【実施例】
【0037】
[第1実施例]
耐熱鋳鋼を鋳造して、機械的特性(引張特性、硬さ)、フェライト率及び耐酸化性を評価した。表1に、鋳造した耐熱鋳鋼の合金組成を示す。
【0038】
【表1】
【0039】
まず、各耐熱鋳鋼の合金組成について説明する。実施例1から8の耐熱鋳鋼の合金組成は、0.55質量%以上1.0質量%以下のCと、1.5質量%以上3.5質量%以下のSiと、0質量%より大きく2質量%以下のMnと、6質量%以上11質量%以下のNiと、22質量%以上27質量%以下のCrと、0質量%より大きく0.6質量%以下のMoと、を含有し、残部がFeと不可避的不純物とからなるように構成した。
【0040】
比較例1の耐熱鋳鋼では、Si量を0.95質量%とし、Si量を小さくしたときの影響を評価した。また、比較例1の耐熱鋳鋼では、Mn量を3.21質量%とし、Mn量を大きくしたときの影響を評価した。比較例2の耐熱鋳鋼では、Cr量を21.92質量%とし、Cr量を小さくしたときの影響を評価した。比較例3の耐熱鋳鋼では、C量を1.13質量%とし、C量を大きくしたときの影響を評価した。比較例4の耐熱鋳鋼では、C量を0.3質量%とし、C量を小さくしたときの影響を評価した。比較例5の耐熱鋳鋼では、Si量を4.11質量%とし、Si量を大きくしたときの影響を評価した。比較例6の耐熱鋳鋼では、Ni量を3.70質量%とし、Ni量を小さくしたときの影響を評価した。比較例7の耐熱鋳鋼では、Cr量を31.30質量%とし、Cr量を大きくしたときの影響を評価した。各耐熱鋳鋼は、合金原料を高周波誘導炉で溶解し、大気雰囲気中で砂型に注湯して鋳造した。
【0041】
(フェライト率の評価)
各耐熱鋳鋼について、フェライト率を測定した。各耐熱鋳鋼のフェライト率は、磁気誘導法(フェライトスコープ)により室温で測定した。表1には、各耐熱鋳鋼のフェライト率を示している。
【0042】
図2は、耐熱鋳鋼に含まれるC量と、フェライト率との関係を示すグラフである。
図2のグラフでは、各耐熱鋳鋼に含まれるC量を横軸に取り、フェライト率を縦軸に取り、各C量のときのフェライト率を白丸で示している。なお、
図2では、実施例1から8及び比較例4の耐熱鋳鋼におけるC量とフェライト率との関係を示している。比較例4の耐熱鋳鋼(C量が0.3質量%)では、実施例1から8の耐熱鋳鋼よりも、フェライト率が大きくなった。この結果からC量が0.55質量%より小さくなるとフェライト相が多くなるのに対して、C量が0.55質量以上の場合には、フェライト率が1.1%以下(フェライト率がゼロを含む)となり、フェライト相を少なくしてオーステナイト相を多くできることがわかった。
【0043】
図3は、耐熱鋳鋼に含まれるSi量と、フェライト率との関係を示すグラフである。
図3のグラフでは、各耐熱鋳鋼に含まれるSi量を横軸に取り、フェライト率を縦軸に取り、各Si量のときのフェライト率を白丸で示している。なお、
図3では、実施例1から8及び比較例5の耐熱鋳鋼におけるSi量とフェライト率との関係を示している。比較例5の耐熱鋳鋼(Si量が4.11質量%)では、実施例1から8の耐熱鋳鋼よりも、フェライト率が大きくなった。この結果からSi量が3.5質量%より大きくなるとフェライト相が多くなるのに対して、Si量が3.5質量以下の場合には、フェライト率が1.1%以下(フェライト率がゼロを含む)となり、フェライト相を少なくしてオーステナイト相を多くできることがわかった。
【0044】
図4は、耐熱鋳鋼に含まれるNi量と、フェライト率との関係を示すグラフである。
図4のグラフでは、各耐熱鋳鋼に含まれるNi量を横軸に取り、フェライト率を縦軸に取り、各Ni量のときのフェライト率を白丸で示している。なお、
図4では、実施例1から8及び比較例6の耐熱鋳鋼におけるNi量とフェライト率との関係を示している。比較例6の耐熱鋳鋼(Ni量が3.70質量%)では、実施例1から8の耐熱鋳鋼よりも、フェライト率が大きくなった。この結果からNi量が6質量%より小さくなるとフェライト相が多くなるのに対して、Ni量が6質量以上の場合には、フェライト率が1.1%以下(フェライト率がゼロを含む)となり、フェライト相を少なくしてオーステナイト相を多くできることがわかった。
【0045】
図5は、耐熱鋳鋼に含まれるCr量と、フェライト率との関係を示すグラフである。
図5のグラフでは、各耐熱鋳鋼に含まれるCr量を横軸に取り、フェライト率を縦軸に取り、各Cr量のときのフェライト率を白丸で示している。なお、
図5では、実施例1から8及び比較例7の耐熱鋳鋼におけるCr量とフェライト率との関係を示している。比較例7の耐熱鋳鋼(Cr量が31.30質量%)では、実施例1から8の耐熱鋳鋼よりも、フェライト率が大きくなった。この結果からCr量が27質量%より大きくなるとフェライト相が多くなるのに対して、Cr量が27質量以下の場合には、フェライト率が1.1%以下(フェライト率がゼロを含む)となり、フェライト相を少なくしてオーステナイト相を多くできることがわかった。
【0046】
(耐酸化性の評価)
各耐熱鋳鋼について、耐酸化性を評価した。耐酸化性については、JIS Z2282の「金属材料の高温繰返し酸化試験方法」と、JIS Z2290の「金属材料の高温腐食試験方法通則」とに基づいて評価した。より詳細には、まず、加熱温度980℃±5℃、絶対湿度10%の大気環境下での45分間の加熱と、200℃未満での30分間の冷却と、を1サイクルとして、200サイクルの繰返し酸化試験を行った。繰返し酸化試験後に酸化被膜を除去し(デスケーリング)、酸化試験前後の重量減少量を求め、酸化試験後重量減少量(単位面積当たりの重量減少量)を算出した。表1には、各耐熱鋳鋼の酸化試験後重量減少量を示している。
【0047】
実施例1から8の耐熱鋳鋼では、酸化試験後重量減少量が、約5mg・cm
-2から約19mg・cm
-2であった。これに対して、比較例1の耐熱鋳鋼(Si量が0.95質量%、Mn量が3.21質量%)では、酸化試験後重量減少量が約304mg・cm
-2であり、実施例1から8の耐熱鋳鋼よりも耐酸化性が低下した。この結果から、Si量が1.5質量%より小さくなると耐酸化性が低下するのに対して、Si量が1.5質量%以上では耐酸化性が向上することがわかった。また、Mn量が2質量%より大きくなると耐酸化性が低下するのに対して、Mn量が2質量%以下では耐酸化性が向上することがわかった。
【0048】
また、比較例2の耐熱鋳鋼(Cr量が21.92質量%)では、酸化試験後重量減少量が約94mg・cm
-2であり、実施例1から8の耐熱鋳鋼よりも耐酸化性が低下した。この結果から、Cr量が22質量%より小さくなると耐酸化性が低下するのに対して、Cr量が22質量%以上では耐酸化性が向上することがわかった。
【0049】
(硬さの評価)
各耐熱鋳鋼について、硬さの測定を行った。硬さ測定は、室温でビッカース硬さを測定した。ビッカース硬さの測定は、JIS Z2244「ビッカース硬さ試験―試験方法」及びJIS Z7725「ビッカース硬さ試験―試験機の検証及び校正」に準拠して行った。圧子は、ダイヤモンド圧子(正四角錐、対面角が136°±0.5°)とした。試験荷重は、10kgf(98N)とした。静止後押付時間は、10秒とした。表1には、各耐熱鋳鋼の硬さを示している。実施例1から8の耐熱鋳鋼の硬さは、Hv199からHv234であった。これに対して比較例3の耐熱鋳鋼(C量が1.13質量%)の硬さは、Hv240であった。この結果から、C量が1.0質量%より大きくなると硬さが大きくなり過ぎて、被削性等の加工性が低下するのに対して、C量が1.0質量%以下の場合には、被削性等の加工性が向上することがわかった。
【0050】
また、実施例1から4及び8の耐熱鋳鋼の硬さは、Hv199からHv215であった。実施例5から7の耐熱鋳鋼の硬さは、Hv218からHv234であった。この結果から、Cの含有率が0.55質量%以上0.8質量%以下の場合には、硬さが小さくなり、被削性等の加工性がより向上することがわかった。一方、Cの含有率が0.8質量%より大きく1.0質量%以下の場合には、硬さが大きくなり、機械的特性が向上することがわかった。
【0051】
(引張特性の評価)
各耐熱鋳鋼について、JIS G0567の「高温引張試験方法」に基づいて高温引張特性を評価した。試験温度を600℃及び950℃とし、引張強度、0.2%耐力、伸びを測定した。表1には、各耐熱鋳鋼の引張特性(引張強度、0.2%耐力、伸び)の結果を示している。
【0052】
実施例1、2、4から7の耐熱鋳鋼の引張強度は、600℃のとき378MPaから446MPaであり、950℃のとき106MPaから131MPaであった。0.2%耐力は、600℃のとき173MPaから214MPaであり、950℃のとき55MPaから73MPaであった。伸びは、600℃のとき9.4%から14.2%であり、950℃のとき37.6%から52.3%であった。このように、各耐熱鋳鋼は、優れた高温引張特性を有していることがわかった。
【0053】
[第2実施例]
次に、Sを含有する耐熱鋳鋼を鋳造して、機械的特性(引張特性、硬さ)、フェライト率、耐酸化性及び被削性を評価した。表2に、鋳造した耐熱鋳鋼の合金組成を示す。
【0054】
【表2】
【0055】
まず、各耐熱鋳鋼の合金組成について説明する。実施例9から10の耐熱鋳鋼の合金組成は、0.55質量%以上1.0質量%以下のCと、1.5質量%以上3.5質量%以下のSiと、0質量%より大きく2質量%以下のMnと、6質量%以上11質量%以下のNiと、22質量%以上27質量%以下のCrと、0質量%より大きく0.6質量%以下のMoと、0質量%より大きく0.2質量%以下のSと、を含有し、残部がFeと不可避的不純物とからなるように構成した。比較例8の耐熱鋳鋼では、Sを含有しないで構成し、Sの添加の影響を評価した。各耐熱鋳鋼は、合金原料を高周波誘導炉で溶解し、大気雰囲気中で砂型に注湯して鋳造した。
【0056】
(フェライト率の評価)
各耐熱鋳鋼について、フェライト率を測定した。各耐熱鋳鋼のフェライト率は、第1実施例と同様の方法で測定した。表2には、各耐熱鋳鋼のフェライト率を示している。各耐熱鋳鋼のフェライト率は、実施例9が0.00%、実施例10が0.12%、比較例8が0.00%であった。実施例9,10の耐熱鋳鋼のフェライト率は、実施例1から8の耐熱鋳鋼のフェライト率と同程度であった。このことから、0質量%より大きく0.2質量%以下のSを更に添加しても、フェライト相の形成が抑制されていることがわかった。
【0057】
(耐酸化性の評価)
各耐熱鋳鋼について、耐酸化性を評価した。各耐熱鋳鋼の耐酸化性は、第1実施例と同様の方法で評価した。表2には、各耐熱鋳鋼の酸化試験後重量減少量を示している。各耐熱鋳鋼の酸化試験後重量減少量は、実施例9が22mg・cm
-2、実施例10が21mg・cm
-2、比較例8が21mg・cm
-2であった。実施例9,10の耐熱鋳鋼の耐酸化性は、実施例1から8の耐熱鋳鋼の耐酸化性と同程度であった。
【0058】
(硬さの評価)
各耐熱鋳鋼について、硬さの測定を行った。各耐熱鋳鋼の硬さ測定は、第1実施例と同様の方法により室温でビッカース硬さを測定した。表2には、各耐熱鋳鋼の硬さを示している。各耐熱鋳鋼の硬さは、実施例9がHv229であり、実施例10がHv228であり、比較例8の硬さがHv247であった。実施例9,10の耐熱鋳鋼の硬さは、実施例1から8の耐熱鋳鋼の硬さと同程度であった。
【0059】
(引張特性の評価)
各耐熱鋳鋼について、高温引張特性を評価した。各耐熱鋳鋼の引張特性の評価は、第1実施例と同様の方法で評価した。表2には、各耐熱鋳鋼の引張特性(引張強度、0.2%耐力、伸び)の結果を示している。各耐熱鋳鋼の600℃での引張強度は、実施例9が401MPa、実施例10が404MPa、比較例8が424MPaであった。各耐熱鋳鋼の600℃での0.2%耐力は、実施例9が195MPa、実施例10が195MPa、比較例8が202MPaであった。各耐熱鋳鋼の600℃での伸びは、実施例9が10.0%、実施例10が10.0%、比較例8が9.0%であった。各耐熱鋳鋼の950℃での引張強度は、実施例9が118MPa、実施例10が119MPa、比較例8が122MPaであった。各耐熱鋳鋼の950℃での0.2%耐力は、実施例9が65MPa、実施例10が67MPa、比較例8が67MPaであった。各耐熱鋳鋼の950℃での伸びは、実施例9が38.0%、実施例10が35.0%、比較例8が38.0%であった。実施例9,10の耐熱鋳鋼の引張特性は、実施例1から8の耐熱鋳鋼の引張特性と同程度であった。
【0060】
(被削性の評価)
各耐熱鋳鋼について、被削性を評価した。まず、被削性評価試験方法について説明する。
図6は、被削性評価試験方法を説明するための図である。被削性評価試験方法は、旋盤加工試験により実施した。試験体は、各耐熱鋳鋼で円柱状に形成した。炭化物でコーティングした刃先を有する工具を用い、試験体の側面を切削した。所定の回転速度で旋盤を回転させて、一定時間ごとに工具の写真撮影を行い、工具の摩耗深さを測定した。旋削加工周速(切削速度)は、50m/secとした。そして、一定の加工時間に対する境界摩耗量(工具摩耗量)で評価した。
【0061】
次に、各耐熱鋳鋼の被削性評価試験結果について説明する。
図7は、各耐熱鋳鋼の被削性評価試験結果を示すグラフである。
図7のグラフでは、横軸に加工時間(T)を取り、縦軸に境界摩耗量(VN)を取り、実施例9の耐熱鋳鋼を白丸、実施例10の耐熱鋳鋼を白四角形、比較例8の耐熱鋳鋼を×で示している。実施例9,10の耐熱鋳鋼では、加工時間に対して境界摩耗量が小さくなった。これに対して比較例8の耐熱鋳鋼では、加工時間に対して境界摩耗量が大きくなった。この結果から、耐熱鋳鋼にSを添加することにより、被削性を向上できることがわかった。また、実施例10の耐熱鋳鋼は、実施例9の耐熱鋳鋼よりも境界摩耗量が小さくなることから、Sをより多く含有させることにより、被削性を更に向上できることがわかった。