(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6896274
(24)【登録日】2021年6月11日
(45)【発行日】2021年6月30日
(54)【発明の名称】浮体式洋上風力発電施設
(51)【国際特許分類】
F03D 13/25 20160101AFI20210621BHJP
F03B 13/16 20060101ALI20210621BHJP
【FI】
F03D13/25
F03B13/16
【請求項の数】11
【全頁数】11
(21)【出願番号】特願2017-137755(P2017-137755)
(22)【出願日】2017年7月14日
(65)【公開番号】特開2019-19733(P2019-19733A)
(43)【公開日】2019年2月7日
【審査請求日】2020年6月22日
(73)【特許権者】
【識別番号】501204525
【氏名又は名称】国立研究開発法人 海上・港湾・航空技術研究所
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】國分 健太郎
【審査官】
上野 力
(56)【参考文献】
【文献】
特開2016−156381(JP,A)
【文献】
特表2006−524778(JP,A)
【文献】
特開2012−097713(JP,A)
【文献】
特開2015−174617(JP,A)
【文献】
特開2013−96373(JP,A)
【文献】
特開2013−24165(JP,A)
【文献】
特開2006−97633(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F03D 13/25
F03B 13/16
(57)【特許請求の範囲】
【請求項1】
風により回転するロータと、
少なくとも前記ロータの回転軸を収容するナセルと、
前記ロータと前記ナセルを支持する水に浮かぶタワー状の浮体構造体を備えた浮体式洋上風力発電施設であって、
前記浮体構造体は、互いに基準状態となるように付勢手段により付勢された上部浮体構造体と下部浮体構造体とを含み、
前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により発電を行う揺動発電手段を備えることを特徴とする浮体式洋上風力発電施設。
【請求項2】
請求項1に記載の浮体式洋上風力発電施設であって、
相対的な揺動運動として、前記上部浮体構造体と前記下部浮体構造体の屈曲運動により発電を行うことを特徴とする浮体式洋上風力発電施設。
【請求項3】
請求項1又は2に記載の浮体式洋上風力発電施設であって、
前記上部浮体構造体と前記下部浮体構造体との間はピッチング運動とローリング運動を許容するユニバーサルジョイントにより繋がれていることを特徴とする浮体式洋上風力発電施設。
【請求項4】
請求項1〜3のいずれか1項に記載の浮体式洋上風力発電施設であって、
前記付勢手段は、前記上部浮体構造体と前記下部浮体構造体を上下方向に付勢するばね手段であることを特徴とする浮体式洋上風力発電施設。
【請求項5】
請求項1〜4のいずれか1項に記載の浮体式洋上風力発電施設であって、
前記揺動発電手段は、前記付勢手段により押圧される圧電素子発電機であることを特徴とする浮体式洋上風力発電施設。
【請求項6】
請求項1〜5のいずれか1項に記載の浮体式洋上風力発電施設であって、
前記揺動発電手段を複数個有し、
前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により複数個の前記揺動発電手段のうちのいずれかが発電を行うことを特徴とする浮体式洋上風力発電施設。
【請求項7】
請求項1〜6のいずれか1項に記載の浮体式洋上風力発電施設であって、
前記揺動発電手段の発電電力を蓄える蓄電手段を備え、
負荷に対して前記蓄電手段を介して電力供給を行うことを特徴とする浮体式洋上風力発電施設。
【請求項8】
請求項7に記載の浮体式洋上風力発電施設であって、
前記揺動発電手段と前記蓄電手段の間に蓄電電圧を調整する蓄電電圧調整手段を備えることを特徴とする浮体式洋上風力発電施設。
【請求項9】
請求項7又は8に記載の浮体式洋上風力発電施設であって、
前記蓄電手段と前記負荷の間に電力を変換する電力変換手段を備えることを特徴とする浮体式洋上風力発電施設。
【請求項10】
請求項1〜9のいずれか1項に記載の浮体式洋上風力発電施設であって、
前記浮体構造体を係留する係留手段を備えることを特徴とする浮体式洋上風力発電施設。
【請求項11】
請求項10に記載の浮体式洋上風力発電施設であって、
前記係留手段は、前記下部浮体構造体を係留索により係留するものであり、
前記係留索が水底のアンカー手段に係止されることを特徴とする浮体式洋上風力発電施設。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、浮体式洋上風力発電施設に関する。
【背景技術】
【0002】
風力発電施設は、風況(風の吹き方)の良好な場所に設置される。特に、周りに高い構築物が無い洋上は風力発電施設を設ける場所として適している。そこで、浮体構造体を設けて、ブレードや発電装置を水上に浮かせた状態で発電を行う浮体式風力発電施設が提案されている。
【0003】
浮体式洋上風力発電施設では、波によって浮体構造体が傾くことがある。このとき、ブレード(翼)が風上に傾斜すると、ブレードに対する相対風速が大きくなり、発電機のロータの回転数が増加することになる。風力発電施設では発電量を時間的に一定に維持したいため、ロータの回転数を一定に保持するためにブレードのピッチを調整して回転数を低下させる制御を行う。そうすると、ブレードに対する風の抵抗が小さくなり、さらに浮体構造体が風上に傾斜することになる。反対に、ブレードが風下に傾斜すると、ブレードに対する相対風速が小さくなり、発電機のロータの回転数が低下することになるので、ロータの回転数を一定に保持するためにブレードのピッチを調整して回転数を増加させる制御を行う。そうすると、ブレードに対する風の抵抗が大きくなり、さらに浮体構造体が風下に傾斜することになる。このような現象をネガティブダンピングという。
【0004】
このようなネガティブダンピングは、浮体式洋上風力発電施設における安定した発電の妨げとなるおそれがある。したがって、ネガティブダンピングを抑制する技術が開発及び開示されている。
【0005】
浮体構造物又は海底に据え付けられるタワーの先端に設けられる風力タービンが備える発電機のロータ軸の回転数に基づいて、風力タービンの翼ピッチ角に対してPI演算を含むピッチ角基本制御を施し、補正制御部において、発電機の出力や風力タービンの揺動等に基づきピッチ角基本制御に補正を加える技術が開示されている(特許文献1)。また、ナセルの振動の加速度に基づいて、ナセルの振動を打ち消すようなスラスト力を風車ブレードに発生させるアクティブ制振手段を備える風力発電装置が開示されている(特許文献2)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2014−111924号公報
【特許文献2】特許第4599350号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、ネガティブダンピングを抑制する技術において、エネルギーをより効果的に発電に利用することが望まれている。しかしながら、従来技術では、ネガティブダンピングを抑制すると共に、風力と波力のエネルギーを複合的に有効利用することができていなかった。
【課題を解決するための手段】
【0008】
請求項1に対応した浮体式洋上風力発電施設は、風により回転するロータと、少なくとも前記ロータの回転軸を収容するナセルと、前記ロータと前記ナセルを支持する水に浮かぶタワー状の浮体構造体を備えた浮体式洋上風力発電施設であって、前記浮体構造体は、互いに基準状態となるように付勢手段により付勢された上部浮体構造体と下部浮体構造体とを含み、前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により発電を行う揺動発電手段を備える。
【0009】
ここで、相対的な前記揺動運動として、前記上部浮体構造体と前記下部浮体構造体の屈曲運動により発電を行うことが好適である。ただし、これに限定されるものでなく、前記上部浮体構造体と前記下部浮体構造体の間の相対運動を利用するものであればよく、前記上部浮体構造体と前記下部浮体構造体の伸縮運動やねじれ運動により発電を行う態様としてもよい。
【0010】
また、前記上部浮体構造体と前記下部浮体構造体との間はピッチング運動とローリング運動を許容するユニバーサルジョイントにより繋がれていることが好適である。
【0011】
また、前記付勢手段は、前記上部浮体構造体と前記下部浮体構造体を上下方向に付勢するばね手段であることが好適である。ただし、これに限定されるものではなく、前記付勢手段は、油圧や空気圧により付勢力を得るものやゴム等の弾性体としてもよい。
【0012】
また、前記揺動発電手段は、前記付勢手段により押圧される圧電素子発電機であることが好適である。ただし、これに限定されるものでなく、油圧や空気圧を利用した発電機やコイル及び磁石の電磁気的な相互作用を利用した発電機等にしてもよい。
【0013】
また、前記揺動発電手段を複数個有し、前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により複数個の前記揺動発電手段のうちのいずれかが発電を行うことが好適である。なお、複数個の揺動発電手段は、揺動運動の想定される方向に対していずれの
方向であっても発電が行なえるように配置されることが好適である。
【0014】
また、前記揺動発電手段の発電電力を蓄える蓄電手段を備え、負荷に対して前記蓄電手段を介して電力供給を行うことが好適である。また、前記揺動発電手段と前記蓄電手段の間に蓄電電圧を調整する蓄電電圧調整手段を備えることが好適である。また、前記蓄電手段と前記負荷の間に電力を変換する電力変換手段を備えることが好適である。
【0015】
なお、蓄電手段は、対象とする負荷の負荷変動に応じてキャパシタや蓄電池、またそれらを組み合わせて使用することができる。また、蓄電電圧調整手段は、ダイオードや昇圧器等の蓄電のために必要な部品や回路を含み、複数個の揺動発電手段に対応して個別に設けることが好適である。また、電力変換手段は、負荷に応じてインバータやDC/DCコンバータ等を用いることができる。
【0016】
また、前記浮体構造体を係留する係留手段を備えることが好適である。例えば、前記係留手段は、前記下部浮体構造体を係留索により係留するものであり、前記係留索が水底のアンカー手段に係止されることが好適である。なお、係留手段は、上部浮体構造体と下部浮体構造体の相対的な揺動運動を促進するために下部浮体構造体の下部を係止して係留することが好適である。
【発明の効果】
【0017】
請求項1に対応した浮体式洋上風力発電施設によれば、風により回転するロータと、少なくとも前記ロータの回転軸を収容するナセルと、前記ロータと前記ナセルを支持する水に浮かぶタワー状の浮体構造体を備えた浮体式洋上風力発電施設であって、前記浮体構造体は、互いに基準状態となるように付勢手段により付勢された上部浮体構造体と下部浮体構造体とを含み、前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により発電を行う揺動発電手段を備えることによって、波等によって生ずるネガティブダンピングに至る揺動を電気エネルギーに変換することができる。また、揺動の運動エネルギーを電気エネルギーに変換することによって、発電時の抵抗を制動力として利用して揺動を抑制することができる。すなわち揺動発電手段が、発電機能とプラスのダンピング機能の双方の機能を果たすことができる。
【0018】
ここで、相対的な前記揺動運動として、前記上部浮体構造体と前記下部浮体構造体の屈曲運動により発電を行うことによって、ネガティブダンピングによる前記浮体構造体の屈曲運動を有効に利用することができる。
【0019】
また、前記係留手段は、前記上部浮体構造体と前記下部浮体構造体との間のピッチング運動とローリング運動を許容するユニバーサルジョイントとすることによって、ネガティブダンピングのトリガーとなる様々の方向からの波の運動を、前記上部浮体構造体と前記下部浮体構造体との間のピッチング運動とローリング運動として屈曲運動に変換し、これらの運動エネルギーを電気エネルギーに変換して利用することができる。
【0020】
また、前記付勢手段は、前記上部浮体構造体と前記下部浮体構造体を上下方向に付勢するばね手段とすることによって、前記上部浮体構造体と前記下部浮体構造体の揺動運動による例えば屈曲を基準状態に復元するような作用をもたらすことができる。
【0021】
また、前記揺動発電手段は、前記付勢手段により押圧される圧電素子発電機とすることによって、前記上部浮体構造体と前記下部浮体構造体の間に生ずる圧力を効率的に電力に変換することができ、圧電素子発電機のダンピング機能を利用することができる。
【0022】
また、前記揺動発電手段を複数個有し、前記上部浮体構造体と前記下部浮体構造体の相対的な揺動運動により複数個の前記揺動発電手段のうちのいずれかが発電を行うことによって、様々な方向への揺動の運動エネルギーを効果的に電気エネルギーに変換することができる。
【0023】
また、前記揺動発電手段の発電電力を蓄える蓄電手段を備え、負荷に対して前記蓄電手段を介して電力供給を行うことによって、電力を蓄電して有効に利用することができる。また、前記揺動発電手段と前記蓄電手段の間に蓄電電圧を調整する蓄電電圧調整手段を備えることによって、前記揺動発電手段と前記蓄電手段の間の電圧を適切に調整して蓄電することができる。また、前記蓄電手段と前記負荷の間に電力を変換する電力変換手段を備えることによって、前記蓄電手段から前記負荷へ適切に電力を供給することができる。
【0024】
また、前記浮体構造体を係留する係留手段を備えることによって、浮体式洋上風力発電施設の洋上の位置を固定することができ、相対的な揺動運動を適切な範囲で促進することができる。
【図面の簡単な説明】
【0025】
【
図1】本発明の実施の形態における浮体式洋上風力発電施設の構成を示す図である。
【
図2】本発明の実施の形態における揺動発電手段の構成例を示す図である。
【
図3】本発明の実施の形態における揺動発電手段の機能ブロックを示す図である。
【
図4】本発明の実施の形態における圧電素子の配置例を示す図である。
【発明を実施するための形態】
【0026】
本発明の実施の形態における浮体式洋上風力発電施設100は、
図1に示すように、浮体構造体102、ナセル104、ロータ106、係留手段108及び揺動発電手段110を含んで構成される。
【0027】
浮体構造体102は、浮体式洋上風力発電施設100の構造物を水上(洋上)において浮かせるためのタワー状の構造体である。浮体構造体102は、ナセル104及びロータ106を水上に浮かせた状態で保持する構造とされる。浮体構造体102は、例えば、柱状の上部浮体構造体102a及び下部浮体構造体102bを組み合わせて構成することができる。上部浮体構造体102a及び下部浮体構造体102bは、中空として、その内部に電力供給用の回路盤等を収容するようにしてもよい。
【0028】
ナセル104は、増速機、発電機及び制御部を収容する構造体である。ナセル104は、柱状の上部浮体構造体102aの先端部において、上部浮体構造体102aの軸に対して回動可能に設置される。ナセル104には、ロータ106を備え、風向計による風向の測定結果に基づいてロータ106を回転させることによってブレードが風向きに応じた方向に向くように回転する。
【0029】
ロータ106を構成するブレードは、浮体式洋上風力発電施設100において風を受けて、風力をロータ106のロータ軸(回転軸)に対する回転力に変換する翼である。浮体式洋上風力発電施設100には、例えば、ナセル104内に配置された発電機のロータ軸の周りに3枚のブレードを等角度で配置する。ブレードは、例えば、ガラス繊維強化プラステッチ(GFRP)等の絶縁体から構成される。ブレードは、軽量化を図るために中空構造としてもよい。ブレードによって得られた回転力は、ナセル104内に配置された増速機を介して発電機のロータ軸に伝達され、当該回転力によって発電機のロータ106が回転させられて発電が行われる。発電された電力は、浮体式洋上風力発電施設100の外部へ出力される。
【0030】
係留手段108は、浮体構造体102を所望の位置に係留するための手段である。係留手段108は、下部浮体構造体102bの下端部に一端が取り付けられた係留索108aと、当該係留索の他端に取り付けられて水底に置かれるアンカー手段(錘)108bと、を含んで構成される。なお、係留手段108は、上部浮体構造体102aと下部浮体構造体102bの相対的な揺動運動を促進するために、下部浮体構造体102bの下端部を含む下部を係止して係留することが好適である。係留手段108は、浮体構造体102を洋上において所定の位置に係留するだけでなく、浮体構造体102の軸に対する回転揺動(ヨー運動:
図1においてZ軸(浮体構造体102の軸方向)周りの回転運動)を抑制する機能を果たす。
【0031】
揺動発電手段110は、上部浮体構造体102aと下部浮体構造体102bの相対的な搖動運度により発電を行う手段である。揺動発電手段110は、
図2の構成概念図に示すように、上部浮体構造体102aと下部浮体構造体102bとの間に挟まれるように設けられ、波等によって上部浮体構造体102aと下部浮体構造体102bとが相対的に搖動するときの揺動運度に伴うエネルギーを電力に変換する手段を含む。
【0032】
揺動発電手段110は、ユニバーサルジョイント10、弾性体12、台座14、発電手段16及びカバー18を含んで構成することができる。
【0033】
ユニバーサルジョイント10は、相対的にピッチング運動及びローリング運動できるように上部浮体構造体102aと下部浮体構造体102bとを接続する部材である。ピッチング運動及びローリング運動は、浮体構造体102の軸(Z軸)に直交する軸(X軸,Y軸)の周りの回転運動である。具体的には、ピッチング運動は、
図1においてX軸周りの回転運動であり、ローリング運動は、
図1においてY軸周りの回転運動である。ユニバーサルジョイント10によって上部浮体構造体102a及び下部浮体構造体102bを接続することによって、波等によって上部浮体構造体102aと下部浮体構造体102bとが相対的に屈曲運動することが可能となる。なお、ユニバーサルジョイント10は、相対的にピッチング運動及びローリング運動を可能とするものであれば、種類を問わなく利用が可能である。
【0034】
弾性体12は、上部浮体構造体102a及び下部浮体構造体102bとの間に配置され、上部浮体構造体102aと下部浮体構造体102bとが基準状態となるように付勢する部材である。ユニバーサルジョイント10は、弾性体12により上部浮体構造体102aと下部浮体構造体102bとが基準状態となるように付勢されるに当り、上部浮体構造体102aと下部浮体構造体102bが揺動自在に係止される係止手段の役割も果たす。弾性体12は、例えば、ばね、ゴム等の弾性部材によって構成することができる。本実施の形態では、基準状態は、それぞれ柱状の上部浮体構造体102aと下部浮体構造体102bとが正立、すなわち上部浮体構造体102aと下部浮体構造体102bの中心軸が同軸上に位置する状態とする。この場合、弾性体12は、上部浮体構造体102aと下部浮体構造体102bを上下方向(Z軸方向)に付勢するものとすればよい。ただし、基準状態は、これに限定されるものではなく、例えば、風を受けて傾いた状態におけるロータ軸が風向に対して平行になるように、風を受けていない状態におけるロータ軸を水平面に対して所定角を持たせてナセル104を上部浮体構造体102aに支持する等、浮体式洋上風力発電施設100に外力が加わっていない状態において上部浮体構造体102aと下部浮体構造体102bとが示す姿勢の状態とする。
【0035】
台座14は、弾性体12と後述する発電手段16との間に挟まれる部材である。台座14は、弾性体12から発電手段16に対して圧力が適切に加わるように設けられる。例えば、発電手段16が圧電素子(ピエゾ素子)を含む場合、弾性体12から圧電素子に対して均一に圧力が加わるように剛性を有する板状の台座14とすることが好適である。
【0036】
発電手段16は、上部浮体構造体102aと下部浮体構造体102bとの間の揺動運動に応じて電力を発生させる手段である。本実施の形態では、発電手段16は、圧電素子発電機としている。発電手段16は、
図3の機能ブロック図に示すように、圧電素子(ピエゾ素子)20(20a〜20d)、電圧調整器22、バッテリ24、電力変換器26及び発電制御手段28を含んで構成される。発電手段16は、負荷30に接続され、負荷30に対して発電した電力を供給する。負荷30は、浮体式洋上風力発電施設100の外部にあってもよいし、浮体式洋上風力発電施設100の内部の補機等としてもよい。発電手段16は、相対的な揺動運動による発電機能に加えてダンピング機能を有しており、波等によって生ずるネガティブダンピングによる揺動に対抗するプラスのダンピング機能の双方の機能を果たすことができる。
【0037】
圧電素子(ピエゾ素子)20は、圧電体に加えられた押圧力を電圧に変換する素子である。圧電素子20は、水晶やセラミック等の圧電体を電極で挟み込んで構成することができる。圧電素子20によって発生した電圧は、電圧調整器22へ入力される。圧電素子(ピエゾ素子)20は、応力や変位、電気機械変換効率の面から積層型圧電素子が好適である。また、圧電素子(ピエゾ素子)20は、ヒステリシスを有しているところ、発電機能に加えてプラスのダンピング機能を果たすことができる。
【0038】
なお、本実施の形態では、上部浮体構造体102aと下部浮体構造体102bが様々な方向にピッチング運動又はローリング運動したときに発電が行えるように、
図4に示すように、上部浮体構造体102aと下部浮体構造体102bの間に4つの圧電素子20(20a〜20d)を配置した例について説明する。当該例では、圧電素子20を等角度間隔(90°間隔)で配置している。これに伴って、圧電素子20毎に弾性体12及び台座14を設ける。これによって、上部浮体構造体102aと下部浮体構造体102bの相対的な揺動運動に伴って圧電素子20のいずれかが発電することになる。
【0039】
ただし、圧電素子20の形状や配置は、これに限定されるものではなく、上部浮体構造体102aと下部浮体構造体102bとの揺動を効果的に発電に利用できる配置とすればよい。例えば、上部浮体構造体102aと下部浮体構造体102bとの間の領域に圧電素子20を敷き詰めるように圧電素子20を配置してもよい。密に敷き詰めるには、角形や三角形等を基本とした形状とした方がより敷き詰め易い。
【0040】
電圧調整器22は、発電制御手段28からの制御によって制御され、圧電素子20で発電した電力の逆流を防止するダイオード、入力される電圧を昇降圧してバッテリ24に対して出力する蓄電電圧調整手段を含む。圧電素子20a〜20dで発電される電圧は、相対的な揺動運動の方向やタイミングによって電圧状態が異なるところ、個別にダイオードや電圧調整器22を設けることが好適である。
【0041】
電圧調整器22は、DC/DCコンバータを含んで構成することができる。圧電素子20が複数設けられている場合、それぞれの出力電圧をバッテリ24の端子電圧に一致させるように電圧調整する。
【0042】
バッテリ24は、圧電素子20において発電された電力を蓄電する蓄電手段である。蓄電手段は、一般的な二次電池やキャパシタ等から構成することができる。バッテリ24の端子電圧や電池容量(SOC)は、発電制御手段28に入力され、電圧調整器22や電力変換器26の制御に利用される。また、電圧調整器22の電圧調整状況、バッテリ24の蓄電状況、電力変換器26の変換状況は、それぞれに設けたセンサの情報を発電制御手段28に伝え、発電制御手段28の制御に役立てられる。また、負荷30の情報を発電制御手段28に伝えて制御に役立てることも可能である。
【0043】
電力変換器26は、バッテリ24から供給される電力を負荷30に応じた態様で出力する電力変換手段を含む。電力変換器26は、負荷30に応じて、バッテリ24の出力電圧の電圧、電流、周波数、位相、相数等を変換して出力する。例えば、負荷30が交流負荷であれば、電力変換器26は、バッテリ24から出力される直流電力を所望の電圧、電流、周波数、位相、相数の交流電力に変換するインバータ回路を含む。また、電力変換器26は、バッテリ24の出力電圧を昇降圧するDC/DCコンバータを含んでもよい。
【0044】
発電制御手段28は、電圧調整器22、電力変換器26を制御する。発電制御手段28は、バッテリ24の端子電圧に応じて、電圧調整器22を制御して圧電素子20からの出力電圧を昇降圧させる。また、発電制御手段28は、バッテリ24の端子電圧やSOC及び負荷30の要求電力に応じて、電力変換器26を制御してバッテリ24から負荷30への電力を調整する。
【0045】
なお、
図3に示すように、発電制御手段28を浮体式洋上風力発電施設100の発電設定手段32を制御するように構成してもよい。発電設定手段32は、ナセル104内に設置されている発電機の特性等を調整して発電の制御を行う。当該制御は、従来の制御と同様であるのでここでは特に言及しない。
【0046】
カバー18は、上部浮体構造体102aと下部浮体構造体102bとの間に配置される圧電素子20、電圧調整器22、バッテリ24、電力変換器26及び発電制御手段28を覆う部材である。上部浮体構造体102a及び下部浮体構造体102bの接続部は水中に位置するので、カバー18は、これらの部材が濡れないような構成とすることが好適である。また、上部浮体構造体102aと下部浮体構造体102bは相対的に揺動できる必要があるので柔軟な構造とする。
【0047】
また、浮体式洋上風力発電施設100を水域に設置した場合に、相対的な揺動運動の観点から、上部浮体構造体102aの中間位置に水面が来るように浮力調節をして設置することが最も好適あり、中間位置の±10%の位置がより好適であり、中間位置の±20%の位置が好適である。また、係留に当たって下部浮体構造体102bの浮力により、係留手段108に多少のテンションが係ることが好適であり、上部浮体構造体102aの浮力はこれとバランスをして上記水面の位置が得られるように設定されることが好適である。
【0048】
また、発電手段16は、圧電素子発電機に限定されるものではなく、上部浮体構造体102aと下部浮体構造体102bの相対的な揺動によって発電ができるものであればよい。例えば、上部浮体構造体102aと下部浮体構造体102bの相対的な揺動をコイルと磁石の相対的な運動に変換し、コイルと磁石との間の電磁気的な相互作用により発電するような構成としてもよい。
【0049】
また、付勢手段を油圧や空気圧により付勢力を得るように構成し、相対的な揺動運動を油圧や空気圧に変換し、油圧や空気圧を利用して揺動発電手段で発電を行う構成としてもよい。
【0050】
これらの場合においても発電手段16は、相対的な揺動運動による発電機能に加えて発電手段16自身によるダンピング機能を有し、波等によって生ずるネガティブダンピングに対抗するプラスのダンピング機能を果たすことができる。
【0051】
以上のように、本実施の形態における浮体式洋上風力発電施設100によれば、波等によって生ずるネガティブダンピングに至る揺動を電気エネルギーに変換し、ネガティブダンピングを抑制したうえ発電をすることができる。また、揺動の運動エネルギーを電気エネルギーに変換する際の発電時の抵抗をダンピング要素として利用して揺動を抑制することができる。
【0052】
すなわち、浮体式洋上風力発電施設100は、ブレードをアクチュエータとしたシンプルなロータ106の速度一定制御が可能となり、 ロータ106の速度変動が抑えられ、ネガティブダンピングが励起されても揺動発電手段110で吸収することにより、全体の発電量が増大する。
【0053】
以上のように、この浮体式洋上風力発電施設100は、風力と波力エネルギーを複合的に利用することができる。
【0054】
なお、水面からの最高高さ96m、浮体構造体直径4.8m、ロータ直径80m、定格出力2MWの浮体式洋上風力発電施設では、圧電素子(ピエゾ素子)20を敷き詰めて用い、傾き速度を1度/秒とした屈曲揺動発電によって、0.9MWの電力が得られると試算される。
【産業上の利用可能性】
【0055】
本発明は、様々なタイプの浮体式洋上風力発電施設に適用することができる。例えば、浮体構造体は柱状に限定されるものでなく、揺動部分を有するあらゆる態様の浮体構造体に適用することができる。
【符号の説明】
【0056】
10 ユニバーサルジョイント、12 弾性体、14 台座、16 発電手段、18 カバー、20 圧電素子、22 電圧調整器、24 バッテリ、26 電力変換器、28 発電制御手段、30 負荷、32 発電設定手段、100 浮体式洋上風力発電施設、102 浮体構造体、102a 上部浮体構造体、102b 下部浮体構造体、104 ナセル、106 ロータ、108 係留手段、108a 係留索、108b 錘、110 揺動発電手段。