特許第6898246号(P6898246)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プレコルディール オサケユイチアの特許一覧

特許6898246心不全を示す情報を生成するための方法及び装置
<>
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000004
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000005
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000006
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000007
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000008
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000009
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000010
  • 特許6898246-心不全を示す情報を生成するための方法及び装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6898246
(24)【登録日】2021年6月14日
(45)【発行日】2021年7月7日
(54)【発明の名称】心不全を示す情報を生成するための方法及び装置
(51)【国際特許分類】
   A61B 5/00 20060101AFI20210628BHJP
   A61B 5/11 20060101ALI20210628BHJP
【FI】
   A61B5/00 101R
   A61B5/11ZDM
【請求項の数】11
【全頁数】18
(21)【出願番号】特願2017-547411(P2017-547411)
(86)(22)【出願日】2016年2月26日
(65)【公表番号】特表2018-511378(P2018-511378A)
(43)【公表日】2018年4月26日
(86)【国際出願番号】FI2016050121
(87)【国際公開番号】WO2016142575
(87)【国際公開日】20160915
【審査請求日】2019年2月4日
(31)【優先権主張番号】20155160
(32)【優先日】2015年3月11日
(33)【優先権主張国】FI
(73)【特許権者】
【識別番号】517018628
【氏名又は名称】プレコルディール オサケユイチア
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100153084
【弁理士】
【氏名又は名称】大橋 康史
(74)【代理人】
【識別番号】100160705
【弁理士】
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】テロ コイビスト
(72)【発明者】
【氏名】トゥオマス バルトネン
(72)【発明者】
【氏名】ミッコ パンカーラ
(72)【発明者】
【氏名】テロ フルナネン
(72)【発明者】
【氏名】トム クーセラ
【審査官】 牧尾 尚能
(56)【参考文献】
【文献】 特開2012−215600(JP,A)
【文献】 特開2006−271731(JP,A)
【文献】 特開平07−067843(JP,A)
【文献】 特開2007−105131(JP,A)
【文献】 国際公開第2009/147875(WO,A1)
【文献】 中国特許出願公開第101156771(CN,A)
【文献】 国際公開第2013/160538(WO,A1)
【文献】 米国特許出願公開第2002/0120206(US,A1)
【文献】 特開2000−350716(JP,A)
【文献】 特開2000−287943(JP,A)
【文献】 特表2013−500757(JP,A)
【文献】 特表2009−540953(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/00 − 5/01
A61B 5/02 − 5/03
A61B 5/06 − 5/22
A61B 5/24
(57)【特許請求の範囲】
【請求項1】
加速度計、及びジャイロスコープ、及び加速度計とジャイロスコープの両方を具備する慣性測定ユニットのうちの少なくとも1つを具備する、心臓血管運動を含む運動に応答するセンサシステム(503)と、
前記センサシステムにより生成された分析信号を処理するための処理システム(502)とを具備する装置であって、
前記処理システムは、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成し、
前記分析信号のスペクトルエントロピーを示す第2の指標量を形成し
前記第1の指標量を第1の閾値と比較し且つ前記第2の指標量を第2の閾値と比較し、更に
前記第1の指標量が前記第1の閾値を超え且つ前記第2の指標量が前記第2の閾値を超える状況に応答して心不全の存在を表現する心不全の指標を設定するように構成されることを特徴とする装置。
【請求項2】
前記処理システムは、前記センサシステムの出力信号から、前記センサシステムにより測定された個人が休止している期間を検出し、前記個人が休止している状態に前記分析信号が対応するように、前記センサシステムの前記出力信号から前記分析信号を抽出するように構成される、請求項1に記載の装置。
【請求項3】
前記処理システムは、以下の等式に従って、前記分析信号の前記自己相関の推定値Reを計算するように構成されており、
e(τ)={(S(t)−μ)×(S(t−τ)−μ)}/σ2の平均
ここで、前記平均は時間tにわたり計算され、Sは前記分析信号であり、τは、それの相互相関がRe(τ)で表される分析信号サンプル間の時間差であり、μは前記分析信号の平均であり、σ2は前記分析信号の分散である、請求項1又は2に記載の装置。
【請求項4】
前記処理システムは、Re(τ=0)と、Re(τ)の絶対値の平均に関連する値とに基づいて、前記第1の指標量を形成するように構成される、請求項に記載の装置。
【請求項5】
前記処理システムは、前記第2の指標量を形成するように、前記分析信号の前記スペクトルエントロピーの推定値SEeを、以下の等式に従って形成するように構成されており、
SEe={−PSDn(f)log2[PSDn(f)]}の平均
ここで、前記平均は、−fs/2からfs/2までの周波数fにわたって計算され、fsはサンプルレートであり、更にPSDn(f)は、前記分析信号のパワーにより割られた前記分析信号のパワースペクトル密度である正規化されたパワースペクトル密度である、請求項1からのいずれか一項に記載の装置。
【請求項6】
前記処理システムは、前記分析信号の連続する時間について計算された自己相関推定値のピークに基づいて、前記分析信号の連続する時間に関する心拍数を決定し、
前記分析信号の前記連続する時間について決定された前記心拍数に基づいて、心拍数変動を決定し、更に前記決定された心拍数変動に基づいて、前記第1の指標量を形成するように構成される、請求項1からのいずれか一項に記載の装置。
【請求項7】
前記処理システムは、前記分析信号の波形に基づいて、連続する心拍期間の時間長さを決定し、前記連続する心拍期間の前記時間長さの変動を計算して、第1の指標量を形成するように構成される、請求項1からのいずれか一項に記載の装置。
【請求項8】
前記処理システムは、前記分析信号の2つ以上の信号成分により示される候補時間長さの中から、選択される候補時間長さと前の心拍期間の時間長さとの間の差の絶対値が最小であるように前の心拍期間の時間長さに最も近い前記候補時間長さの内の特定のものを選択することにより、各心拍期間の時間長さの推定値を形成するように構成されていて、
前記分析信号の前記信号成分は、前記心臓血管運動を含む前記運動の異なる測定方向に対応している、請求項に記載の装置。
【請求項9】
前記装置は、前記センサシステムを具備しており、前記センサシステムは、前記分析信号の前記信号成分S1とS2とS3とS4とS5とS6を測定するのに適しており、ここで、
S1は、x方向において測定された直線加速度であり、
S2は、y方向において測定された直線加速度であり、
S3は、z方向において測定された直線加速度であり、
S4は、x軸の周りの測定された回転加速度であり、
S5は、y軸の周りの測定された回転加速度であり、
S6は、z軸の周りの測定された回転加速度であり,
ここで、前記x、y及びz軸は,デカルト座標系の軸であり、前記x、y及びz方向は、x、y及びz軸の方向である、請求項に記載の装置。
【請求項10】
心不全の前記指標は、心房細動の指標である、請求項1からのいずれか一項に記載の装置。
【請求項11】
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成する段階(201)と、
前記分析信号のスペクトルエントロピーを示す第2の指標量を形成する段階(202)と、
前記第1の指標量を第1の閾値と比較し且つ前記第2の指標量を第2の閾値と比較する段階と、
前記第1の指標量が前記第1の閾値を超え且つ前記第2の指標量が前記第2の閾値を超える状況に応答して心不全の存在を表現する心不全の指標を設定する段階(203)と、を含む方法であって、
前記分析信号は、加速度計、及びジャイロスコープ、及び加速度計とジャイロスコープの両方を具備する慣性測定ユニットのうちの少なくとも1つを具備して心臓血管運動を含む運動に応答するセンサシステムにより生成される信号であることを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は一般に、例えば心房細動等の心不全を示す情報を生成することに関する。より詳細には、本開示は、心不全を示す情報を生成するための装置及び方法に関する。更に、本開示は、心不全を示す情報を生成するためのコンピュータプログラムに関する。
【背景技術】
【0002】
心血管系で起こり得る機能不全及び異常は、もし診断されずに適切に治療又は矯正されないと、個人がストレスに遭遇した場合に、特に、冠状動脈酸素要求を満たすのに十分な酸素を供給する心血管系の能力を徐々に低下させ得る。現在、心臓活動に関連する電磁気現象に基づくカルジオグラフィと心エコー検査と心臓血管運動に基づくカルジオグラフィ等の方法が、様々な心不全及び異常の識別及び評価において使用される。心臓活動に関連する電磁気現象に基づくカルジオグラフィの周知の例は、心電図 「ECG」であり、そして心臓血管運動に基づくカルジオグラフィの例は、心弾図法「BCG」及びサイズモカルジオグラフィ「SCG」である。心エコー検査は、心臓の部分の画像を提供し、更に心臓の構造及び機能に関する包括的な情報を提供可能であるが、しかし高価な装置及び専門の操作要員を必要とする。 ECGは、心臓のかなり迅速な電気的評価を提供するが、しかし収縮力に関する任意の情報を提供しない。心臓血管運動に基づくカルジオグラフィは、心臓血管運動を示す信号の測定を含む。以前は、運動を測定するための装置を備えるか又は脚の脛領域を横切って取り付けられた促進装置が存在するベッド上に個人が横たわる間に信号が得られた。現在では、信号は、例えば、心臓の動きを表わす微小な動きを測定するのに適した加速度計等の小型センサ要素を使用して得ることができる。心臓血管運動に基づくカルジオグラフィにおいて使用されるセンサは同様に、個人の胸部の回転運動を示す信号を得るように構成されたジャイロスコープであり得る。信号処理手段は、信号から、個人の心臓動作を示す指標データを生成するように構成される。ジャイロスコープの動作は重力により影響されない。従って、測定値は実際には、観測される個人の位置又は姿勢とは無関係である。胸部の外部角運動は、心臓回転の僅かな範囲から及び心臓の寸法と人間の胸部の直径と間の比から人が予想可能なものよりも数桁大きいことが注目される。角運動の検出はまた、心臓に対するセンサの位置に対して比較的鈍感であることも注目される。従って、評価中の個人の胸部に取り付けられた、1つのジャイロスコープ、例えば微小電気機械ジャイロスコープによってさえも比較的正確な測定は実施可能である。微小電気機械ジャイロスコープは、正確で寸法が小さく、また市販されている。
【0003】
図1a及び1bは、リズミカルな電気的機能と、関連する心臓血管運動との間の関係を示す。図1aは、ECG波形の一例を示しており、そして図1bは、心臓血管運動を示していて且つ一般的にy方向と呼ばれる「心臓から足へ」の方向において加速度計で測定された例示的な信号の波形を示す。例示的な目的のために、基本的な心臓機能の簡単な説明を以下に提供する。
【0004】
心臓は4つの室を具備する。右心房は三尖弁により右心室と相互接続され、左心房は僧帽弁により左心室と相互接続される。血液は、上大静脈を介して体の上半分から及び下大静脈を介して体の下半分から右心房へ送られる。三尖弁は、右心房心筋及び右心室乳頭筋の同時収縮により開かれ、それにより右心房から右心室内への血液の流入を可能にする。次に、乳頭筋が緩むと三尖弁は閉じる。右心室の心筋が収縮すると、右心室から肺動脈弁を通り肺動脈に血液が押し込まれ、そのことは肺の中に血液を送り、そこで血液が酸素添加される。酸素添加された血液はその後、肺静脈を介して左心房に送られる。左心房心筋及び左心室乳頭筋の同時収縮により僧帽弁が開かれると、酸素添加された血液は、左心房から左心室内に流れ、それにより左心房から左心室内への血液の流入を可能にする。次いで、乳頭筋が緩むと、僧帽弁は閉じられる。酸素添加された血液は、その後左心室から大動脈弁を通り大動脈内に押し出され、大動脈は末梢血管系に酸素添加された血液を送る。
【0005】
各心拍期間は、心房収縮期と心室収縮期と心臓拡張期との3つの主要段階を含む。心房収縮期は、右心房及び左心房を囲む心筋の収縮の期間である。両方の心房は、乳頭筋収縮と同時に収縮し、それにより三尖弁及び僧帽弁を強制的に開く。心臓の室の筋組織を刺激してそれらを収縮させる電気活動、即ち電気収縮は、右心房に位置する洞房結節において始まる。伝導電気脱分極は、各心房筋細胞を順に脱分極させる両方の心房を通り、下向き、左向き及び後ろ向きの波として進行し続ける。この電荷の伝播は、図1aに示すECG波形上のP波として見ることができる。これには、図1bに示す波形のhピークに対応する衝撃、及び図1bに示す波形のi谷に対応する反跳として検出される心房の機械的収縮が近接して続く。右心房及び左心房が収縮し始める時に、図1bに示す波形上のjピークにより表される右心室及び左心室内への高速の血液の流れが存在する。継続的な心房収縮は、三尖弁が閉じ始めると、右心室及び左心室内に更により低速の血液流を生じる。追加的な血液の流れは、図1bに示される波形における「a−a1」- 波複合体に対応する「心房キック」と呼ばれる。心房が空になった後に、三尖弁及び僧帽弁が閉じ、それにより図1bに示す波形における下向きのg波に上昇を生じる。心室収縮は、左心室及び右心室の筋肉の収縮であり、図1aに示すECG波形における「Q−R−S」波複合体に上昇を生じる心室心筋の電気的脱分極により引き起こされる。下向きQ波は、「ヒス(His)束」と呼ばれる特定の細胞群に沿った隔壁を介する脱分極の下方への流れにより引き起こされる。 Rピークは、心室心筋組織の脱分極により引き起こされ、S波は、心房と心室との間の心臓組織の脱分極により生成される。脱分極が隔壁を下方に移動し、更に心室心筋を通って進む際に、心房及び洞房結節が分極を開始する。三尖弁及び僧帽弁の閉鎖は、心室収縮の始まりを示しており、心臓が鼓動する際に心臓により生成される「ラブ−ダブ(lub-dub)」音の最初の部分を引き起こす。この音は一般的に、「第1の心音」として知られる。心室心筋の電気的脱分極がピークに達すると、右心室及び左心室の収縮を分離する房室「AV」隔壁は、図1bに示す波形のHピークに対応する衝撃と、図1bに示される波形上のI谷に対応する反跳とを引き起こす。心室収縮は、血液を、右心室から肺動脈弁を通って肺動脈内に及び左心室から大動脈弁を通って大動脈内に非常に高速で押し込み、それにより図1bに示す波形にJピークを引き起こす。左心室から大動脈内への血流の減速は、図1bに示す波形上に下向きのK波を生じる。左心室が空になると、その圧力は、大動脈の圧力よりも低くなり、大動脈弁は閉じる。同様に、右心室の圧力が肺動脈の圧力よりも低下すると、肺動脈弁は閉じる。「第2の心音」として一般的に知られる「ラブ−ダブ」音の第2の部分は、心室収縮末期における肺動脈弁及び大動脈弁の閉鎖により引き起こされ、それにより図1bに示される波形における上向きのL波波形を引き起こす。肺動脈弁及び大動脈弁の閉鎖と同時に、房室「AV」隔壁は、弛緩して、上方に移動し、心室心筋は、再分極され、図1aに示すECG波形におけるT波に対して上昇を生じる。心房拡張期及び心室拡張期を含む心臓拡張期は、心臓が収縮後に弛緩し更に血液を循環することにより再充填するための準備をする期間である。心房拡張期は、右心房及び左心房が弛緩している時であり、更に心室拡張期は、右心室及び左心室が弛緩している時である。心房拡張期の期間中において、右心房が、酸素除去された血液により再充填される一方で、左心房は、酸素添加された血液により再充填される。心房の再充填は、拡張期において早期に、図1bに示される波形における下向きのM波を引き起こしており、それはECG波形のU波として示されるヒス束細胞の再分極と一致する。右心房及び左心房がそれらの最大容量まで満たされると、三尖弁及び僧帽弁に対する血液の逆流は、図1bに示される波形上の上向きのN波を引き起こす。
【0006】
刊行物WO2012149652は、前胸部加速度信号を記録することによる被験者における心臓収縮性の評価方法を記載する。
【0007】
刊行物US2008194975は、個人の生理学的状態を観測し且つそこにおける異常を検出する方法を記載する。この方法は、ECG信号である第1の信号と、心臓血管の動きを示す第2の信号とを同時に受信することを含む。
【0008】
心臓血管運動を示す波形の分析は一般的に、異常な心臓血管機能を正常な場合と区別するために、適格な診断者により視覚的に実施される。しかし、多くの場合において、例えば、心房細動等の特定の心不全を視覚的分析により見出すことは困難である。従って、心不全を示す情報を生成するための方法及び装置対する必要性が存在する。
【発明の概要】
【0009】
以下は、様々な発明の実施形態の幾つかの形態の基本的な理解を提供するために簡略化した要約を提示する。その要約は本発明の広範な概要ではない。本発明の重要な要素又は重要な要素を特定することも、本発明の範囲を説明することも意図されない。以下の要約は、本発明の例示的な実施形態のより詳細な説明に対する前置きとして、本発明の幾つかの概念を簡略化した形で単に提示するだけである。
【0010】
本発明によれば、心不全、例えば心房細動を示す情報を生成するための新規な方法が提供される。
【0011】
本発明による方法は、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成する段階と、
分析信号のスペクトルエントロピーを示す第2の指標量を形成する段階と、
少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標を決定する段階と、を含む。
【0012】
上記分析信号は、心臓血管運動を含む運動に応答するセンサシステムにより生成される信号である。センサシステムは、加速度計、及び/又はジャイロスコープ、及び/又は加速度計ジャイロスコープの両方を具備する慣性測定ユニット「IMU」を具備る。
【0013】
自己相関は、一般的な概念として、検討中の信号の波形の不規則性が増加すると、相互相関が自己相関により表される信号サンプル間のゼロ時間差に対応する点に自己相関がますます集中するという特性を有する。上述の分析信号の自己相関Rは、例えば、以下のように定義可能である。
【数1】
ここで、Eは期待値演算子であり、Sは分析信号であり、tは時間であり、τは、相互相関が自己相関により表される分析信号サンプル間の時間差であり、μは分析信号の平均、即ち算術平均であり、更にσ2は分析信号の分散である。例えば、もし分析信号が、非常に不規則な波形を有する理想的な白色雑音「IWN」等の全く非周期的であるならば、非ゼロ時間差により分離された任意の分析信号サンプル間にゼロ相関が存在し、従って分析信号の自己相関R(τ)は、点τ=0における単一のピークだけであろう。
【0014】
自己相関の集中度を示す上述の第1の指標量を形成することは、分析信号の自己相関の推定値又は分析信号の周波数スペクトルの推定値を計算することに基づくことができる。パワースペクトル密度「PSD」は、自己相関のフーリエ変換およびPSD〜F(f)×F*(f)であり、ここで、F(f)及びF*(f)は、周波数スペクトルとその複素共役であるので、周波数スペクトルは自己相関と密接に関連する。周波数スペクトルは、一般的な概念として、検討中の信号の波形の不規則性が増加すると、周波数スペクトルがより以上に均等に分散する特性を有する。例えば、もし分析信号が理想的な白色雑音等のような全く非周期的であったならば、分析信号の周波数スペクトルは、全く平坦になるであろう。周波数スペクトルのこの特性は、自己相関の集中度を示す第1の指標量を得るために使用可能である。
【0015】
スペクトルエントロピーは、一般的な概念として、検討中の信号の波形の不規則性が増加し、それにより、検討中の信号のパワースペクトル密度がより平坦になる場合に、スペクトルエントロピーが増加するという特性を有する。従って、スペクトルエントロピーは、検討中の信号のパワースペクトル密度の平坦度を示す。上述の分析信号のスペクトルエントロピーSEは、例えば以下のように定義可能であり:
【数2】
ここで、fは周波数であり、PSDn(f)は、分析信号のパワーにより割られた分析信号のパワースペクトル密度である正規化パワースペクトル密度であり、Bは分析信号の周波数帯域である。例えば、もし分析信号が純粋な正弦波であったならば、正規化されたパワースペクトル密度は、f=正弦波の周波数において及びf=−正弦波の周波数において高さ2-1を有するピークを有するであろう。この例示的なケースにおいて、上記のスペクトルエントロピーSEは、1である。別の例に関して、もし分析信号が理想的な白色雑音等のような全く非周期的であったならば、分析信号のパワースペクトル密度は完全に平坦であるであろう。このケースにおいて、離散フーリエ変換、例えば高速フーリエ変換「FFT」、において2Nの周波数点が存在することを仮定可能であり、ここでNは整数である。この例示的なケースにおいて、正規化されたパワースペクトル密度は、2Nの周波数点の各々において値2-Nを有しており、上記定義のスペクトルエントロピーSEは、Nである。
【0016】
診断するのが困難な場合もある心不全、例えば心房細動は、しかしながら、上述の分析信号の波形に不規則性を引き起こし得る。これらの不規則性は、1つ又は2つの心拍期間の波形から検出するのは困難であるかもしれないが、しかし不規則性自体は、自己相関が正常時に比べて、ゼロ時間差に対応する点において、より集中するように、及びスペクトルエントロピーが正常時に比べてより高い値を有するように、幾つかの連続する心拍期間をカバーするより長い時間間隔において現れる。従って、分析信号の不規則性の程度を示す上記の第1及び第2の指標量は、心不全、例えば心房細動を示す情報を表す。
【0017】
本発明によれば、心不全を示す情報を生成するための新規な装置も提供される。本発明による装置は、心臓血管運動を含む運動に応答するセンサシステムと、前記センサシステムによって生成された分析信号を処理するための処理システムを具備する。センサシステムは、加速度計、及び/又はジャイロスコープ、及び/又は加速度計とジャイロスコープの両方を具備する慣性測定ユニット「IMU」を具備する。処理システムは、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成し、
分析信号のスペクトルエントロピーを示す第2の指標量を形成し、更に
少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標を決定するように構成される。
【0018】
ンサシステムを具備するセンサ要素は、センサシステムにより測定された個人が休止しているかどうかを検出し更に個人が休止している状態に分析信号が対応するようにセンサシステムの出力信号から分析信号を抽出するためのプロセッサを更に備えてもよい。心不全の指標を決定するように構成された処理システムはまた、センサシステムの出力信号から、個人が休止している期間を検出し更に個人が休止している状態に分析信号が対応するようにセンサシステムの出力信号から分析信号を抽出するように構成されることも可能である。
【0019】
本発明、上述の分析信号に基づいて心不全を示す情報を生成するためのコンピュータプログラムによって実現され得る。そのコンピュータプログラムは、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成し、
分析信号のスペクトルエントロピーを示す第2の指標量を形成し、
少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標を決定するように、プログラム可能な処理システムを、制御するためのコンピュータ実行可能な命令を含む。
【0020】
ンピュータプログラムは、不揮発性のコンピュータ読み取り可能媒体、例えばコンパクトディスク「CD」内に符号化され得る
【0021】
本発明の多くの例示的且つ非限定的な実施形態が、添付の従属請求項に記載される。
【0022】
本発明の様々な例示的且つ非限定的な実施形態は、添付の図面と共に読む時に、特定の例示的な実施形態の以下の説明から、構成及び動作方法の両方に関して、本発明の追加の目的及び利点と共に、最も良好に理解される。
【0023】
「to comprise(具備する)」及び「to include(含む)」という動詞は、本明細書において、引用されない特徴の存在を排除も必要もしないオープンな制限として使用される。付随する従属請求項において引用された特徴は、別に明示的に述べられていない限り、相互に自由に組み合わせ可能である。更に、「a」又は「an」、即ち単数形の使用は、本明細書を通して、複数を排除するものではないことが理解されるべきである。
【0024】
本発明の例示的且つ非限定的な実施形態及びそれらの利点は、添付される図面を参照して以下に、より詳細に説明される。
【図面の簡単な説明】
【0025】
図1a図1aは、心電図「ECG」波形の例を示す。
図1b図1bは、心臓血管運動を示す例示的信号の波形を示す。
図2図2は、心不全を示す情報を生成するための本発明の例示的且つ非限定的な実施形態による方法のフローチャートを示す。
図3a図3aは、評価中の個人が休止している、正常な場合の動きに応答するセンサシステムにより測定された、例示的な分析信号の波形を示す。
図3b図3bは、図3aに示す例示的な分析信号の自己相関を示す。
図4a図4aは、評価中の個人が休止している時の心房細動の場合の動きに応答するセンサシステムにより測定された、例示的な分析信号の波形を示す。
図4b図4bは、図4aに示された例示的な分析信号の自己相関を示す。
図5図5は、心不全を示す情報を生成するための、本発明の例示的且つ非限定的な実施形態による装置の概略図を示す。
【発明を実施するための形態】
【0026】
図1a及び図1bは、本発明の背景を説明する時に既に説明されている。
【0027】
以下の説明において提供される特定の例は、添付の特許請求の範囲及び/又は適用性を制限するものとして解釈されるべきではない。明細書において提供される例のリスト及びグループは、そうではないと明示的に述べられていない限り網羅的ではない。
【0028】
図2は、心不全、例えば心房細動、を示す情報を生成するための、本発明の例示的且つ非限定的な実施形態による方法のフローチャートを示す。この方法は、以下の活動を含んでおり;
・活動201:相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成する。
・活動202:分析信号のスペクトルエントロピーを示す第2の指標量を形成する。
・活動203:少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標を決定する。
【0029】
上述の分析信号は、心臓血管運動を含む運動に応答するセンサシステムにより生成される信号である。分析信号は、評価中の個人が休止している状態に対応することが有利である。センサシステムは、例えば、加速度計、ジャイロスコープ及び/又は加速度計とジャイロスコープとの両方を具備する慣性測定ユニット「IMU」を具備し得る。センサシステムは、例えば、微小電気機械システム「MEMS」であり得る。分析信号の時間的持続期間は、例えば、必須ではないが5秒から10秒であり得る。
【0030】
本発明の例示的且つ非限定的な実施形態による方法は、センサシステムの出力信号から、個人が休止している期間を検出する段階と、個人が休止している状態に分析信号が対応するように、センサシステムの出力信号から分析信号を抽出する段階と、を含む。
【0031】
心不全、例えば心房細動は、上記第1の指標量が第1の閾値を超えていて且つ上記第2の指標量が第2の閾値を超えた時に存在するとみなすことができる。第1及び第2の閾値は、一群の患者及び/又は別の人々から集められた経験的データに基づいて決定可能である。第1及び第2の閾値は必ずしも定数ではないが、しかしこれらの閾値の一方又は両方は、評価中の個人、時間及び/又は幾つか別の要因に従って変化し得る。1つの第1の閾値と1つの第2の閾値とにより各々が構成される一連の閾値対を構築して、各閾値対が心房細動又は何らかの別の心不全及び/又は異常の特定の確率を表すことも可能である。
【0032】
信頼性を向上させるために、第1及び第2の指標量は、センサシステムの出力信号の互いに異なる時間的部分である2つ以上の分析信号であって個人が休止している時に測定されることが有利である2つ以上の分析信号の各々について決定可能である。心不全の指標は、2つ以上の分析信号について決定された第1及び第2の指標量に基づいて決定可能である。
【0033】
信頼性を更に向上させるために、上述の2つ以上の分析信号の内の異なるものを、センサシステムの異なる測定手段から受信することができる。例えば、1つ以上の分析信号は、加速度計から受信可能であり、そして分析信号の1つ以上の別のものは、ジャイロスコープから受信可能である。
【0034】
図3aは、評価中の個人が休止している場合の例示的な正常なケースにおける幾らかの心拍期間にわたる分析信号の例示的な波形を示す。図4aは、評価中の個人が休止している場合の心房細動の例示的なケースにおける幾らかの心拍期間にわたる分析信号の例示的な波形を示す。図3a及び4aに示される波形は、z方向と一般的に呼ばれる「胸部を通る」方向において加速度計により測定された。図5に示すデカルト座標系599は、z方向を表す。
【0035】
図3bは、図3aに示された例示的な分析信号の自己相関を示しており、更に図4bは、図4aに示された例示的な分析信号の自己相関を示す。図3b及び4bにおいて、時間差は、相互相関が自己相関により表される分析信号サンプル間の時間差である。本書において前に提示した等式(1)において、τは時間差を表す。自己相関が等式(1)に従って定義される例示的なケースにおいて、R(τ=0)=E{(S(t)−μ)2}/σ2=1であるので、自己相関は、ゼロ時間差において1である。
【0036】
図3b及び4bから分かるように、自己相関は、正常ケースに比べて心房細動のケースにおいて、ゼロ時間差、即ちτ=0に相当する点に著しくより多く集中する。図3a及び4aから、心房細動のケースに関連する波形は、正常ケースに関連する波形に比べて、より非周期的であることが分かる。従って、正常なケースに比べて心房細動のケースにおいて、分析信号のスペクトルエントロピーはより高い。
【0037】
ゼロ時間差τ=0に対応する点への自己相関の集中度を示す上述の第1の指標量を形成する数多くの方法が存在する。これに対応して、分析信号のスペクトルエントロピーを示す上述の第2の指標量を形成する数多くの方法が存在する。第1及び第2の指標量を形成する例示の方法を、以下に示す。
【0038】
本発明の例示的且つ非限定的な実施形態による方法は、以下の等式に従って、分析信号の自己相関の推定値Reを計算して、第1の指標量を形成する段階を含む。
e(τ)={(S(t)−μ)×(S(t−τ)−μ)}/σ2の平均
ここで、平均は、時間tにわたって計算され、Sは分析信号であり、τは、相互相関がRe(τ)で表される2つの分析信号サンプル間の時間差であり、μは、分析信号の平均であり、そしてσ2は、分析信号の分散である。第1の指標量は、Re(τ=0)と、Re(τ)の絶対値の平均に関連する値とに基づいて形成可能である。第1の指標量は、例えば、
e(τ= 0)/abs(Re(τ))の平均、又は
e(τ= 0)/(Re(τ))2の平均、又は
e(τ= 0)/{(Re(τ))2の平均}1/2であることができ、
ここで、平均は、τにわたって計算され、「abs」は絶対値を意味する。
【0039】
多くの場合において、分析信号の連続する時間に対して計算された自己相関推定値のピークに基づいて、又は分析信号の連続する時間に対して計算されたパワースペクトル密度推定値のピークに基づいて、心拍数「HR」を決定すること、及び続いて分析信号の連続する時間に関して決定された心拍数「HR」に基づいて、心拍数変動「HRV」を決定することも可能である。また、心拍数変動「HRV」は、分析信号の波形の不規則性を示す量、即ちゼロ時間差τ=0に対応する点への分析信号の自己相関の集中度の指標である。従って、また、上述した第1の指標量として、心拍数変動「HRV」又はその派生物を使用可能である。
【0040】
本発明の例示的且つ非限定的な実施形態による方法は、分析信号の波形に基づいて、例えば、分析信号のピークを調査することにより、連続する心拍期間の時間長さを決定する段階を含む。連続する心拍期間の時間長さの変動は、上述した心拍数変動「HRV」が分析信号の波形の不規則性を示す量であるのと同様な方法において、分析信号の波形の不規則性を示す量である。従って、連続する心拍期間の時間長さの変動は、ゼロ時間差τ=0に対応する点への分析信号の自己相関の集中度を示す。従って、また、連続する心拍期間の時間長さの変動又はその派生物は、上記の第1の指標量として使用可能である。
【0041】
しかし、多くの場合において、分析信号の波形に基づいて、連続する心拍期間の時間長さを決定することは困難である。これはしばしば、分析信号の品質、例えば信号対雑音比「SNR」が低いケースである。この場合において、例えば、分析信号からのピークを正しい方法で検出することは困難であるかもしれない。例えば、分析信号がサイズモカルジオグラフィ「SCG」信号及び/又はジャイロカルジオグラフィ「GCG」信号により構成されている場合に、信号品質は低いことがある。
【0042】
本発明の例示的且つ非限定的な実施形態による方法において、分析信号は、信号成分が異なる測定方向に対応するように、2つ以上の同時に測定された信号成分を含む。例えば、分析信号は、6つの信号成分S1、S2、S3、S4、S5、及びS6を含んでもよく、
S1は、x方向において測定された直線加速度であり、
S2は、y方向において測定された直線加速度であり、
S3は、z方向において測定された直線加速度であり、
S4は、x軸回りの測定された回転、即ちジャイロスコープ、の加速度であり、
S5は、y軸回りの測定された回転加速度であり、
S6は、z軸周りの測定された回転加速度である。
【0043】
図5に示す座標系599は、x、y及びz方向を示す。
【0044】
この例示的なケースにおいて、分析信号を測定するためのセンサシステムは、単一の6軸センサを具備するか、又はセンサシステムは、3つの加速度計及び3つのジャイロスコープを具備する。本発明のこの例示的且つ非限定的な実施形態による方法において、各心拍期間の時間長さの推定値は、2つ以上の信号成分により示される候補時間長さの中から、選択された候補時間長さと前の心拍期間の時間長さとの間の差の絶対値ができる限り小さくなるように、前の心拍期間の時間長さに最も近いものである特定の候補時間長さを選択することにより形成される。例えば、もし心拍期間nの時間長さがT(n)であるならば、且つもし心拍期間n+1に関する信号成分S1、S2、...Sk、...により指示される候補時間長さT1(n+1)、T2(n+1)、・・・Tk(n+1)、・・・の中から、候補時間長さTk(n+1)が時間長さT(n)に最も近ければ、その場合心拍期間n+1の時間長さは、候補時間長さTk(n+1)であるように選択される。心拍期間の時間長さを決定するためのこの方法は、時間長さの急速な変化が、連続する心拍期間が関係する場合に、時間長さの決定における誤差を参照することに基づく。
【0045】
本発明の例示的且つ非限定的な実施形態による方法は、以下の等式に従って、分析信号のスペクトルエントロピーの推定値SEeを計算して、第2の指標量を形成する段階を含んでいる。
SEe={−PSDn(f)log2[PSDn(f)]}の平均
ここで、PSDn(f)は、分析信号のパワーで割った分析信号のパワースペクトル密度である正規化パワースペクトル密度であり、fは周波数である。平均は、−fs/2からfs/2までの周波数fにわたって計算され、ここで、fsはサンプルレート(サンプリング周波数)である。計算された推定値SEe又はその適切な派生物は、第2の指標量として使用可能である。
【0046】
本発明の例示的且つ非限定的な実施形態による方法は、選択可能に、個人の体からセンサ要素により分析信号を測定する段階を含む。本発明の別の例示的且つ非限定的な実施形態による方法は、分析信号をメモリから読み取る段階を含んでおり、この場合において、分析信号は、以前に測定されてメモリに記録されている。本発明の例示的且つ非限定的な実施形態による方法は、外部データ転送システムから分析信号を受信する段階を含む。従って、測定は、本発明の多くの実施形態による方法の本質的且つ必要な段階ではないが、しかし分析信号、即ちセンサシステムの出力信号は、方法の入力量として理解されるべきである。
【0047】
本発明の例示的且つ非限定的な実施形態によるコンピュータプログラムは、本発明の上述の例示的な実施形態の何れかによる方法に関連する活動を実行するように、プログラム可能な処理システムを制御するためのコンピュータ実行可能指令を具備する。
【0048】
本発明の例示的且つ非限定的な実施形態によるコンピュータプログラムは、上記分析信号に基づいて、心不全、例えば心房細動を示す情報を生成するためのソフトウェアモジュールを具備する。ソフトウェアモジュールは、プログラム可能な処理システムを制御するためのコンピュータ実行可能指令を具備しており、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成し、
分析信号のスペクトルエントロピーを示す第2の指標量を形成し、更に
少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標量を決定する。
【0049】
ソフトウェアモジュールは例えば、適切なプログラミング言語により、及び検討中のプログラミング言語及びプログラム可能な処理システムに適したコンパイラにより実行されるサブルーチン又は関数であり得る。更に、ソースコードが、上記提示の活動を実行するようにプログラム可能な処理システムを制御するために必要な情報を含み更にコンパイルすることが、情報のフォーマットだけを変更するので、適切なプログラミング言語に対応するソースコードが、コンピュータ実行可能ソフトウェアモジュールを表すことは注目に値する。更に、プログラム可能な処理システムは、適切なプログラミング言語により実行されるソースコードが、実行前にコンパイルされる必要がないように、インタプリタを備えることも可能である。
【0050】
本発明の例示的且つ非限定的な実施形態によるコンピュータプログラム製品は、本発明の実施形態によるコンピュータプログラムにより符号化されたコンピュータ可読媒体、例えばコンパクトディスク(「CD」)を具備する。
【0051】
本発明の例示的且つ非限定的な実施形態による信号は、本発明の実施形態によるコンピュータプログラムを定義する情報を搬送するように符号化される。
【0052】
図5は、心不全、例えば心房細動を示す情報を生成するための本発明の例示的且つ非限定的な実施形態による装置500の概略図を示す。この装置は、心臓血管運動を含む運動に応答するセンサシステムにより生成された分析信号を処理するための処理システム502を具備する。処理システム502は、
相互相関が自己相関により表される分析信号サンプル間のゼロ時間差に対応する点への分析信号の自己相関の集中度を示す第1の指標量を形成し、
分析信号のスペクトルエントロピーを示す第2の指標量を形成し、更に
少なくとも第1の指標量及び第2の指標量に基づいて心不全の指標を決定するように構成される。
【0053】
図5に示す例示的なケースにおいて、装置は、データ転送ネットワーク505から分析信号を受信するための無線受信器501を具備する。分析信号は、分析信号を測定するための上述のセンサシステムと、分析信号をデータ転送ネットワーク505に送信するための無線送信器とを具備するセンサ要素503により生成される。データ転送ネットワーク505は、例えば電気通信ネットワークであり得る。センサ要素503から装置500への直接的な無線リンク又は直接的な有線リンクが存在することも可能である。更に、装置がセンサ要素503の動作を制御することを可能にするように、無線リンク又は有線リンクが、直接的にあるいはデータ転送ネットワーク505を介して、装置500からセンサ要素503まで設けられることも可能である。装置全体が、センサ要素503内に統合されることも可能である。
【0054】
本発明の例示的で且つ非限定的な実施形態による装置において、処理システム502は、センサシステムの出力信号から、測定される個人507が休止している期間を検出して更に個人507が休止している状態に分析信号が対応するように分析信号をセンサシステムの出力信号から抽出するように構成される。センサ要素503は、個人507が休止しているかどうかを検出し、センサシステムの出力信号から分析信号を抽出するためのプロセッサを具備することも可能である。
【0055】
分析信号を生成するためのセンサシステムは、例えば、加速度計、ジャイロスコープ及び/又は加速度計とジャイロスコープとの両方を具備する慣性測定ユニット「IMU」を具備し得る。センサシステムに加えて、センサ要素503は、例えば、増幅器、信号フィルタ、アナログ−デジタル「AD」変換器、及び/又は個人507が休止しているかどうかを検出するための上記の処理装置を更に具備し得る。例えば加速度計は、例えば図5に示される座標系599の3つの相互に直交する方向x、y及びzにおいて独立して動きを測定することができる三軸加速度計であり得る。この例示的なケースにおいて、分析信号は、例えば、3つの互いに直交する方向において測定された動きを表すベクトルのユークリッドノルム、即ち絶対値であり得る。
【0056】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、分析信号の波形に基づいて、例えば分析信号のピークを調査することにより、連続する心拍期間の時間長さを決定するように構成される。連続する心拍期間の時間長さの変動は、分析信号の波形の不規則性を示す量である。従って、連続する心拍期間の時間長さの変動は、ゼロ時間差τ=0に対応する点への分析信号の自己相関の集中度を示す。従って、連続する心拍期間の時間長さの変動又はその派生物は、上述した第1の指標量として使用可能である。
【0057】
本発明の例示的且つ非限定的な実施形態による装置において、センサシステムにより生成される分析信号は、信号成分が異なる測定方向に対応するように、2つ以上の信号成分を含む。例えば、分析信号は、6つの信号成分S1、S2、S3、S4、S5、及びS6を具備し、
S1は、x方向において測定された直線加速度であり、
S2は、y方向において測定された直線加速度であり、
S3は、z方向において測定された直線加速度であり、
S4は、回転、即ちジャイロスコープ、のx軸の周りの加速度であり、
S5は、y軸の周りの測定された回転加速度であり、
S6は、z軸の周りの測定された回転加速度を測定したものである。
【0058】
図5に示す座標系599は、x、y及びz方向を示す。
【0059】
この例示的なケースにおいて、センサシステムは単一の6軸センサを具備するか、あるいはセンサシステムは3つの加速度計及び3つのジャイロスコープを具備し得る。
【0060】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、2つ以上の信号成分により示される候補時間長さの中から、選択された候補時間長さと前の心拍期間の時間長さとの間の差の絶対値ができる限り小であるように、前の心拍期間の時間長さに最も近い特定の候補時間長さを選択することにより、各心拍期間の時間長さに対する推定値を形成するように構成される。
【0061】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、
センサシステムの出力信号の互いに異なる時間的部分である2つ以上の分析信号であって、個人507が休止している時に有利に測定される2つ以上の分析信号の各々に関する第1及び第2の指標量を決定し、更に
2つ以上の分析信号について決定された第1及び第2の指標量に基づいて心不全の指標を決定するように構成される。
【0062】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、センサシステムの加速度計から上述の分析信号の内の少なくとも1つと、センサシステムのジャイロスコープから分析信号の内の少なくとも1つの別のものと、を受信するように構成される。
【0063】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、以下の等式に従って分析信号の自己相関の推定値Reを計算するように構成される。
e(τ)={(S(t)−μ)×(S(t−τ)−μ)}/σ2の平均
ここで、平均は、時間tにわたって計算され、Sは分析信号であり、τは、相互相関がRe(τ)により表される分析信号サンプル間の時間差であり、μは、分析信号の平均であり、そしてσ2は、分析信号の分散である。自己相関の集中度を示す第1の指標量は、Re(τ=0)と、Re(τ)の絶対値の平均に関連する値とに基づいて形成可能である。
【0064】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、分析信号の連続する時間に関して計算された自己相関推定値のピークに基づいて、又は分析信号の連続する時間に関して計算されたパワースペクトル密度推定値のピークに基づいて、分析信号の連続する時間に関する心拍数「HR」を決定し、更に続いて、分析信号の連続する時間に関して決定された心拍数「HR」に基づいて、心拍数変動「HRV」を決定するように構成される。心拍数変動 「HRV」又はその派生物は、上述した第1の指標量として使用可能である。
【0065】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、以下の等式に従って分析信号のスペクトルエントロピーの推定値SEeを形成するように構成される。
SEe={−PSDn(f)log2[PSDn(f)]}の平均
ここで、PSDn(f)は、正規化されたパワースペクトル密度であり、平均は、−fs/2からfs/2までの周波数fにわたって計算され、fsはサンプルレートである。第2の指標量は、計算された推定値SEe又はその適切な派生物であり得る。
【0066】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、第1の指標量が第1の閾値を超え更に第2の指標量が第2の閾値を超える状態を示すように、心不全の指標を設定するように構成される。心不全、例えば心房細動は、第1の指標量が第1の閾値を超え更に第2の指標量が第2の閾値を超える時に存在するとみなすことができる。
【0067】
本発明の例示的な実施形態による装置は、上述の第1及び第2の指標量を形成する前に、分析信号を前処理するための手段を具備する。前処理は例えば、外的要因等により引き起される、例えば呼吸、震え等によるノイズの除去を含み得る。前処理のための手段は、例えば、処理システム502により実行可能であるか、あるいは前処理のための一つ以上の別個の処理装置を設けることができる。
【0068】
本発明の例示的且つ非限定的な実施形態による装置は、センサ要素503から受信した信号を記録するように構成される。装置は、信号を記録するための内部メモリ506を具備するか、あるいはこの装置は、外部メモリに接続するためのデータポートを具備してよい。装置は、外部ユーザインターフェースデバイスに接続するためのユーザインターフェース504又はデータポートを更に具備し得る。
【0069】
本発明の例示的且つ非限定的な実施形態による装置において、処理システム502は、処理システム502を訓練するための機械学習アルゴリズムを稼動させて、少なくとも、分析信号に含まれる情報に基づいて心不全の指標を決定するように構成される。
【0070】
機械学習アルゴリズムは、教師付き機械学習又は教師なし機械学習に基づくものであり得る。教師付き機械学習において、処理システムは、訓練データ及び訓練データの既知の等級分けを供給される。従って、処理システム502は、どのような種類のデータが特定の方法により等級分けされているかを学習することを可能にされる。例えば、第1の指標量の第1の数値範囲及び第2の指標量の第1の数値範囲が心不全の指標のクラス: 「機能不全なし、健康」に対応し、第1の指標量の第2の数値範囲及び第2の指標量の第1の数値範囲が心不全の指標のクラス:「機能不全確率30%」等に対応する。教師なし機械学習において、処理システムは、等級分け情報のないデータが供給され、処理システムは、供給されたデータの特性に基づいて、供給されたデータを分類する。その後、人は、機械分類されたデータから異なるクラスを認識可能である。場合によっては、教師なし機械学習は、教師付き機械学習のための出発点を生成するために使用可能である。
【0071】
機械学習アルゴリズムが、処理システム502を訓練して、分析信号の信号特性に基づいて心不全の指標を直接決定することも可能である。この場合、分析信号の自己相関の集中度を示す第1の指標量と、分析信号のスペクトルエントロピーを示す第2の指標量とは、機械学習アルゴリズムの内部量である。分析信号の信号特性は、例えば、周期性の程度と、周波数スペクトルと、平均と分散とモーメント等の統計的パラメータと、を説明する特徴、及び/又は分析信号を説明する別の特徴を具備し得る。上述した種類の特徴は、例えば、ウェーブレット変換、フーリエ変換、及び/又は高速フーリエ変換により得ることができる。別の特徴は、例えば、転換点比率、心拍数、心拍数変動等であり得る。また、機械学習の助けを借りることにより、及び/又は機械学習の前に実施される適切な前処理により、分析信号からノイズを除去することも可能である。
【0072】
分析信号から抽出され且つ教師付き又は教師なし学習において使用される特徴のベクトル、即ち特徴ベクトルは、例えば主成分分析法「PCA」及び独立成分分析法「ICA」等の適切な方法を使用することにより、低減可能である。特徴ベクトルの低減は、教師付き又は教師なしの機械学習をスピードアップし、及び/又は機械学習の正確さを向上し得る。
【0073】
例えば、特徴ベクトルは、例えばサイズモカルジオグラフィ「SCG」及び/又はジャイロカルジオグラフィ「GCG」に関連する信号成分に基づいて形成可能であり、更に異なる測定方向において同時に測定可能である。例えば、x方向の直線加速度のサンプルは、部分的な特徴ベクトルF1を構成可能であり、y方向の直線加速度のサンプルは、部分的な特徴ベクトルF2を構成可能であり、z方向の直線加速度のサンプルは、部分的な特徴ベクトルF3を構成可能であり、x軸回りの回転加速度のサンプルは、部分的な特徴ベクトルF4を構成可能であり、y軸回りの回転加速度のサンプルは、部分的な特徴ベクトルF5を構成可能であり、更にz軸周りの回転加速度のサンプルは、部分的な特徴ベクトルF6を構成可能である。機械学習アルゴリズムに供給される特徴ベクトルFは、例えば、部分的な特徴ベクトルF1〜F6の連鎖、即ちF=[F1、F2、F3、F4、F5、F6]として形成可能であり、そこでは、部分的特徴ベクトルF1〜F6は、行ベクトルである。これにより、機械学習アルゴリズムが、異なる測定方向及び測定モード(線形、回転)に関する情報を組み合わせて利用することを可能にする。
【0074】
また、異なる測定方向に関連する情報を、別の方法で利用することもまた可能である。例えば、部分的特徴ベクトルF1〜F6は、NSが部分的特徴ベクトルF1〜F6の各々、即ち各部分的特徴ベクトルの長さ、におけるサンプル数であるNS×6又は6×NSの次元を有する行列を構成するように形成可能である。この行列は、2以上の次元のケースに関して設計された、1以上の特徴抽出アルゴリズムにより処理可能である。
【0075】
処理システム502は、1つ以上のプロセッサ回路により実現可能であり、それらの各々は、適切なソフトウェアを備えたプログラム可能なプロセッサ回路、例えばアプリケーション専用集積回路「ASIC」等の専用ハードウェアプロセッサ、又は例えばフィールドプログラマブルゲートアレイ「FPGA」等の構成可能なハードウェアプロセッサであり得る。
【0076】
最近は、多くの移動通信装置、例えば携帯電話が、加速度計及び/又はジャイロスコープ等のセンサを具備する。従って、上述の種類の移動通信装置、例えば携帯電話は、心臓血管運動を含む運動に応答するセンサ要素として使用可能である。装置全体が、移動通信装置、例えば携帯電話、に含まれることも可能である。
【0077】
上記の説明において提供される特定の例は、添付の特許請求の範囲及び/又は適用可能性を制限するものとして解釈されるべきではない。前述の説明において提供される例のリスト及びグループは、そうではないと明確に言及されない限り網羅的ではない。
図1a
図1b
図2
図3a
図3b
図4a
図4b
図5