応答マップ604は、適応フィルタモデル602が2Dスライスのそれぞれの位置にいかによく一致するかを表すことができる。例示的な応答マップ604に示されるより明るい領域は、より良好な一致を示し、したがって、より暗い領域よりも2Dスライスの特定の位置における適応フィルタモデル602との間のより高い信頼度スコアを示す。より明るい領域は、応答マップ604におけるより暗い領域よりも高い信頼度スコアを有することができる。図示のように、応答マップ604は、プロセッサ112によって決定される、この2Dスライスに対して最も高い信頼度スコアに対応する最も明るい領域608を示す。したがって、応答マップ604上の明るい領域608は、この特定の2Dスライス上の標的の位置に対応することができます。したがって、プロセッサ112は、この特定の2Dスライス上に配置されている標的608の位置を決定する。さらに、患者の解剖学的構造の位置は2Dスライスが画像取得装置170によって生成された場所から生成されるので、プロセッサ112は、図606に示す患者の解剖学的構造上に、標的608の位置を決定することができる。図606における赤色の領域は、例えば、患者の解剖学的構造上に重ねた適応フィルタモデル602に対応する。別の実施形態では、例えば、標的は腫瘍を表すことができる。
【0091】
[0083]
あるいは、応答マップは、例えば、2Dスライス及び適応フィルタモデルが周波数領域にある場合にはそれに応じて周波数領域で表現することができる。周波数領域での応答マップを生成するために、プロセッサ112は、2Dスライス上で高速フーリエ変換(FFT)を実行することができる。プロセッサ112は、周波数領域におけるポイントごとの乗算を行うことにより、適応フィルタモデルを適用する。応答マップを生成するために、プロセッサ112は逆高速フーリエ変換を実行することができる。
【0092】
付記
[0084]
本明細書で言及した全ての刊行物、特許、及び特許文献は、個別に参照により組み込まれているかのように、その全体が参照により本明細書に組み込まれる。本明細書と参照により組み込まれる文書との間の矛盾する使用法の場合には、組み込まれた文献の使用法は、本明細書の使用法への補足とみなされるべきであり、相容れない矛盾に対しては、本明細書の使用法が支配する。
【0093】
[0085]
例示的な開示された実施形態は、患者が放射線療法治療を受けながら、患者の解剖学的構造内の標的(例えば、腫瘍)を追跡するためのシステム及び方法を記載する。以上の説明は、例示の目的で提示されている。それは網羅的ではなく、開示された厳密な形態又は実施形態に限定されない。実施形態の修正及び適応は、開示された実施形態の明細書及び実施の考察から明らかになるであろう。
【0094】
[0086]
本明細書では、「少なくともひとつ」又は「ひとつ又はそれ以上」の他の例(instance)又は使用(usage)とは独立して、ひとつ又はそれ以上のものを含み、特許文書で一般的であるように、用語「a」又は「an」が使用される。本明細書において、「又は」という用語は、特に断らない限り、「A又はB」には「AであってBでない」、「BであってAでない」、「A及びB」を含むように非排他的である。本明細書では、用語「including」及び「in which」は、それぞれ、用語「comprising」「wherein」の平易な英語の等価物として使用される。また、以下の特許請求の範囲において、「含む(including)」及び「含む(comprising)」という用語は、オープンエンドであり、すなわち、そのような用語の後に列挙された要素に、ある要素を含む装置、システム、デバイス、品物、組成、動作、プロセスを要素として加えたクレームは依然としてそのクレームの範囲内にあるとみなされる。さらに、添付の特許請求の範囲において、「第1の」、「第2の」、「第3の」などの用語は、単にラベルとして使用されており、それらに数値的な要件を課すことを意図しない。
【0095】
[0087]
本明細書に記載の方法例は、少なくとも部分的に機械的に又はコンピュータで実施することができる。いくつかの実施例は、上記の実施例で説明した方法を実行するように電子デバイスを構成するように動作可能な命令でコード化されたコンピュータ可読媒体又は機械可読媒体を含むことができる。そのような方法の実装には、マイクロコード、アセンブリ言語コード、高水準言語コードなどのコードを含めることができる。様々なプログラム又はプログラムモジュールは、ソフトウェアプログラミングの様々な技術を使用して作成することができる。例えば、プログラムセクション又はプログラムモジュールは、Java(登録商標)、Python、C、C++、アセンブリ言語、又は任意の公知のプログラミング言語を用いて設計することができる。このようなソフトウェアのセクション又はモジュールの1つ以上は、コンピュータシステム及び/又はコンピュータ可読媒体に統合することができる。そのようなソフトウェアコードは、様々な方法を実行するためのコンピュータ可読命令を含むことができる。コードは、コンピュータプログラム製品又はコンピュータプログラムモジュールの一部を形成してもよい。さらに、一例では、ソフトウェアコードは、実行中又は他の時などに、ひとつ又はそれ以上の揮発性、非一時的、又は不揮発性の有形のコンピュータ可読媒体に有形に格納することができる。これらの具体的なコンピュータ可読媒体の例は、ハードディスク、リムーバブル磁気ディスク、取り外し可能な光ディスク(例えば、コンパクトディスク、デジタルビデオディスク)、磁気カセット、メモリカード、メモリスティック、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)などを含む。
【0096】
[0088]
更に、例示的な実施形態が本明細書に記載されているが、その範囲は、本開示に基づく、均等物、改変、省略、組み合わせ(例えば、様々な実施形態を横断する態様)、適応、又は変更を有する任意及び全ての実施形態を含む。特許請求の範囲の要素は、特許請求の範囲で使用される言語に基づいて広く解釈されるべきであり、本明細書で記載された実施例に限定されず、それは非排他的と解釈すべきである。さらに、開示された方法のステップは、ステップを並べ替え、又は挿入又はステップを削除することによってなど、任意の方法で変更することが可能である。したがって、本明細書及び実施例は、以下の特許請求の範囲及びその均等物の全範囲によって示される真の範囲及び精神は、例としてのみ考慮されることが意図されている。
【0097】
[0089]
上記の説明は例示的なものであり、限定的なものではない。例えば、上記の例(又はそのひとつ又はそれ以上の態様)は、互いに組み合わせて使用されてもよい。上記の説明を検討することにより、当業者によって、他の実施形態を使用することができる。要約は、読者が技術的開示の性質を迅速に確認できるように、米国特許法規則37C.F.R.1.72(b)に準拠するために提供される。クレームの範囲又は意味を解釈又は制限するために使用されないことを理解して提出されている。また、上記の詳細な説明では、開示を合理化するために様々な特徴をグループ化することができる。これは、クレームされていない開示された特徴がクレームに不可欠であることを意図していると解釈されるべきではない。むしろ、本発明の主題は、開示された特定の実施形態のすべての特徴よりも少なくてもよい。したがって、添付の特許請求の範囲は、実施形態又は実施形態としての詳細な説明に組み込まれ、各請求項は別個の実施形態として独立して立証され、そのような実施形態は、様々な組み合わせ又は順列で互いに組み合わせることができる。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる等価物の全範囲と共に決定されるべきである。
図1
図2
図3
図4
図5
図6