【文献】
InterDigital,Short-TTI PDSCH Design[online],3GPP TSG-RAN WG1#84b R1-162964,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/R1-162964.zip>,2016年 4月11日
【文献】
ZTE, ZTE Microelectronics,Multiplexing of eMBB and URLLC[online],3GPP TSG-RAN WG1#86 R1-166408,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_432/Docs/R1-166408.zip>,2016年 8月22日
【文献】
InterDigital Communications,Scheduling and support for service multiplexing[online],3GPP TSG-RAN WG1#86b R1-1610090,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610090.zip>,2016年10月10日
(58)【調査した分野】(Int.Cl.,DB名)
前記1つ以上のサブリソースは、周波数ドメインにおいてリソースブロックレベルビットマップによって、および、時間ドメインにおいてシンボルレベルビットマップによって
決定されることを特徴とする請求項1に記載のWTRU。
前記1つ以上のサブリソースは、周波数ドメインにおいてリソースブロックレベルビットマップによって、および、時間ドメインにおいてシンボルレベルビットマップによって
決定されることを特徴とする請求項8に記載の方法。
前記1つ以上のサブリソースは、周波数ドメインにおいてリソースブロックレベルビットマップによって、および、時間ドメインにおいてシンボルレベルビットマップによって
決定されることを特徴とする請求項15に記載の基地局。
【発明を実施するための形態】
【0007】
図1Aは、1つまたは複数の開示される実施形態が実施され得る例示的な通信システム100を示す図である。通信システム100は、複数の無線ユーザに、音声、データ、ビデオ、メッセージング、同報通信(ブロードキャスト)などのコンテンツを提供する複数のアクセスシステムとすることができる。通信システム100は、複数の無線ユーザに、無線帯域幅を含むシステムリソースを共用することにより、このようなコンテンツにアクセスできるようにする。例えば、通信システム100は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交FDMA(OFDMA)、シングルキャリアFDMA(SC−FDMA)、ゼロテールユニークワードDFT拡散OFDM(ZT UW DTS−s OFDM)、ユニークワードOFDM(UW−OFDM)、リソースブロック−フィルタ処理されたOFDM(resource block-filtered OFDM)、フィルタバンクマルチキャリア(FBMC)など、1つまたは複数のチャネルアクセス法を使用することができる。
【0008】
図1Aで示すように、通信システム100は、無線送受信ユニット(WTRU)102a、102b、102c、102d、RAN104/113、CN106/115、公衆交換電話網(PSTN)108、インターネット110、および他のネットワーク112を含むことができるが、開示された実施形態は、任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を企図していることが理解されよう。WTRU102a、102b、102c、102dのそれぞれは、無線環境で動作し、かつ/または通信するように構成された任意のタイプのデバイスとすることができる。例として、WTRU102a、102b、102c、102dは、そのいずれも「ステーション」および/または「STA」と呼ばれ得るが、無線信号を送信かつ/または受信するように構成され、またユーザ装置(UE)、移動局、固定または移動加入者ユニット、サブスクリプションベースのユニット、ページャ、セルラ式電話、携帯情報端末(PDA)、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、無線センサ、ホットスポットもしくはMi−Fiデバイス、モノのインターネット(IoT)デバイス、時計もしくは他の装着可能なもの、頭部搭載型ディスプレイ(HMD)、車両、ドローン、医用デバイスおよび応用(例えば、遠隔手術)、産業用デバイスおよび応用(例えば、ロボット、ならびに/または産業および/または自動化処理チェーン状況で動作する他の無線デバイス)、家庭用電子デバイス、商用および/または産業用無線ネットワークで動作するデバイスなどを含むことができる。WTRU102a、102b、102c、および102dのいずれも、相互に交換可能にUEと呼ぶことができる。
【0009】
通信システム100はまた、基地局114aおよび/または基地局114bを含むことができる。基地局114a、114bのそれぞれは、CN106/115、インターネット110、および/または他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを容易するために、WTRU102a、102b、102c、102dの少なくとも1つと無線でインターフェースをとるように構成された任意のタイプのデバイスとすることができる。例として、基地局114a、114bは、送受信機基地局(BTS)、ノードB、eNodeB、ホームノードB、ホームeNodeB、gNB、NRノードB、サイトコントローラ、アクセスポイント(AP)、無線ルータなどとすることができる。基地局114a、114bが、それぞれ、単一の要素として示されているが、基地局114a、114bは、任意の数の相互接続された基地局および/またはネットワーク要素を含み得ることが理解されよう。
【0010】
基地局114aは、RAN104/113の一部とすることができ、それはまた、基地局制御装置(BSC)、無線ネットワーク制御装置(RNC)、中継ノードなどの他の基地局および/またはネットワーク要素(図示せず)を含むことができる。基地局114aおよび/または基地局114bは、セル(図示せず)と呼ばれ得る1つまたは複数のキャリア周波数で無線信号を送信および/または受信するように構成することができる。これらの周波数は、認可スペクトル、無認可スペクトル、または認可および無認可スペクトルの組合せとすることができる。セルは、時間経過に対して比較的固定され得る、または変化し得る特定の地理学的エリアに対して無線サービスを行うためのカバレッジを提供することができる。セルは、セルセクタへとさらに分割することができる。例えば、基地局114aに関連付けられたセルは、3つのセクタに分割することができる。したがって、一実施形態では、基地局114aは、3つの送受信機、すなわち、セルの各セクタに対して1つを含むことができる。実施形態では、基地局114aは、多入力多出力(MIMO)技術を使用することができ、またセルの各セクタに対して複数の送受信機を利用することができる。例えば、望ましい空間方向において、信号を送信および/または受信するために、ビーム形成(ビームフォーミング)が使用され得る。
【0011】
基地局114a、114bは、無線インターフェース116を介して、WTRU102a、102b、102c、102dの1つまたは複数のものと通信することができ、それは、任意の適切な無線通信リンクとすることができる(例えば、無線周波数(RF)、マイクロ波、センチメートル波、マイクロメートル波、赤外線(IR)、紫外線(UV)、可視光など)。無線インターフェース116は、任意の適切な無線アクセス技術(RAT)を用いて確立することができる。
【0012】
より具体的には、上記のように、通信システム100は、複数のアクセスシステムとすることができ、またCDMA、TDMA、FDMA、OFDMA、SC−FDMAなど、1つまたは複数のチャネルアクセス方式を使用することができる。例えば、RAN104/113における基地局114a、およびWTRU102a、102b、102cは、広帯域CDMA(WCDMA)を用いて無線インターフェース116を確立できるユニバーサル移動体通信システム(UMTS)地上無線アクセス(UTRA)などの無線技術を実施することができる。WCDMAは、高速パケットアクセス(HSPA)および/または進化型HSPA(HSPA+)などの通信プロトコルを含むことができる。HSPAは、高速ダウンリンク(DL)パケットアクセス(HSDPA)および/または高速ULパケットアクセス(HSUPA)を含むことができる。
【0013】
実施形態では、基地局114aおよびWTRU102a、102b、102cは、進化型UMTS地上無線アクセス(E−UTRA)などの無線技術を実施することができ、それは、ロングタームエボリューション(LTE)、および/またはLTEアドバンスト(LTE−A)、および/またはLTEアドバンストプロ(LTE−A Pro)を用いて、無線インターフェース116を確立することができる。
【0014】
実施形態では、基地局114aおよびWTRU102a、102b、102cは、新無線(NR:New Radio)を用いる無線インターフェース116を確立できるNR無線アクセスなどの無線技術を実施することができる。
【0015】
実施形態では、基地局114aおよびWTRU102a、102b、102cは、複数の無線アクセス技術を実施することができる。例えば、基地局114aおよびWTRU102a、102b、102cは、例えば、デュアルコネクティビティ(DC)原理を用いて、LTE無線アクセス、およびNR無線アクセスを共に実施することができる。したがって、WTRU102a、102b、102cにより利用される無線インターフェースは、複数タイプの無線アクセス技術により、かつ/または複数タイプの基地局(例えば、eNBおよびgNB)との間で送られる送信により特徴付けることができる。
【0016】
他の実施形態では、基地局114aおよびWTRU102a、102b、102cは、IEEE802.11(すなわち、無線の忠実度(Wireless Fidelity)(WiFi)、IEEE802.16(すなわち、ワールドワイドインターオペラビリティフォーマイクロウェーブアクセス(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV−DO、暫定基準2000(IS−2000)、暫定基準95(IS−95)、暫定基準856(IS−856)、グローバルシステムフォーモバイル通信(GSM)、GSMエボリューション拡張データレート(EDGE)、GSM EDGE(GERAN)などの無線技術を実施することができる。
【0017】
図1Aの基地局114bは、例えば、無線ルータ、ホームノードB、ホームeNodeB、またはアクセスポイントとすることができ、また職場、家庭、車両、キャンパス、産業施設、空中回廊(例えば、ドローンで使用される)、車道など、局所化されたエリアにおける無線接続を容易にするために任意の適切なRATを利用することができる。一実施形態では、基地局114bおよびWTRU102c、102dは、無線ローカルエリアネットワーク(WLAN)を確立するために、IEEE802.11などの無線技術を実施することができる。実施形態では、基地局114bおよびWTRU102c、102dは、無線パーソナルエリアネットワーク(WPAN)を確立するために、IEEE802.15などの無線技術を実施することができる。さらに他の実施形態では、基地局114bおよびWTRU102c、102dは、ピコセルまたはフェムトセルを確立するために、セルラベースのRAT(例えば、WCDMA、CDMA2000、GSM、LTE、LTE−A、LTE−A Pro、NRなど)を利用することができる。
図1Aで示されるように、基地局114bは、インターネット110への直接接続を有することができる。したがって、基地局114bは、CN106/115を介してインターネット110にアクセスする必要のないこともあり得る。
【0018】
RAN104/113は、CN106/115と通信することができ、それは、WTRU102a、102b、102c、102dの1つまたは複数のものに対して、音声、データ、アプリケーション、および/またはボイスオーバインターネットプロトコル(VoIP)サービスを提供するように構成された任意のタイプのネットワークとすることができる。データは、異なるスループット要件、遅延要件、誤り許容要件、信頼性要件、データスループット要件、移動性要件など、様々なサービス品質(QoS)要件を有することができる。CN106/115は、呼制御、課金サービス、移動体位置ベースサービス、プリペイドコーリング、インターネット接続、ビデオ配信などを提供し、かつ/またはユーザ認証などの高水準のセキュリティ機能を実施することができる。
図1Aで示されていないが、RAN104/113および/またはCN106/115は、RAN104/113と同じRAT、または異なるRATを使用する他のRANと直接または間接的に通信できることが理解されよう。例えば、NR無線技術を利用することのできるRAN104/113に接続されるのに加えて、CN106/115はまた、GSM、UMTS、CDMA2000、WiMAX、E−UTRA、またはWiFi無線技術を使用する別のRAN(図示せず)と通信することもできる。
【0019】
CN106/115はまた、PSTN108、インターネット110、および/または他のネットワーク112にアクセスするための、WTRU102a、102b、102c、102dに対するゲートウェイとして働くことができる。PSTN108は、基本電話サービス(POTS)を提供する回線交換電話網を含むことができる。インターネット110は、TCP/IPインターネットプロトコル群における伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)、および/またはインターネットプロトコル(IP)などの共通の通信プロトコルを使用する相互接続されたコンピュータネットワークおよびデバイスの大域システムを含むことができる。ネットワーク112は、他のサービスプロバイダにより所有され、かつ/または運営される有線および/または無線通信ネットワークを含むことができる。例えば、ネットワーク112は、RAN104/113と同じRAT、または異なるRATを使用できる1つまたは複数のRANに接続された別のCNを含むことができる。
【0020】
通信システム100におけるWTRU102a、102b、102c、102dのいくつか、またはすべては、マルチモード機能を含むことができる(例えば、WTRU102a、102b、102c、102dは、異なる無線リンクを介して、異なる無線ネットワークと通信するための複数の送受信機を含むことができる)。例えば、
図1Aで示されるWTRU102cは、セルラベースの無線技術を使用できる基地局114aと、かつIEEE802無線技術を使用できる基地局114bと通信するように構成することができる。
【0021】
図1Bは、例示的なWTRU102を示すシステム図である。
図1Bで示されるように、WTRU102は、いくつかある中で特に、プロセッサ118、送受信機120、送信/受信素子122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、取外し不能メモリ130、取外し可能メモリ132、電源134、全地球測位システム(GPS)チップセット136、および/または他の周辺装置138を含むことができる。WTRU102は、前述の要素の任意の下位の組合せを含むことができるが、なお実施形態との一貫性を有していることが理解されよう。
【0022】
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアと関連付けられた1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、任意の他のタイプの集積回路(IC)、状態機械などとすることができる。プロセッサ118は、信号符号化、データ処理、電力制御、入力/出力処理、および/またはWTRU102を無線環境で動作できるようにする任意の他の機能を実施することができる。プロセッサ118は、送受信機120に結合できるが、送受信機120は、送信/受信素子122に結合することができる。
図1Bは、プロセッサ118と送受信機120とを別々の構成要素として示しているが、プロセッサ118および送受信機120は、電子パッケージまたはチップにおいて共に一体化できることが理解されよう。
【0023】
送信/受信素子122は、無線インターフェース116を介して、基地局(例えば、基地局114a)に信号を送信する、または信号を受信するように構成することができる。例えば、一実施形態では、送信/受信素子122は、RF信号を送信および/または受信するように構成されたアンテナとすることができる。実施形態では、送信/受信素子122は、例えば、IR、UV、または可視光信号を送信および/または受信するように構成された発光体/検出器とすることができる。さらに別の実施形態では、送信/受信素子122は、RFおよび光信号を共に送信および/または受信するように構成することができる。送信/受信素子122は、無線信号の任意の組合せを送信および/または受信するように構成され得ることが理解されよう。
【0024】
送信/受信素子122が、
図1Bで単一の要素として示されているが、WTRU102は、任意の数の送信/受信素子122を含むことができる。より具体的には、WTRU102は、MIMO技術を使用することができる。したがって、一実施形態では、WTRU102は、無線インターフェース116を介して、無線信号を送信および受信するために、2つ以上の送信/受信素子122(例えば、複数のアンテナ)を含むことができる。
【0025】
送受信機120は、送信/受信素子122により送信される信号を変調し、送信/受信素子122により受信される信号を復調するように構成することができる。前述のように、WTRU102は、マルチモード機能を有することができる。したがって、送受信機120は、WTRU102が、例えば、NRおよびIEEE802.11などの複数のRATにより通信できるようにするための複数の送受信機を含むことができる。
【0026】
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(例えば、液晶表示(LCD)ディスプレイユニット、または有機発光ダイオード(OLED)ディスプレイユニット)に結合され得るが、またそこからユーザ入力データを受信することができる。プロセッサ118はまた、ユーザデータを、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128に出力することができる。加えて、プロセッサ118は、取外し不能メモリ130、および/または取外し可能メモリ132など、任意のタイプの適切なメモリからの情報にアクセスし、データをそこに記憶することができる。取外し不能メモリ130は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク、または任意のタイプのメモリ記憶デバイスを含むことができる。取外し可能メモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカードなどを含むことができる。他の実施形態では、プロセッサ118は、サーバまたは家庭用コンピュータ(図示せず)など、WTRU102上に物理的に位置していないメモリからの情報にアクセスし、そこにデータを記憶することができる。
【0027】
プロセッサ118は、電源134から電力を受け取ることができ、またWTRU102における他の構成要素に電力を配布し、かつ/または制御するように構成され得る。電源134は、WTRU102に電力を供給するための任意の適切なデバイスとすることができる。例えば、電源134は、1つまたは複数の乾電池(例えば、ニッケル・カドミウム(NiCd)、ニッケル・亜鉛(NiZn)ニッケル水素(NiMH)、リチウムイオン(Li−ion)など)、太陽電池、燃料電池などを含むことができる。
【0028】
プロセッサ118はまた、WTRU102の現在位置に関する位置情報(例えば、経度および緯度)を提供するように構成できるGPSチップセット136に結合することができる。GPSチップセット136からの情報に加えて、またはそれに代えて、WTRU102は、基地局(例えば、基地局114a、114b)から無線インターフェース116を介して位置情報を受け取り、かつ/または2つ以上の近傍の基地局から受信される信号のタイミングに基づき、その位置を決定することができる。WTRU102は、実施形態との一貫性を有しながら、任意の適切な位置決定方法により位置情報を取得できることが理解されよう。
【0029】
プロセッサ118は、さらなる特徴、機能性、および/または有線もしくは無線接続性を提供する1つまたは複数のソフトウェアおよび/またはハードウェアモジュールを含むことのできる他の周辺装置138にさらに結合することができる。例えば、周辺装置138は、加速度計、電子コンパス、衛星送受信機、デジタルカメラ(写真および/またはビデオ用)、ユニバーサルシリアルバス(USB)ポート、振動デバイス、テレビジョン送受信機、手を使用しないヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)無線ユニット、デジタルミュージックプレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザ、仮想現実および/または拡張現実感(VR/AR)デバイス、活動量計(activity tracker)など、および同様のものを含むことができる。周辺装置138は、1つまたは複数のセンサを含むことができ、センサは、ジャイロスコープ、加速度計、ホール効果センサ、方向センサ、近接センサ、温度センサ、時間センサ、ジオロケーションセンサ、高度計、光センサ、タッチセンサ、磁力計、気圧計、ジェスチャセンサ、生物測定センサ、および/または湿度センサのうちの1つまたは複数のものとすることができる。
【0030】
WTRU102は、全二重無線を含むことができ、その場合、(例えば、UL(例えば、送信用)とダウンリンク(例えば、受信用)の両方に対する特定のサブフレームに関連付けられた信号のいくつか、またはすべての送信および受信は一致しており、かつ/または同時に行うことができる。全二重無線は、干渉管理ユニット139を含み、ハードウェア(例えば、チョーク)により、またはプロセッサによる(例えば、別個のプロセッサ(図示せず)もしくはプロセッサ118による)信号処理により自己干渉を低下させる、および/または実質的に除去することができる。実施形態では、WRTU102は、半二重無線を含むことができ、その場合、(例えば、UL(例えば、送信用)またはダウンリンク(例えば、受信用)に対する特定のサブフレームに関連付けられた)信号のいくつか、またはすべての送信および受信。
【0031】
図1Cは、実施形態によるRAN104およびCN106を示すシステム図である。上記のように、RAN104は、無線インターフェース116を介してWTRU102a、102b、102cと通信するために、E−UTRA無線技術を使用することができる。RAN104はまた、CN106と通信することができる。
【0032】
RAN104は、eNodeB160a、160b、160cを含むことができるが、RAN104は、実施形態との一貫性を有しながら任意の数のeNodeBを含み得ることが理解されよう。eNodeB160a、160b、160cは、それぞれ、無線インターフェース116を介して、WTRU102a、102b、102cと通信するための1つまたは複数の送受信機を含むことができる。一実施形態では、eNodeB160a、160b、160cは、MIMO技術を実施することができる。したがって、eNodeB160aは、例えば、複数のアンテナを使用して、WTRU102aに無線信号を送信し、かつ/またはそこから無線信号を受信することができる。
【0033】
eNodeB160a、160b、160cのそれぞれは、特定のセル(図示せず)と関連付けられ、また無線リソース管理判断、ハンドオーバ判断、ULおよび/またはDLにおけるユーザのスケジューリングなどを処理するように構成することができる。
図1Cで示されるように、eNodeB160a、160b、160cは、X2インターフェースを介して互いに通信することができる。
【0034】
図1Cで示されるCN106は、モビリティ管理エンティティ(MME)162、サービングゲートウェイ(SGW)164、およびパケットデータネットワーク(PDN)ゲートウェイ(またはPGW)166を含むことができる。前述の要素のそれぞれは、CN106の一部として示されているが、これらの要素のいずれも、CN運営者以外のエンティティによって所有され、かつ/または運営され得ることが理解されよう。
【0035】
MME162は、S1インターフェースを介して、RAN104におけるeNodeB160a、160b、160cのそれぞれに接続され、制御ノードとして働くことができる。例えば、MME162は、WTRU102a、102b、102cのユーザの認証、ベアラの活動化/非活動化、WTRU102a、102b、102cの初期アタッチ間の特定のサービングゲートウェイを選択することなどを扱うことができる。MME162は、RAN104と、GSMおよび/またはWCDMAなどの他の無線技術を使用する他のRAN(図示せず)との間を切り換えるための制御プレーン機能を提供することができる。
【0036】
SGW164は、S1インターフェースを介して、RAN104におけるeNodeB160a、160b、160cに接続され得る。SGW164は、概して、WTRU102a、102b、102cとの間で、ユーザデータパケットの経路指定をし、転送することができる。SGA164は、eNodeB間のハンドオーバの間にユーザプレーンをアンカリングすること、DLデータがWTRU102a、102b、102cに利用可能になったとき、ページングをトリガすること、WTRU102a、102b、102cのコンテキストを管理し、記憶することなど、他の機能を実施することができる。
【0037】
SGW164は、PGW166に接続され得るが、それは、WTRU102a、102b、102cに、インターネット110などのパケット交換網へのアクセスを提供して、WTRU102a、102b、102cとIP使用可能なデバイスとの間の通信を容易にすることができる。
【0038】
CN106は、他のネットワークとの通信を容易にすることができる。例えば、CN106は、WTRU102a、102b、102cに、PSTN108などの回線交換網へのアクセスを提供し、WTRU102a、102b、102cと従来の陸線通信デバイスとの間の通信を容易にすることができる。例えば、CN106は、CN106とPSTN108との間のインターフェースとして働くIPゲートウェイ(例えば、IPマルチメディアサブシステム(IMS)サーバ)を含むことができる、またはそれと通信することができる。さらに、CN106は、WTRU102a、102b、102cに、他のサービスプロバイダにより所有され、かつ/または運営される他の有線および/または無線ネットワークを含むことのできる他のネットワーク112へのアクセスを提供することができる。
【0039】
WTRUが、
図1A〜
図1Dで無線端末として述べられているが、いくつかの代表的な実施形態では、このような端末は、通信ネットワークとの有線通信インターフェースを(例えば、一時的に、または恒久的に)使用できることも企図される。
【0040】
代表的な実施形態では、他のネットワーク112は、WLANとすることができる。
【0041】
インフラストラクチャ基本サービスセット(BSS)モードにおけるWLANは、BSSに対するアクセスポイント(AP)、およびそのAPに関連付けられた1つまたは複数のステーション(STA)を有することができる。APは、配信システム(DS)への、またはBSSに、かつ/またはBSSからトラフィックを搬送する別のタイプの有線/無線ネットワークへのアクセスもしくはインターフェースを有することができる。BSSの外側から生ずるSTAへのトラフィックはAPを介して到来し、STAに送達(deliver)され得る。BSSの外側の宛先へのSTAから生ずるトラフィックは、各宛先に送達されるようにAPに送ることができる。BSS内のSTA間のトラフィックは、例えば、APを介して送られ得るが、ソースSTAは、トラフィックをAPに送ることができ、またAPは、トラフィックを宛先のSTAに送達することができる。BSS内のSTA間のトラフィックは、ピアツーピアトラフィックであると考えられ、かつ/またはそのように呼ぶことができる。ピアツーピアトラフィックは、ダイレクトリンクのセットアップ(DLS)で、ソースと宛先STAとの間で(例えば、その間で直接)送ることができる。いくつかの代表的な実施形態では、DLSは,802.11e DLS、または802.11zトンネルDLS(TDLS)を使用することができる。独立したBSS(IBSS)モードを使用するWLANは、APを有しないこともあり得るが、IBSS内の、またはそれを使用するSTA(例えば、STAのすべて)は、互いに直接通信することができる。通信のIBSSモードは、本明細書において、通信の「アドホック」モードと呼ばれることもあり得る。
【0042】
802.11acインフラストラクチャ動作モード、または同様の動作モードを使用する場合、APは、プライマリチャネルなどの固定チャネルでビーコンを送信することができる。プライマリチャネルは、固定された幅(例えば、20MHz幅の帯域幅)、またはシグナリングにより動的に設定された幅とすることができる。プライマリチャネルは、BSSの動作チャネルとすることができ、またAPとの接続を確立するためにSTAによって使用することができる。いくつかの代表的な実施形態では、例えば、802.11システムでは、衝突回避を備えたキャリア検知の多重アクセス(CSMA/CA)が実施され得る。CSMA/CAの場合、STA(例えば、あらゆるSTA)は、APも含めて、プライマリチャネルを感知することができる。プライマリチャネルが、特定のSTAにより、ビジー状態にあると感知/検出される、かつ/または決定された場合、特定のSTAは取り下げることができる。1つのSTA(例えば、1つのステーションだけ)が、所与のBSSにおいて、任意の所与の時間に送信することができる。
【0043】
高スループット(HT)STAは、40MHz幅のチャネルを形成するために、例えば、主となる20MHzチャネルを、隣接する、または非隣接の20MHzチャネルと組み合わせることにより、40MHz幅のチャネルを通信に使用することができる。
【0044】
非常に高いスループット(VHT)STAは、20MHz、40MHz、80MHz、および/または160MHz幅のチャネルをサポートすることができる。40MHzおよび/または80MHzチャネルは、隣接する20MHzチャネルを組み合わせることによって形成することができる。160Hzチャネルは、8個の隣接する20MHzチャネルを組み合わせることにより、または80+80構成と呼ぶことのできる2つの隣接しない80MHzチャネルを組み合わせることにより形成することができる。80+80構成の場合、チャネルエンコーディングの後、データは、データを2つのストリームへと分割できるセグメントパーサを通すことができる。逆高速フーリエ変換(IFFT)処理、および時間ドメイン処理が、別々に各ストリームに対して行われ得る。ストリームは、2つの80MHzチャネルにマップされ、データは、送信STAによって送信することができる。受信STAの受信機において、80+80構成に対する前述の動作が逆にされ、組み合わされたデータを、メディアアクセス制御(MAC)に送ることができる。
【0045】
Sub−1GHz動作モードが、802.11afおよび802.11ahでサポートされる。チャネル動作帯域幅および搬送波は、802.11nおよび802.11acで使用されるものに対して802.11afおよび802.11ahでは低減される。802.11afは、TVホワイトスペース(TVWS)スペクトルにおいて、5MHz、10MHz、および20MHz帯域幅をサポートし、また802.11ahは、非TVWSスペクトルを使用して1MHz、2MHz、4MHz、8MHz、および16MHz帯域幅をサポートする。代表的な実施形態によれば、802.11ahは、マクロカバレッジエリアにおけるMTCデバイスなど、メータタイプ制御/マシンタイプ通信をサポートすることができる。MTCデバイスは、例えば、いくつかの、かつ/または限定された帯域幅に対するサポート(例えば、それに対するサポートだけ)を含む限定された機能など、いくつかの機能を有することができる。MTCデバイスは、(例えば、非常に長い電池寿命を維持するために)閾値を超える電池寿命を有する電池を含むことができる。
【0046】
802.11n、802.11ac、802.11af、および802.11ahなど、複数のチャネルおよびチャネル帯域幅をサポートできるWLANシステムは、プライマリチャネルとして指定され得るチャネルを含む。プライマリチャネルは、BSSにおけるすべてのSTAによりサポートされる最大の共通動作帯域幅に等しい帯域幅を有することができる。プライマリチャネルの帯域幅は、BSS内で動作するすべてのSTAの中から、最小の帯域幅動作モードをサポートするSTAによって設定および/または制限され得る。802.11ahの例では、プライマリチャネルは、AP、およびBSSにおける他のSTAが、2MHz、4MHz、8MHz、16MHz、および/または他のチャネル帯域幅動作モードをサポートする場合であっても、1MHzモードをサポートする(それだけをサポートする)STA(例えば、MTCタイプのデバイス)に対する1MHz幅とすることができる。キャリア感知および/またはネットワーク割当てベクトル(NAV)設定は、プライマリチャネルの状況に依存する可能性がある。例えば、APに送信するSTA(1MHzの動作モードだけをサポートする)に起因して、プライマリチャネルがビジー状態である場合、周波数帯の大部分がアイドル状態のままであり、かつ利用可能であり得るとしても、利用可能な周波数帯全体がビジー状態であると見なすことができる。
【0047】
米国では、802.11ahにより使用され得る利用可能な周波数帯は、902MHzから928MHzである。韓国では、利用可能な周波数帯は、917.5MHzから923.5MHzである。日本では、利用可能な周波数帯は、916.5MHzから927.5MHzである。802.11ahに利用可能な全体の帯域幅は、国の法規に応じて6MHzから26MHzである。
【0048】
図1Dは、実施形態によるRAN113およびCN115を示すシステム図である。上記のように、RAN113は、NR無線技術を使用して、無線インターフェース116を介してWTRU102a、102b、102cと通信することができる。RAN113はまた、CN115と通信することができる。
【0049】
RAN113は、gNB180a、180b、180cを含むことができるが、実施形態との一貫性を有しながら、RAN113は、任意の数のgNBを含み得ることが理解されよう。gNB180a、180b、180cは、無線インターフェース116を介して、WTRU102a、102b、102cと通信するための1つまたは複数の送受信機を含むことができる。一実施形態では、gNB180a、180b、180cは、MIMO技術を実施することができる。例えば、gNB180a、180bは、ビーム形成を利用して、gNB180a、180b、180cに信号を送信し、かつ/または信号をそこから受信することができる。したがって、例えば、gNB180aは、複数のアンテナを使用して、WTRU102aに無線信号を送信し、かつ/またはそこから無線信号を受信することができる。実施形態では、gNB180a、180b、180cは、キャリアアグリゲーション技術を実施することができる。例えば、gNB180aは、WTRU102a(図示せず)に複数のコンポーネントキャリアを送信することができる。これらのコンポーネントキャリアのサブセットは、無認可スペクトル上のものとすることができるが、残りのコンポーネントキャリアは、認可スペクトル上のものとすることができる。実施形態では、gNB180a、180b、180cは、複数基地局間協調送信(Coordinated Multi-Point)(CoMP)技術を実施することができる。例えば、WTRU102aは、gNB180aおよびgNB180b(および/またはgNB180c)からの協調された送信を受信することができる。
【0050】
WTRU102a、102b、102cは、スケーラブルなニューメロロジに関連付けられた送信を用いて、gNB180a、180b、180cと通信することができる。例えば、OFDMシンボル間隔、および/またはOFDMサブキャリア間隔は、異なる送信、異なるセル、および/または無線送信スペクトルの異なる部分に対して変化することができる。WTRU102a、102b、102cは、様々な、もしくはスケーラブルな長さのサブフレーム、または送信時間間隔(TTI)(例えば、様々な数のOFDMシンボルを含む、および/または様々な長さの絶対時間が続く)を用いて、gNB180a、180b、180cと通信することができる。
【0051】
gNB180a、180b、180cは、スタンドアロン構成で、かつ/または非スタンドアロン構成で、WTRU102a、102b、102cと通信するように構成することができる。スタンドアロン構成では、WTRU102a、102b、102cは、他のRAN(例えば、eNodeB160a、160b、160cなど)にさらにアクセスすることなく、gNB180a、180b、180cと通信することができる。スタンドアロン構成では、WTRU102a、102b、102cは、モビリティアンカーポイントとして、gNB180a、180b、180cのうちの1つまたは複数のものを利用することができる。スタンドアロン構成では、WTRU102a、102b、102cは、無認可帯域における信号を用いてgNB180a、180b、180cと通信することができる。非スタンドアロン構成では、WTRU102a、102b、102cは、eNodeB160a、160b、160cなどの別のRANとも通信/接続しながら、gNB180a、180b、180cと通信/接続することができる。例えば、WTRU102a、102b、102cは、DC原理を実施して、実質的に同時に、1つまたは複数のgNB180a、180b、180c、および1つまたは複数のeNodeB160a、160b、160cと通信することができる。非スタンドアロン構成では、eNodeB160a、160b、160cは、WTRU102a、102b、102cに対するモビリティアンカーとして働くことができ、またgNB180a、180b、180cは、WTRU102a、102b、102cをサービスするためにさらなるカバレッジおよび/またはスループットを提供することができる。
【0052】
gNB180a、180b、180cは、特定のセル(図示せず)に関連付けることができ、また無線リソース管理判断、ハンドオーバ判断、ULおよび/またはDLにおけるユーザのスケジューリング、ネットワークスライシングのサポート、デュアル接続、NRとE−UTRAとの間の相互接続、ユーザプレーン機能(UPF)184a、184bに向けたユーザプレーンデータの経路指定、アクセスおよびモビリティ管理機能(AMF)182a、182bに向けた制御プレーン情報の経路指定などを処理するように構成することができる。
図1Dで示されるように、gNB180a、180b、180cは、Xnインターフェースを介して互いに通信することができる。
【0053】
図1Dで示されるCN115は、少なくとも1つのAMF182a、182b、少なくとも1つのUPF184a、184b、少なくとも1つのセッション管理機能(SMF)183a、183b、およびおそらくデータネットワーク(DN)185a、185bを含むことができる。前述の要素は、CN115の一部として示されているが、これらの要素のいずれも、CN運営者以外のエンティティにより所有され、かつ/または運営され得ることが理解されよう。
【0054】
AMF182a、182bは、N2インターフェースを介して、RAN113におけるgNB180a、180b、180cのうちの1つまたは複数のものに接続され、かつ制御ノードとして働くことができる。例えば、AMF182a、182bは、WTRU102a、102b、102cのユーザを認証すること、ネットワークスライシングをサポートすること(例えば、異なる要件を有する異なるPDUセッションを処理すること)、特定のSMF183a、183bを選択すること、登録エリアの管理、NASシグナリングの終了、モビリティ管理などを扱うことができる。ネットワークスライシングは、WTRU102a、102b、102cで利用されるサービスのタイプに基づいて、WTRU102a、102b、102cに対するCNポートをカスタマイズするために、AMF182a、182bにより使用することができる。例えば、異なるネットワークスライスが、超高信頼低遅延(URLLC)アクセスを利用するサービス、拡張大容量モバイルブロードバンド(eMBB)アクセスを利用するサービス、マシンタイプ通信(MTC)アクセスに対するサービス、および/または同様のものなど、異なる使用例に対して確立され得る。AMF162は、RAN113と、LTE、LTE−A、LTE−A Pro、および/またはWiFiなどの非3GPPアクセス技術など他の無線技術を使用する他のRAN(図示せず)との間を切り換えるための制御プレーン機能を提供することができる。
【0055】
SMF183a、183bは、N11インターフェースを介して、CN115におけるAMF182a、182bに接続することができる。SMF183a、183bはまた、N4インターフェースを介して、CN115におけるUPF184a、184bに接続することができる。SMF183a、183bは、UPF184a、184bを選択し、制御することができ、またUPF184a、184bを通るトラフィックの経路指定を構成することができる。SMF183a、183bは、UEのIPアドレスを管理し、割り当てること、PDUセッションを管理すること、ポリシ施行およびQoSを制御すること、ダウンリンクデータ通知を提供することなど、他の機能を実施することができる。PDUセッションタイプは、IPベース、非IPベース、イーサネットベースなどとすることができる。
【0056】
UPF184a、184bは、N3インターフェースを介してRAN113におけるgNB180a、180b、180cのうちの1つまたは複数のものに接続され得るが、それは、WTRU102a、102b、102cに、インターネット110などのパケット交換網へのアクセスを提供して、WTRU102a、102b、102cとIP使用可能デバイスとの間の通信を容易にすることができる。UPF184a、184bは、パケットを経路指定し、転送すること、ユーザプレーンポリシを施行すること、マルチホームPDUセッションをサポートすること、ユーザプレーンQoSを処理すること、ダウンリンクパケットをバッファすること、モビリティアンカリングを提供することなど、他の機能を実施することができる。
【0057】
CN115は、他のネットワークとの通信を容易にすることができる。例えば、CN115は、CN115とPSTN108との間のインターフェースとして働くIPゲートウェイ(例えば、IPマルチメディアサブシステム(IMS)サーバ)を含む、またはそれと通信することができる。さらに、CN115は、他のサービスプロバイダにより所有され、かつ/または運営される他の有線および/または無線ネットワークを含むことのできる他のネットワーク112へのアクセスを、WTRU102a、102b、102cに提供することができる。一実施形態では、WTRU102a、102b、102cは、UPF184a、184bへのN3インターフェースにより、またUPF184a、184bとDN185a、185bとの間のN6インターフェースにより、UPF184a、184bを介してローカルデータネットワーク(DN)185a、185bに接続することができる。
【0058】
図1A〜
図1Dの図、および
図1A〜
図1Dの対応する記述において、WTRU102a〜d、基地局114a〜b、eNodeB160a〜c、MME162、SGW164、PGW166、gNB180a〜c、AMF182a〜b、UPF184a〜b、SMF183a〜b、DN185a〜b、および/または本明細書で述べられる任意の他のデバイスのうちの1つまたは複数のものに関して本明細書で述べられる機能のうちの1つまたは複数のもの、またはすべては、1つまたは複数のエミュレーションデバイス(図示せず)によって実施することができる。エミュレーションデバイスは、本明細書で述べられる機能のうちの1つまたは複数のもの、またはすべてをエミュレートするように構成された1つまたは複数のデバイスとすることができる。例えば、エミュレーションデバイスは、他のデバイスを試験するために、ならびに/またはネットワークおよび/またはWTRU機能をシミュレートするために使用することができる。
【0059】
エミュレーションデバイスは、実験室環境で、かつ/または運営者ネットワーク環境で他のデバイスの1つまたは複数の試験を実施するように設計することができる。例えば、1つまたは複数のエミュレーションデバイスは、1つまたは複数の、またはすべての機能を実施できるが、通信ネットワーク内の他のデバイスを試験するために、有線および/または無線通信ネットワークの一部として、完全に、または部分的に実施される、かつ/または展開される。1つまたは複数のエミュレーションデバイスは、1つまたは複数の、またはすべての機能を実施できるが、有線および/または無線通信ネットワークの一部として一時的に実施/展開される。エミュレーションデバイスは、試験を行うために別のデバイスに直接結合できる、かつ/または空中を介する無線通信を用いて試験を実施することができる。
【0060】
1つまたは複数のエミュレーションデバイスは、1つまたは複数の、すべても含む、機能を実施することができるが、有線および/または無線通信ネットワークの一部としては実施/展開されることはない。例えば、エミュレーションデバイスは、1つまたは複数の構成要素の試験を実施するために、試験用実験室、および/または展開されない(例えば、試験用の)有線および/または無線通信ネットワークにおける試験シナリオで利用され得る。1つまたは複数のエミュレーションデバイスは、試験装置とすることができる。データを送信および/または受信するために、直接RF結合、および/またはRF回路(例えば、1つまたは複数のアンテナを含むことができる)を介する無線通信が、エミュレーションデバイスによって使用され得る。
【0061】
本明細書で述べられる実施形態、および関連する図で使用されるWTRUは、無線通信システムにおいて動作するように構成されたWTRU、STA、または他のデバイスを含むことができる。したがって、無線通信システムにおいて動作するように構成されたWTRU、STA、または他のデバイスという用語は、本明細書で述べられる実施形態、および関連する図において相互に交換可能に使用することができる。
【0062】
上記で述べたように、5G NR無線インターフェースは、拡張モバイルブロードバンド(eMBB)、超高信頼低遅延通信(URLLC)、および大容量マシンタイプ通信(mMTC)を含むいくつかの異なる通信タイプをサポートすることができる。
【0063】
5Gシステムにおいて、eMBBは、3G、HSPA、または4G LTEネットワークにより現在送達されているモバイルブロードバンドデータと同様の広範囲な使用例をカバーすることができる。多くの用途は、ホットスポットにおけるデバイスへの無線データ送達(delivery)に関するデータレートの点で、かつ広域カバレッジの点において、増加し続ける需要によりeMBBを必要とする可能性がある。ホットスポットは、非常に高いデータレートを必要とし、非常に高いユーザ密度をサポートし、非常に高い容量を要求することが多い。広域カバレッジは、移動性およびシームレスなユーザ体験に対するサポートを必要することが多いが、ユーザ密度、およびユーザに利用可能なデータレートの点で幾分低い要件を有する可能性がある。
【0064】
URLLCは、人を含む従来の通信シナリオで使用することができるが、クリティカルな(critical)マシンタイプ通信(C−MTC)と呼ぶことのできるマシンを中心とする通信も含意することができる。C−MTCの例は、車両タイプ通信、産業機器に対する無線制御、およびスマートグリッド制御用途を含む。URLLCは、無線接続を介するゲームで使用することができる。URLLCは、遅延、信頼性、および可用性に対して課せられた非常に厳しい要件を有する可能性がある。無線接続を介するゲームの場合、低遅延要件は、高データレートをサポートする必要性と組み合わされる。
【0065】
mMTCの主な特性は、多数の無線接続されたデバイスであり、そのそれぞれは、長い電池寿命を有し、また長い時間期間にわたって動作することができる。これらのデバイスは、特に遅延に影響され得ない小サイズのデータパケットをまれに送信する必要があり得る。いくつかの使用例においては、mMTCタイプのデバイスに対して極めて高い接続密度が必要になることがある。無線システム内に存在するmMTCデバイスの合計数は、いくつかの課題を提示する可能性がある。
【0066】
これらの送信タイプのそれぞれは、ユーザプレーン遅延および必要なカバレッジレベルに関して非常に異なる要件を有する可能性がある。例えば、URLLC動作は、NR−eNB/TRPと、WTRUの間のインターフェース(すなわち、Uuインターフェース)において、非常に低い転送遅延待ち時間(すなわち、<0.5ms)が必要になり得る。物理レイヤ(L1)および上位レイヤ処理の後の極めて低い残りのパケットの誤り率に関して、高い信頼性目標を満たすために、サポートされるリンクバジェットを犠牲にする必要があり得る。URLLCは、L1において、100〜200μs程度のデータ送信の短いバーストを生ずることができる。したがって、HARQプロセスごとに可能なハイブリッド自動再送要求(HARQ)の再送信のためには限られた機会が存在するだけである。加えて、圧縮されたUu転送遅延タイムラインに起因する許容可能なスケジューリング遅延に対して、非常に厳しい要件が課されることになり得る。
【0067】
反対に、多くのmMTC用途は、高い最大結合損失(maximum coupling loss)(MCL)を有する拡張された、または極めて高いカバレッジレベルが必要になり得る。多くのmMTC用途においてデータ送達(data delivery)を成功させるための遅延要件は非常に緩和され得る。例えば、それらは、数秒または数十秒の程度であるに過ぎない。
【0068】
eMBBの場合、遅延要件は、URLLCに対するものほど厳しくない可能性がある。パケット転送中にユーザパケット遅延全体に悪影響を与えるTCPの遅い開始を回避するために、パケット転送に対する非常に低い遅延は、データ送信の初期段階において有益であり得る。かなりの量のデータがeMBBユーザに対して転送されるとすると、高容量データの長い連続するバーストが転送されることが多い。これは、スケジュールされたeMBB送信に対して広い瞬間的な帯域幅の占有、および少なくとも0.5〜1msの程度の長いDLまたはUL転送間隔の使用を生ずることがある。
【0069】
4G LTEと比較したとき、5G NR無線インターフェースにおいて大幅な設計変更があり得る。変更する1つの理由は、より難易度の高い、多様なサービス要件のセットを有する、はるかに多い、様々な5G NR使用例群をサポートするためである。変更する別の理由は、これらの5G NR使用例群の必要性に対してスケーラブルであり、かつ適合可能である将来も有効な無線設計手法において、これらの使用例群をサポートする必要があるためである。
【0070】
5G NR無線インターフェースは、パイロット信号が、基地局および端末において割り当てられ、送信され、かつ追跡されるように変更する必要があり得る大容量のアンテナ構成をサポートすることができる。LTEセルがトラフィックを搬送していない場合であっても、高い量の残存する背景干渉になることの多い、LTE基地局によって送られる常時接続タイプのDL制御信号およびチャネルを回避するために、NR展開における最小のオーバヘッドに対するサポートは、システム取得および初期アクセスに対する変更を必要とする可能性がある。異なるニューメロロジおよびパラメータ化を有する異なるユーザの信号をチャネルに多重化するために、NRにおける柔軟な無線アクセスのためのサポートは、複数のアクセス波形に対する非常に高度なスペクトル柔軟性およびスペクトル拘束が必要になり得る。NRの柔軟な無線アクセスはまた、異なる二重構成、異なる端末に対する利用可能なスペクトル割り当ての異なるおよび/または可変サイズ、DLおよびULデータ送信に対する可変タイミングおよび送信持続期間、ならびにDL割当て、UL許可シグナリング、および対応する制御信号の可変タイミングのサポートを含むことができる。柔軟な送信時間間隔(TTI)長さ、および非同期UL送信をサポートすることができる。
【0071】
NR DLおよびUL送信は、おそらく可変の持続期間の無線サブフレームへと編成されるものと考えられる。DLおよびUL送信は、DL制御情報の位置などのいくつかの固定された側面により、かつ送信タイミング、またはサポートされるタイプの送信などいくつかの変化する側面により特徴付けることができる。
【0072】
図2および
図3を次に参照すると、FDDモードおよびTDDモードのそれぞれにおける5G NRに対する例示的なフレーミングおよびタイミング構造を示す図が示されている。基本時間間隔(BTI)は、1つまたは複数のOFDMシンボルの数として表すことができ、ここで、シンボル持続期間は、時間−周波数リソースに適用可能なサブキャリア間隔に応じたものとすることができる。NRにおいては、サブキャリア間隔および/またはOFDMチャネル化は、所与のキャリアに多重化された異なるチャネルに対して異なることができる。FDDの場合、サブキャリア間隔および/またはOFDMチャネル化、ならびにパラメータ化は、ULキャリア周波数(f
UL)とDLキャリア周波数(f
DL)の間で異なることができる。
【0073】
TTI202は、連続する送信間にシステムによりサポートされる時間間隔とすることができる。TTI202は、DL204およびUL206に対して異なるトランスポートブロックに関連付けることができる。DL送信に対するダウンリンク制御情報(DCI)208、およびUL送信に対するアップリンク制御情報(UCI)などの制御情報を含めることができる。TTI202は、いくつかの1つまたは複数のBTIとして、かつ/またはOFDMチャネル化およびパラメータ化の関数として表現することができる。
【0074】
NRサブフレームは、関係するキャリア周波数(例えば、TDDに対するf
UL+DL、およびFDDに対するf
DL)において、一定時間の持続期間t
dciのDCI208、およびダウンリンクデータ送信(DL TRx)204を含むことができる。送信間隔ごとに複数のDCI208があり得る。データまたはDCI208がデータと多重化され得る前に、DCI208の時間/周波数位置を行うことができる。
【0075】
TDD二重通信の場合、フレームは、DCI208およびDL TRx204を含むことのできるDL部分と、さらにUL TRx206を含むことのできるUL部分とを含むことができる。切換えギャップ(SWG)が、存在する場合には、フレームのUL部分に先行することができる。FDD二重通信の場合、サブフレームは、DL参照TTI202と、ULに対する1つまたは複数のTTI202とを含むことができる。UL TTI202の開始部は、ULサブフレームの開始と比較したとき、DL参照フレームの開始部から適用されるタイミングオフセット(t
オフセット)を用いて導かれる。
【0076】
図4を次に参照すると、周波数領域多重化(FDM)を示す図が示されている。同時に複数タイプのトラフィックをサポートするために、5G NR無線ネットワークは、FDMを使用することができ、またeMBB送信402、mMTC送信404、およびURLLC送信406を、異なるNR周波数チャネル408上で分離することができる。異なるNR周波数チャネル408は、異なる周波数帯域に位置することができる。例えば、mMTCタイプのデバイスに対して拡張されたカバレッジが提供されるとき、そのはるかに良好な伝播特性のため、より低いsub−1GHz帯域を使用することが好ましい可能性がある。専用タイプのURLLCアプリケーションが使用されるときなど、他の場合では、サービス品質に対するはるかに良好な制御により、専用の周波数展開が少なくとも初期には好ましいことが予想され得る。
【0077】
異なるトラフィックタイプを多重化する目的でFDMを使用することはまた、そのキャリア上に位置する、異なって割り当てられた帯域幅領域を備える単一の共用周波数チャネルで使用することができる。異なる帯域幅領域において、異なるニューメロロジがまた使用され得る。
図4で示すように、2GHzのFDDキャリアは、eMBB送信402に対するeMBB領域と、URLLC送信406に対する専用のURLLC帯域幅領域とに分割することができる。この手法は、従来のガードバンド、または帯域内タイプの展開と同様のものとすることができる。
【0078】
図5を次に参照すると、異なるNRトラフィックタイプの時間領域多重化(TDM)およびFDMを示す図が示されている。
図5で示すように、FDMとTDMを共に、周波数チャネル上で使用することができ、eMBB WTRU502およびURLLC WTRU504、URLLC WTRU506を、異なる持続期間の可変長TTIに割り当てることができる。URLLCに割り当てられた帯域幅領域において、送信活動が何も行われない場合、eMBB WTRUは、柔軟な制御チャネル、およびDL物理共有チャネル(PSCH)割当てプロトコルがサポートされている限り、送信リソースを再要求することができる。
【0079】
eMBB、URLLC、およびmMTCサービスのシグナリングおよびトラフィック特性に起因して、
図4および
図5で示されたFDMおよび/またはTDM多重化手法に関連するいくつかの問題が存在する可能性がある。
【0080】
例えば、異なる帯域上で異なる専用のNR周波数チャネルが使用される場合、FDMはスペクトル的に効率がよくない。キャリア全体が、1つのタイプの無線サービスに対して排他的に確保される必要があり、そのキャリアは、わずかなリソースが利用されるだけである。URLLにおけるなど、トラフィックがまばらでバースト性のものであると予想される場合、この欠点は特に大きい。
図5を参照すると、FDMおよびTDMの場合であっても、URLLC WTRU504およびURLLC506に許可されたDL RBの残りのものは、従来の周波数領域が制限される割り当てが使用される場合、未使用になるおそれがある。したがって、従来のFDMおよび/またはTDMサービス多重化手法を利用することは、利用可能な無線リソースのすべてを利用できず、低いスペクトル効率になるおそれがある。
【0081】
別の問題は、URLLCなど、多くのマシンタイプの使用例により生成される低く中程度のデータレートの間欠的なトラフィックは、概して、PDUが到来した後にほとんど同時送信を必要とする短い干渉性バーストになる可能性があることである。所与の周波数チャネルにおいて、いくつかのTTIは、eMBBとURLLCデータパケットを共に含む必要があり得る。多くの他のTTIにおいては、DL PSCH上で搬送されるeMBBデータだけが存在し得る。上記で述べたように、eMBB送信は、URLLCよりもはるかに大きい許容可能なUu遅延バジェットを有する。したがって、多重化されるeMBBユーザに対する初期のeNBスケジューリングステップは、L1およびフロントエンド処理、ならびにメモリバッファリング要件を決定する基本的な送信パラメータを選択することができる。他方で、URLLC送信は、はるかに短い許容可能なUu遅延バジェットを有するわずかなデータユニットであり得る。所与のDL送信間隔において、URLLCユーザに対するデータを送信するスケジューリング判断は、最後の瞬間に限って可能になる。
【0082】
図6を次に参照すると、DL送信の前の従来の処理ステップを示す図が示されている。
図6で示すように、DL送信が実際に開始する前にいくつかの機能を実施する必要があり得る。eNBは、DL PSCHに対して、スケジューリング判断602を行う必要があり、次いで、L2処理604を実施し、その後にL1処理606を行う必要があり得る。ベースバンド(BB)ユニットが、遠隔無線ヘッド(RRH)に接続される場合、DL送信の前に、デジタルサンプルもRRHに送信される必要があり得る。
【0083】
スケジューリング判断602がeNBによって行われる前に、これだけに限らないが、チャネル状態フィードバック、トラフィック待ち行列、実際の待ち行列(live queue)に対して可能な再送信、サービス品質(QoS)、およびアクセス層(AS)もしくは非アクセス層(NAS)シグナリングの必要性を含むいくつかのファクタを考慮することができる。スケジューリング判断の結果、1つまたは複数のWTRUを、送信期間に対して選択することができる。加えて、トランスポートブロックサイズ、変調次数、およびPRB割り当てを送信前に決定することができる。
【0084】
L2処理604は、データの完全性を保証するために、ASプロトコル処理およびメモリバッファの管理を含むことができる。制御プレーン要件はまた、この処理段に影響を与える可能性がある。
【0085】
L1処理606はさらに広範囲のものであり、巡回冗長検査(CRC)、チャネルエンコーディング、および符号化ブロックのレートマッチングを含むことができ、次いで、スクランブリング、変調、および空間レイヤマッピング(プリコーディングを含む)をその後に行うことができる。参照信号(RS)などの制御シンボルが、データから生成されたBBシーケンスに挿入され得る。最後に、DFTおよびBBフィルタリングまたはウィンドウイングを含むことのできるデジタルBBフロントエンド処理を実施することができる。このステップの最後に、サブフレーム全体をカバーする送信全体に対して、デジタルIQサンプルを生成することができる。最後のL1処理ステップを実際のDL送信が行われる前に可能な限り短く実行できるように、かなりのメモリが必要になる可能性がある。eNB BBユニットからRRHユニットへのトランスポートが必要な場合、配信ネットワークを介して移送するためのさらなる遅延も割り当てられる可能性がある。
【0086】
理解されるように、サブフレームまたはTTIにおけるDL送信が実際に開始する前に、MBBおよびeMBBタイプのデータサービスに対して、かなりの処理遅延(例えば1〜1.5ms)を受ける可能性がある。
【0087】
図6で示すように、所与のサブフレームへと多重化されるユーザに対するトランスポートブロックサイズは、ステップ602における最初のeNBスケジューリング判断中に、すでに決定することができる。L1処理ステップ606におけるメモリの必要性を決定できる、L1処理中に計算された特定ユーザのトランスポートブロックに対する符号化ビットの数は、実際には、もっと早期に(例えば、eNBスケジューリングの後に)取得することができる。符号化ビットの数は、割り当てられたRBの数、変調次数、およびサブフレームに存在するL1信号(例えば、RSまたは制御チャネル)の存在に依存するだけであり得る。
【0088】
L1および上位レイヤにおけるスケジューリングおよび処理中に、所与のユーザに対する多重化判断を変更することは望ましくない可能性がある。eNBが、スケジューリング判断を行った後、選択されたユーザに対する決定されたトランスポートブロックサイズを変更すること、またはすでにスケジュールされ、処理されたDL送信間隔にユーザを加えることは、L1処理およびフロントエンドのバッファリングメモリが大きく影響を受ける可能性がある。
【0089】
URLLC用途に対する非常に厳しいUu遅延バジェットのため、必要なURLLCスケジューリング遅延は、eMBBタイプのスケジューリングが提供できるものよりもはるかに小さくなるはずである。例えば、2msの持続期間を有するDL送信バーストの前に、1〜1.5msにスケジュールされたeMBB送信バーストが、ちょうど開始した、または進行中である間に、4msの許容された合計Uu遅延バジェットを有するURLLCデータが到来した場合、URLLCの遅延要件を満たすことは困難、または不可能であり得る。URLLCトラフィックが、スケジュールされるのを待つ必要がある場合(すなわち、2msのeMBB送信が終了した後)、その短い許容される4msのUu遅延バジェットのかなりの部分は、もはや再送信に使用することができない。その結果、所与のパケット誤り率に対するURLLC用のサポートされるデータレートは、大幅に低下する可能性があり、かつ/または達成可能なリンクバジェットおよび無線範囲は、大幅に低下することになり得る。2ms未満で完了することが必要なURLLC送信は、完全に不可能であり得る。あるいは、URLLC PDUがスケジュールされ、最後の瞬間に挿入された場合(すなわち、PDUが、すでにスケジュールされた2msのeMBB送信の中へとTxバッファで利用可能になったとき)、eNBメモリおよびバッファリング要件が増える可能性がある、または無線リンク性能に影響を受けるおそれがある。加えて、DL送信間隔においてスケジューリングの機会が提供される必要があり、それはさらなる課題を提示する可能性がある。
【0090】
別の問題は、異なるタイプのNR使用例に対する従来のFDMおよび/またはTDMサービス多重化手法は、現在展開されているとき、望ましいサービス特有のUu遅延要件に対するサポートができないことである。
【0091】
以下で述べる方法および装置は、非常に異なる無線性能要件が存在するデータサービスの効率的な多重化をサポートすることができる。方法および装置は、送信機/受信機実装形態に関して、無線性能を減少させる、または複雑さを増加させることになり得る既存の技法の観察された限界を克服できる。方法および装置は、FDMおよび/またはTDMによる多重化の可能性に適合することができ、それによって、eMBBにより例示されるものなど、大きな遅延タイプの送信がずっと前にスケジュールされており、かつその送信がDL送信間隔において進行中である場合であっても、URLLCにより例示されるものなど、短い遅延タイプの送信を、スケジュールし、処理し、送信することができる。
【0092】
以下の記述において、TTIは、以下の期間の1つまたは複数のものを指すことができることに留意されたい。TTIは、サブフレーム、スロット、またはミニスロットを指すことができる。TTIは、少なくとも1つのトランスポートブロックをスケジューリングするダウンリンク制御情報の送信から開始して、その後のトランスポートブロックをスケジューリングするダウンリンク制御情報の送信前、もしくは送信時に終了する時間の期間を指すことができる。TTIは、参照ニューメロロジ(例えば、15kHzのサブキャリア間隔に基づくなど)、または制御情報もしくはデータの送信に使用されるニューメロロジにおけるいくつかのOFDMシンボルを指すことができる。
【0093】
周波数領域における間隔は、Hz(またはkHz)で表現することができるが、参照ニューメロロジ(例えば、15kHzのサブキャリア間隔に基づくなど)、もしくは制御情報もしくはデータの送信に使用されるニューメロロジにおけるサブキャリアの数、またはリソースブロックの数で表現することができる。連続する周波数割り当ては、開始するもしくは終了する周波数、サブキャリア、またはリソースブロック、および周波数領域における間隔に関して定義することができる。不連続な周波数割り当ては、連続する周波数割り当てのセットに関して定義することができる。
【0094】
無線リソース割り当て領域(RRAR)は、異なるタイプのトラフィックの送信を可能にするように構成することができる。1つまたは複数のよく識別され、制限された時間/周波数領域のセットが、1つまたは複数の指定されたWTRUを用いた無線送信が行われる許容された、もしくは可能な時間/周波数無線リソースの大きなセット内でNR周波数チャネル用に構成され得る。
【0095】
RRARは、デバイスがアクセスできるものよりも小さい可能性のある無線リソースの特定部分を識別し、指定することができる。RRARは、DL、UL、サイドリンク、およびバックホール送信の状況において識別され、使用することができる。
【0096】
RRARは、単一の連続する時間/周波数領域とすることができるか、またはそれは、おそらく単一のRRARとして定義された連続する時間/周波数領域ではない複数の、別々のものを含むことができる。一般性を失うことなく、以下の記述は、RRARを単一の連続する時間/周波数領域として示すことができる。しかし、本明細書で述べる方法および手順は、複数のよく識別された時間/周波数領域のセットを含むように定義されたRRARを含むことができる。
【0097】
図7を次に参照すると、DL送信における1つまたは複数のRRARを示す図が示されている。
図7は、TTI#nの第1のDL送信710における第1のRRAR702、第2のRRAR704、第3のRRAR706、および第4のRRAR708を用いて構成された送信を示す。任意の数のRRARを使用できることに留意されたい。
【0098】
1つまたは複数のRRARは、周波数チャネルを構成する無線リソース全体に対して、よく識別され、制限された時間/周波数領域を用いて定義され、かつ識別することができる。あるいは、1つまたは複数のRRARは、あるデバイス用の特定の送信に関して定義され、かつ識別することができる。1つまたは複数のRRARは、RRCシグナリングにより構成される参照ダウンリンクリソースに関するなど、絶対的な、または相対的な用語で定義することができる。例えば、周波数領域において、1つまたは複数のRRARは、帯域幅部分および/またはキャリア内の周波数割り当てとして定義することができる。1つまたは複数のRRARは、暗黙的に定義することができる。例えば、時間領域において、DCIまたはプリエンプションインジケータが、RRARが、WTRUに対する有用なシンボルを含まないことを示すことのできるスロットまたはミニスロットのすぐ前のスロットもしくはミニスロット。第1のRRAR702は、所与のニューメロロジの、かつ開始OFDMシンボルおよびいくつかのOFDMシンボルにより識別され得る特定のミニスロットの物理リソースブロックのサブセットに関して定義することができる。
【0099】
NRシステムは、10MHz幅のFDD DLおよびULチャネル対、ならびに0.5msの持続期間のTTIを使用することができる。WTRUは、全体が10MHzのDLチャネルにアクセスすることができ、それは、それぞれ0.5msTTIの開始時にスケジュールすることができる。第1の例では、RRARは、全体が10MHz幅のリソースの第1のセット内で可能な時間/周波数割り当ての第2の、より小さく制限されたサブセットとして識別され得る。RRARは、10番目のTTI出現ごとにだけ生ずるように、また全体が10MHzのFDD DLチャネル内に単一の180kHz部分だけを含むことができるなど、絶対的に構成することができる。したがって、RRARは、FDD DLチャネル上で利用可能な全体の時間/周波数リソースのうちの1/500だけを含むことができる。
【0100】
別の例では、RRARは、シンボル間隔および/または周波数位置に関する指定された出現として、特定のWTRUに対する相対的な用語で定義することができる。その出現は、TTIにおける特定の送信設定に相当するルールによって決定することができる。WTRUは、2msの持続期間にわたる5MHz幅のデータ送信、または28OFDMシンボルを有するそれぞれが180kHzの25RBのデータ送信を受信することができる。1つまたは複数のRRARは、一定の長さ、およびそれぞれ3シンボルの制限された持続期間に対するデータ送信の開始から、5シンボルごとのシンボルオフセットを備えた4つの可能な出現において定義することができる。WTRUは、2msの間隔において受信したDLデータ送信に対して4つのRRAR位置を決定することができる。WTRUにより、例えば、14OFDMシンボルまたは1ms持続期間の長さの別のデータ送信を受信した場合、WTRUは、2つの可能なRRAR出現を決定するだけである。
【0101】
RRARは、繰り返し期間(recurrence period)を用いて構成する、かつ/または定義することができる。繰り返し期間は、周期的なものとすることができるか、または時間もしくは周波数における割り当てを示す割り当てパターンにより定義することができる。時間割り当てに対する例は、おそらく周波数割り当てと組み合わせて、どの可能なTTIの1つを、WTRUが、有効なRRAR出現を含むと見なすことができるかを示すビットマップとすることができる。RRARに対するビットマップは、選択された、連続する、もしくは非連続的なサブフレームのセットにおけるどのサブフレームが、有効なRRAR割り当てであり得るかを示すことができる。RRARのリソースは、1つのTTI、またはサブフレームから、循環する、または疑似ランダムパターンによる別のものへと変わることができる。
図7で示されるように、第1のRRAR702、第2のRRAR704、第3のRRAR706、および第4のRRAR708は、3TTIごとの繰り返し期間を有し、TTI#n+3における第2のDL送信712において再度出現する。
【0102】
RRARは、特定の送信特性に関連付けることができる。RRARは、例えば、選択されたOFDMニューメロロジ、サブキャリア間隔、シンボル長、CP構成、さらにRBの数、サブキャリア、または選択されたアンテナ送信構成(例えば、ビームまたはビームプロセス)による帯域幅、およびスケジューリングモードのうちの1つまたは複数のものに関連付けることができる。
【0103】
RRARは、特定の送信イベントの関数として決定することができる。例えば、RRAR出現が所与のTTIにおいてスケジュールされているが、実際のDL送信バーストがRRARの開始位置に十分適応するほど十分に長くない場合、またはDL送信バーストが、RRARの持続期間全体に適応できない場合、WTRUは、RRARがその特定のTTI出現に対して有効ではないと見なすことができる。RRARは、TTI長さが最小の閾値長を超えている場合に出現するものと見なすことができる。さらに別の例では、ユニキャスト送信を示すTTIだけを、RRARに対して考慮することができる。
【0104】
RRARは、非常に効率的に信号送りされ得る指定された識別子とすることができる。これは、異なるサービスタイプの効率的な多重化をスケジューリングし、可能にする状況において特に重要なものである。
【0105】
RRARは、第1のシグナリングメッセージにより、基地局などの第1のデバイスによって構成することができる。WTRUなどの第2のデバイスに対してRRARを構成する、もしくは活動化する、再構成する、もしくは非活動化するために、RRCまたはプロトコル制御シグナリングを使用することができる。シグナリングは、時間領域(例えば、シンボル、ミニスロット、およびスロット)、または周波数(例えば、サブキャリア、リソースブロックのセットもしくは範囲、および帯域幅部分)における領域など、RRARに関連付けられたTxもしくはRx構成、および送信特性を含むことができる。複数のデバイスを、同じRRARを用いて構成することができる。
【0106】
構成されたRRARは、インデックスまたはビットマップによって表されるなどにより、識別子の順序付けられたセットに関連付けることができる。例えば、第1のRRAR702、第2のRRAR704、第3のRRAR706、および第4のRRAR708は、2ビットもしくは4符号点によるシグナリングに使用することのできる別々のラベルに割り当てることができる。
【0107】
デバイスは、RRAR構成に関連付けられた識別子またはインデックス値を決定し、第2のメッセージで受信された、または導出された値を用いて、RRARが送信に使用されたかどうかを決定することができる。例えば、DCIにおけるシグナリングフィールドは、事前に構成されたRRARのセットから、どのRRARが送信に使用されたか、または使用できるかを示すことができる。事前に構成されたRRARのセットである場合、シグナリングフィールドは、どのRRARが使用されていないかを示すことができる。DCIは、1つまたは複数のWTRUに送信される共通のDCIとすることができる。
【0108】
構成されたRRARは、前に受信された送信の処理が、別の送信の関数として調整される必要があり得ることを知らせるようにデバイスに示すことができる。
【0109】
図8を次に参照すると、RRARを使用する複数サービスの動的なスケジューリングを示す図が示されている。第1のRRAR802、第2のRRAR804、第3のRRAR806、および第4のRRAR808が、TTI#nにおける第1のDL送信810、およびTTI#3における第2のDL送信812に対して事前に構成され、かつスケジュールされ得る。第1のWTRUは、eMBBデータ送信を、TTI#n、TTI#n+1、TTI#n+2、TTI#n+3、およびTTI#n+4において受信することができる。
【0110】
TTI#nには、第1のRRAR802、第2のRRAR804、第3のRRAR806、および第4のRRAR808が存在するが、他のデバイスへの送信は行われていない可能性がある。TTI#n+3において、eNBは、第2のRRAR804を用いて、URLLCを使用でき、対応する無線リソースでURLLCデータを送信できる第2のWTRUに対して、最後の瞬間の送信をスケジュールすることができる。これは、TTI#n+3における第1のWTRUに対する進行中のeMBBデータ送信をパンクチャすることによって行うことができる。その後に受信されるTTI#n+4においては、第1のWTRUは、DL制御シグナリング(例えば、DCI)を受信することができ、それは、現在のTTI#n+4に対するスケジューリングパラメータに加えて、TTI#n+3で受信された前の送信が、第2のRRAR804における別の送信によってパンクチャされたことを示すことができる。このシグナリングは、2ビットを必要とするだけである。シグナリングの結果、第1のWTRUは、そのHARQプロセスに対するHARQ結合中にバッファの破損を回避するために、TTI#n+3で受信されたトランスポートブロック/HARQプロセスに対応する第2のRRAR804に関連付けられた時間/周波数リソース要素に対して受信され、復号されたソフトチャネルビットもしくはメトリックをゼロに設定することができる。
【0111】
第1のWTRUに対する復号性能は、eMBB送信に対して、ノイズパワースペクトル密度に対するビット当たりの利用可能なエネルギー比(E
b/N
0)が、第2のRRAR804を送信するのに必要なものと同程度のエネルギーだけ減少する点で影響を受けるだけであり、さらなる不利益を受けることはない。同様に、構成されたRRARにおいて、他のデバイスを用いる可能な送信に対して半静的なリソースは除外されないので、スペクトル効率に関するシステム不利益を受けることはない。他の長い遅延送信が進行している場合であっても、必要に応じて、完全な柔軟性を維持しながら、利用可能な無線リソースを使用して、遅延に影響を受けやすいデータを最後の瞬間にスケジュールすることができる。構成され、かつよく識別されたRRARに対して代表的なインデックス値またはビット表現を使用するシグナリングは、DCIなどの高速かつロバストなL1シグナリングにより行うことができる。
図8で示された例は、進行中の送信がパンクチャされる任意の場合を示すことができ、その場合、複数のシグナリングおよび/またはスケジューリング機会を、所与のTTIに利用することができる。
【0112】
TTI#n+3における第2のRRAR804を第2のWTRUに対して使用する最後の瞬間のスケジューリング判断は、eNBによって行われ得るが、このTTIに対する複数のシグナリングまたはスケジューリング機会が存在する中で、TTI#n+3中に、その送信の部分がパンクチャされていることを第1のWTRUに示すことが可能である。
【0113】
第1のデータ送信を受信するWTRUは、可能なRRARのセットで事前に構成することができる。第1のデータ送信を受信しながら、または受信すると、WTRUは、事前に構成されたRRARの1つまたは複数のものが受信されたことを示すシグナリングを受信することができる。1つまたは複数のRRARは、受信時間間隔において第2の送信の存在を示すことができる。RRARが受信された場合、WTRUは、第2の送信を補償するために、受信された第1のデータ送信を処理することができる。WTRUは、チャネルメトリックまたはバッファ/メモリエントリを0などの決定された値に再設定する、またはそれを補正ファクタに適用することができる。
【0114】
さらに、またはあるいは、WTRUは、RRARが、関連するデータを含んでいないと想定して、最初に第1のデータ送信を処理し、復号を試みることができる。WTRUは、可能性のある将来の使用のために、RRARから復調されたソフトシンボルをバッファすることができる。復号に成功した場合、WTRUは、バッファされたソフトシンボルを破棄することができる。復号に成功しない場合、WTRUは、RRARがWTRUに対する関連データを含んでいたかどうかを示すDCIを受信することができる(例えば、その後の送信間隔で)。
【0115】
DCIは、1つまたは複数のWTRUに送信される共通のDCIとすることができる。DCIにおけるプリエンプション表示(indication)の周波数粒度は、所与のニューメロロジに対する参照ダウンリンクリソース内のいくつかのリソースブロックとなるように構成することができる。周波数粒度は、明示的なシグナリングにより示され得るが、または他のRRCシグナリングにより暗黙的に導出され得る。リソースブロックの数は、ダウンリンク参照リソースの周波数領域全体に対応することができる。DCIにおけるプリエンプション表示(indication)の時間粒度は、所与のニューメロロジに対する参照ダウンリンクリソース内のいくつかのシンボルとなるように構成することができる。時間粒度は、明示的なシグナリングにより示すことができるか、または他のRRCシグナリングによって暗黙的に導出され得る。プリエンプション表示(indication)の時間/周波数粒度は、プリエンプション(indication)を搬送するグループ共通DCIのペイロードサイズを考慮に入れることができる。
【0116】
RRARが関連するデータを含んでいないことをDCIが示す場合、WTRUは、シンボルを破棄することができる。RRARが関連するデータを含んでいたことをDCIが示す場合、WTRUは、RRARで受信されたデータを、TTIの残りに含まれるデータと結合して、復号を再度試みることができる。WTRUは、各RRARからのデータを、少なくとも1つの符号ブロックおよび冗長バージョンに関連付けることができ、かつ各RRARからのデータを、対応する符号ブロックに対してすでに受信された(すなわち、バッファされた)データとソフト結合することによって、復号を試みることができる。RRARと符号ブロックの間のマッピングは、RRARの時間および/または周波数における位置に暗黙的に依存することができる、またはDCIによって明示的に示すことができる。
【0117】
図9を次に参照すると、上記で述べた復号する前のプリエンプションの明示的な表示(indication)を示す流れ図が示されている。
【0118】
ステップ902で、WTRUは、第1のDL送信間隔中に第1のDCIを受信することができる。第1のDCIは、第1のタイプの送信を受信するために第1のDL送信間隔において第1の無線リソースを割り当てることができる。第1の無線リソースは、DL周波数チャネル全体を含むことができ、また第1のタイプの送信は、eMBBトラフィックを含むことができる。
【0119】
ステップ904で、WTRUは、第1の無線リソースにおいて、第1のタイプの送信からのデータを受信することができる。
【0120】
ステップ906で、WTRUは、第2の無線リソースにおいて第2のタイプの送信からのデータを受信することができる。第2の無線リソースは、第1の無線リソース内の1つまたは複数の所定の領域を含むことができる。第2の無線リソースは、1つまたは複数のRRARとすることができ、また第2のタイプの送信は、URLLCトラフィックを含むことができる。第2のタイプの送信は、第1のタイプの送信が受信されている間に受信することができる。
【0121】
ステップ908で、WTRUは、その後の第2のDL送信間隔中に、第2のDCIを受信することができる。第2のDCIは、第1のタイプの送信からのデータが、第2の無線リソースにおける第2のタイプの送信からのデータによってプリエンプトされたことを示すことができる。
【0122】
ステップ910で、WTRUは、第2のDCIに基づき、第1のタイプの送信からのデータを処理することができる。処理は、第1の無線リソースで受信されたデータに関連付けられた1つまたは複数のシンボルの第1のセットを決定すること、第2の無線リソースで受信されたデータに関連付けられた1つまたは複数のシンボルの第2のセットを決定すること、およびハイブリッド自動再送要求(HARQ)処理中にバッファが破損するのを回避するために、1つまたは複数のシンボルの第2のセットをゼロに設定することを含むことができる。
【0123】
図10を次に参照すると、プリエンプションの表示(indication)の前の復号を示す流れ図が示されている。
【0124】
ステップ1002で、WTRUは、第1のダウンリンク(DL)送信間隔中に、第1のダウンリンク制御情報(DCI)を受信することができる。第1のDCIは、第1のタイプの送信を受信するために第1のDL送信間隔において第1の無線リソースを割り当てることができる。第1の無線リソースは、DL周波数チャネル全体を含むことができ、また第1のタイプの送信は、eMBBトラフィックを含むことができる。
【0125】
ステップ1004で、WTRUは、第1の無線リソースにおいて、第1のタイプの送信からのデータを受信することができる。
【0126】
ステップ1006で、WTRUは、第1の無線リソースで受信されたデータに関連付けられた1つまたは複数のシンボルの第1のセットを決定することができる。
【0127】
ステップ1008で、WTRUは、第2の無線リソースで受信されたデータに関連付けられた1つまたは複数のシンボルの第2のセットを決定することができる。第2の無線リソースは、第1の無線リソース内の1つまたは複数の所定の領域を含むことができる。第2の無線リソースは、1つまたは複数のRRARとすることができる。
【0128】
ステップ1010で、WTRUは、1つまたは複数のシンボルの第2のセットをバッファすることができる。
【0129】
ステップ1012で、WTRUは、1つまたは複数のシンボルの第1のセットを復号するように試みることができる。ステップ1014で、WTRUは、復号が成功したと決定することができる。ステップ1016で、WTRUは、1つまたは複数のシンボルのバッファされた第2のセットを破棄することができる。
【0130】
ステップ1018で、WTRUは、復号が成功しなかったと決定することができる。ステップ1020で、WTRUは、第2のDL送信間隔中に第2のDCIを受信することができる。ステップ1022で、WTRUは、第2のDCIが、第2の無線リソースにおける送信の第2のタイプからのデータにより、第1のタイプの送信からのデータがプリエンプトされたことを示す場合、1つまたは複数のシンボルのバッファされた第2のセットを破棄することができる。第2のタイプの送信は、URLLCトラフィックを含むことができる。第2のタイプの送信は、第1のタイプの送信が受信されている間に受信することができる。ステップ1024で、WTRUは、1つまたは複数のシンボルの第1のセット、および1つまたは複数のシンボルの第2のセットを結合することができる。ステップ1026で、WTRUは、第2のDCIが、第2の無線リソースで受信されたデータがWTRUに関連するものであることを示す場合、復号を再度試みることができる。
【0131】
WTRUは、ULにおいて1つまたは複数のRRARを送信することができる。構成されたRRARで送信できることを知らせるように、構成された無線リソース割り当て領域をデバイスに示すことができる。
【0132】
図11を次に参照すると、RRARを用いて複数のサービスをスケジューリングするとき、持続的な割り当てに対する明示的な活動化を示す図が示されている。第1のRRAR1102、第2のRRAR1104、第3のRRAR1106、および第4のRRAR1108が、TTI#n+1の第1のUL部分1110、およびTTI#n+4の第2のUL部分1112における送信に対して構成され、かつ指定することができる。TI#n+1の第1のUL部分1110には、第1のRRAR1102、第2のRRAR1104、第3のRRAR1106、および第4のRRAR1108が存在するが、送信が行われない可能性がある。TTI#n+4では、eNBは、1つまたは複数のULスケジューリングDCI1114により、第1のRRAR1102および第4のRRAR1108を用いて、2つのURLLC WTRUに対して最後の瞬間送信をスケジュールすることができる。1つまたは複数のULスケジューリングDCI1114は、TTI#n+4におけるDL制御フィールド1116において送ることができ、それはDL期間1118の前に送ることができる。第1のURLLC WTRU、および第2のURLLC WTRUは、次いで、割り当てられたRRARにおいて、URLLCデータを送信することができる。eNBは、グループDCIを用いて、アップリンクURLLCデータをスケジュールすることができる。
【0133】
事前に構成されたRRARに対して、代表的なインデックス値またはビット表現を用いる場合、DCIなどの高速かつロバストなL1シグナリングを使用することができる。特定のRRAR送信インスタンスを識別するために、2ビットが必要になるだけなので、DCIは、複数のWTRUに対する送信を活動化するために使用することができる。
【0134】
第1のデバイスは、送信すべきデータを有するかどうかを決定し、RRARが利用可能である場合、構成されたRRARを用いてデータを送信することができる。第2のデバイスは、RRARにおける第1のデバイスからのデータ送信の有無を決定することができる。
【0135】
図12を次に参照すると、RRARを用いて複数のサービスをスケジューリングするとき、持続的な割り当てに対する自律的な送信を示す図が示されている。第1のRRAR1202、第2のRRAR1204、第3のRRAR1206、および第4のRRAR1208は、TTI#n+1のUL部分1210、およびTTI#n+4のUL部分1212に対して構成され、かつ指定することができる。指定されたRRARのそれぞれは、第1のWTRU、第2のWTRU、第3のWTRU、および第4のWTRUに対応することができる。
【0136】
TTI#n+1のUL部分1210では、第1のWTRUおよび第3のWTRUが、送信すべきデータを有し、したがって、それらが許容され指定されたRRARにおいて送信が行われるが、第2のWTRUおよび第4のWTRUは送信しない。TTI#n+4のUL部分1212では、第1のWTRU、第3のWTRU、および第4のWTRUは、送信すべきデータを有しており、したがって、それらの対応するRRARにおいて、送信が行われる。第2のRRAR1204は、未使用とすることができる。eNBは、RRARが構成され、かつ有効であるTTIにおいて(すなわち、TTI#n+1のUL部分1210および#n+4のUL部分1212において)、指定されたRRARのそれぞれに対して、WTRUからのデータ送信が存在するか、存在しないかを検出することができる。eNBは、データの有無を検出するために、RRARに対応するパイロットおよび/またはデータシンボル上で受信されたパワーまたは受信されたエネルギーに基づき、ブラインド検出を使用することができる。よく識別され、かつ指定された時間/周波数領域にわたって、特定のRRAR送信を行うことができるため、エネルギー検出を用いるブラインド推定が、受信デバイスで実施され得る。
【0137】
ブラインド復号を、スロットのサブリソースに対して使用することができる。例えば、WTRUは、送信パラメータの少なくとも1つの構成された候補セットに従って、スロット(例えば、ダウンリンクまたは受信サイドリンク)の少なくとも1つのRRARのセットにおいて、制御情報および/またはデータの復号を試みることができる。WTRUは、WTRUに向けた制御情報および/またはデータが第1のRRARに存在するかどうかの決定を行うことができる。WTRUは、このような制御情報および/またはデータが、第1のRRARに存在すると決定されるという条件で、第2のRRAR(例えば、アップリンクまたは送信サイドリンク)において適用可能なHARQフィードバックを送信することができる。
【0138】
このプロセスは、スケジューリング遅延を、スロット全体の持続期間と比較して1つまたは複数のOFDMシンボルの程度に低減することができる。ネットワークは、その時間に、WTRUに利用可能なデータがない場合であっても、スロットの開始時に制御情報にて、RRARのセットをWTRUに示すことができる。ネットワークは、その後に続いて、スロットに対する制御情報の送信後に利用可能になるデータ(例えば、URLLCデータ)を送信することができる。RRARのセットは、スロット全体にわたる開始OFDMシンボルを有しており、起こり得る最大のスケジューリング遅延を最小化することができる。
【0139】
以下でさらに詳細に述べるように、WTRUは、スロットにおけるRRARのセットの決定、送信パラメータの候補セットの決定、WTRUに対する制御情報および/またはデータの存在の決定、ならびにWTRUにより実施できる後続する送信の決定に関与することができる。
【0140】
開始シンボルとして使用されるスロットの各シンボルに対して1つのRRARが存在できる。これは、あらゆるシンボル、1つおきのシンボル、またはミニスロット境界におけるあらゆるシンボルを含むことができる。各RRARは、一定の持続期間および一定のPRB範囲で構成することができる。同じ持続期間およびPRB範囲を、すべてのスロットに使用することができる。RRARの所与のセットに対する構成は、RRCシグナリングによって提供することができる。さらなる柔軟性のために、複数のこのようなRRARのセットを、RRCにより構成することができる。RRARの適用可能な1つまたは複数のセットは、スロットの開始時に、DCIのフィールドによって示され得る。WTRUは、スロットに対するセットを示す適用可能なDCIが受信されなかった場合、スロットにおいて、RRARのデフォルトのセットを使用するように構成することができる。この手法は、WTRUに関する活動がほとんどない、または全くない場合、あらゆるスロットにおいてDCIの送信を必要とすることなく、非常に低いスケジューリング遅延を提供することができる。
【0141】
送信パラメータのセットは、これだけに限らないが、RRARにおけるデータおよび/または制御情報の復号に成功するために必要な任意の情報を含むことができる。例えば、情報は、変調符号化方式(MCS)、トランスポートブロックサイズ、符号(または情報)ブロックサイズ、参照信号(RRAR内のその位置を含む)もしくはビームの表示(indication)、CRC長、および識別パラメータのうちの1つまたは複数のものを含むことができる。
【0142】
1つまたは複数のデータおよび制御情報が存在するとき、情報は、データ、制御情報に特有のものとすることができるか、または両方に共通のものとすることができる。情報はまた、制御情報および/またはデータが存在し得るRRAR内のリソースの表示(indication)を含むことができる。情報はまた、制御情報および/またはデータが存在しない場合であっても示すこともできる。例えば、RRARの第1のセットに関する情報は、データと制御情報が共に存在することを示すことができる。情報は、制御情報がRRARの最初のMシンボルおよび最高N個のPRBに含まれること、およびデータがRRARの残りのリソース要素に含まれることを示すことができる。RRARの第2のセットに関する情報は、データだけ、または制御情報だけが存在し、RRARのすべてのリソース要素に含まれることを示すことができる。送信が、複数のRRARにマップされる場合、情報はまた、いくつかのRRAR、またはRRARのセットを含むことができる。
【0143】
WTRUは、送信パラメータの1つまたは複数の候補セットを仮定して復号を試みることができる。所与のスロットに、またはスロットにおける所与のRRARに適用可能な候補セットは、物理レイヤ、MAC、RRCシグナリング、またはそれらの組合せから取得することができる。例えば、DCIは、データに対するMCSなど、少なくとも1つの候補セットに適用可能な1つの送信パラメータの値を示すことができるが、他のパラメータは、RRCシグナリングにより構成することができる。別の例では、DCIのフィールドは、RRCによって構成された候補セットのサブセットを示すことができる。WTRUは、おそらく、このスロットのRRARに対する送信パラメータの候補セットに対して、適用可能なDCIが受信されなかった場合に限って、任意のスロットに適用可能な送信パラメータのデフォルトの候補セットを用いて構成することができる。
【0144】
WTRUは、RRARに関する制御情報の検出に成功したとき、同じRRARにおいて、または後続するRRARにおいてデータの復号を試みる場合に、この制御情報に示された送信パラメータを適用することができる。
【0145】
WTRUは、制御情報および/またはデータが、RRARまたはRRARのセットにおいて受信されたかどうかの決定を行うことができる。例えば、WTRUは、送信パラメータの候補セットに基づいた、制御情報および/またはデータの復調および復号の後に、制御情報またはデータに適用されたCRC(おそらく、識別パラメータでマスクされる)が復号の成功を示す場合、制御情報および/またはデータが存在したと決定することができる。第1のCRCが制御情報に対する検出が成功したことを示すが、第2のCRCがデータの検出に失敗したことを示す場合、WTRUは、WTRUに向けたデータは存在したが、復号に成功しなかったこと、および再送信が必要であり得ると決定することができる。
【0146】
WTRUはまた、参照信号が、受信されたパワーまたは信号対雑音比に関して閾値を超えて検出された場合、制御情報および/またはデータが、RRARにおいて受信されたと決定することができる。
【0147】
WTRUは、軽量HARQ動作を使用することができる。例えば、WTRUは、RRARにおいてデータが成功裏に復号されたとき、ACKを生成することができ、ACKを、その後のULリソースもしくはRRARで送信することができる。このような送信は、RRARの構成されたサブセットに対して実施されるだけである。
【0148】
WTRUは、RRARにおいて、データの復号に成功しなかったとき、NACKを生成することができ、またその後のULリソースまたはRRARにおいてNACKを送信することができる。NACKは、WTRUが、制御情報および/またはデータがRRARで受信されたと決定したとき生成され得る。WTRUは、スロットに適用可能なDCIにおいて、そうするように示された場合、ACKまたはNACKを生成し、送信することができる。
【0149】
WTRUが、RRARに対するデータまたは制御情報の復号に成功しない場合、WTRUは、受信された信号、または復調されたソフトシンボルを、RRARに関連付けられたデフォルトのHARQエンティティおよび冗長バージョンに対するメモリに保持することができる。その関連付けは、事前に(すなわち、スロットにおけるRRARの指示により)定義される、または信号で知らされる。WTRUは、閾値を超える参照信号の検出に基づいて、制御情報および/またはデータが受信されたと決定した場合、これを行うことができる。WTRUは、それが関連付けられたRRARを受信する直前に、HARQエンティティに関する情報を除去することができる。
【0150】
WTRUが、RRARに関する制御情報の復号に成功するが、データの復号には成功しない場合、WTRUは、RRARのデータ部分に対する復調されたソフトシンボルを、制御情報で示されたHARQエンティティにすでに記憶されたシンボルと結合することができる。これは、このRRARに関連付けられたデフォルトのHARQエンティティを無効にすることができる。あるいは、WTRUは、所定のルールに基づいて制御情報を含む場合、RRARに関連付けられたHARQエンティティにすでに記憶されたシンボルと、RRARのデータ部分に対する復調されたソフトシンボルとを結合することができる。
【0151】
制御情報は、第2の後続するRRARが、示されたHARQエンティティに関連付けられたWTRUに対するデータを含むことを示すことができる。この場合、WTRUは、第2のRRARのシンボルを、示されたHARQエンティティにすでに記憶されているシンボルとソフト結合することができる。制御情報はまた、再送信に対する冗長バージョンを示すことができる。あるいは、冗長バージョンは、RRARとの固定された関連付けから決定することもできる。
【0152】
このプロセスは、再送信する必要性がある場合、RRARにおける制御情報が送信されるだけである低オーバヘッドURLLC動作を可能にすることができる。例えば、WTRUは、送信の2つの候補セットに従ってあらゆるRRARの復号を試みることができ、1つはデータにだけ対応するものであり、第2のものは、制御情報に、または制御情報とデータの組合せに対応するものである。WTRUが、どちらかの候補セットによっても復号に成功しない場合、RRARに関連付けられたHARQエンティティは除去され、RRARから復調されたシンボルが、HARQエンティティに代えて記憶され得る。WTRUが、データだけの復号に成功した場合、ACKを送信することができる。WTRUが制御情報の復号に成功した場合、制御情報により示されるデータ(おそらく同じRRARのもの)は、示されたHARQエンティティに結合され得る。ACKまたはNACKは、その結果に応じて送信することができる。
【0153】
WTRUがNACKまたはACKを送信するとき、送信は、以下のパラメータの1つまたは複数のものにより決定されたUL RRARリソースにおいて行うことができる。UL RRARリソースは、NACKまたはACKが報告されるDL RRARとの関連付けに基づいて決定することができる。関連付けは、所定のルールに基づくことができる、かつ/または上位レイヤにより構成することができる。例えば、UL RRARは、関連付けられたDL RRARの後の固定数のシンボルで生ずることができ、かつ各UL RRARに対して異なることのできるPRBSの構成されたセットを占めることができる。UL RRARに対するPRBの構成は、上位レイヤにより構成されたRRARの各セットに対して、対応するDL RRARのPRBの構成と共に提供され得る。UL RRARリソースは、DL RRARにおいて復号された制御情報の一部として示すことができる。ACKだけが送信される場合、制御情報は、データと一緒にエンコードすることができる(すなわち、帯域内シグナリング)。
【0154】
TTIまたはスロット内でスケジュールされたデータは、TTIまたはスロット内の別々の物理リソース(例えば、時間および/または周波数)に割り当てられるトランスポートブロックの複数のグループに属することができる。
【0155】
トランスポートブロックの割り当ては、いくつかの物理リソースでより高い優先順位のトラフィックによるプリエンプションが生じた場合、成功裏に送信できるデータ量を最大化するように制御することができる。例えば、トランスポートブロックの割り当ては、より高い優先順位のトラフィックによりプリエンプトできない、またはその可能性が低い物理リソースが、トランスポートブロックの第1のグループに使用されるが、より高い優先順位のトラフィックによりプリエンプトされる可能性のある、またはその可能性が高い物理リソースは、トランスポートブロックの少なくとも第2のグループに使用されるようにすることができる。
【0156】
トランスポートブロックのグループは、単一のトランスポートブロックの送信または再送信を、または同じ時間/周波数リソースに割り当てられた空間領域で多重化された2つ以上の送信もしくは再送信されるトランスポートブロックのセットを含むことができる。トランスポートブロックの一部の送信/再送信がサポートされる場合、トランスポートブロックは、完全なトランスポートブロック、またはトランスポートブロックに関連付けられた符号ブロックのサブセットを含むことができる。トランスポートブロックのグループのリソースへの割り当ては、ダウンリンク制御情報における構成されたRRARにより効率的に示され得る。より高い優先順位のトラフィックは、異なるWTRUに対するものであり得る制御および/またはデータ情報を含むことができる。
【0157】
RRARなど、TTIのいくつかのリソースにおいてプリエンプションが行われた場合、これらのリソースに割り当てられたトランスポートブロックのグループの送信だけが影響を受けることになり得る。これは、TTI全体にトランスポートブロックの単一のグループが割り当てられる方法と比較して、リソースの浪費を低下させることができる。後者の場合、TTIにスケジュールされていたすべてのデータを再送信することが必要になるはずである。
【0158】
さらなる量のHARQフィードバックが、トランスポートブロックのグループの割り当てをサポートするために必要になり得るが、これは、トランスポートブロックの各グループに対するリソースの適切な割り当てによって最小に保つことができる。例えば、プリエンプションが、TTIに利用可能な物理リソースのわずかな部分で行うことができるに過ぎない場合、トランスポートブロックの単一のグループを、物理リソースの残りに割り当てることができる。
【0159】
図13を次に参照すると、トランスポートブロック割り当ての形成の第1の例を示す図が示されている。
図13は、ダウンリンクの場合を示しているが、割り当てはまた、アップリンクまたはサイドリンクにも適用することができる。図示のように、TTI1302は、7個のOFDMシンボルにわたることができる。制御情報は、第1のOFDMシンボル1304で提供することができ、またデータは、後続するシンボルにおいて提供され得る。制御情報は、トランスポートブロックの第1のグループ1306が、第1の物理リソースに割り当てられるが、トランスポートブロックの第2のグループ1308は、第2の物理リソースに割り当てられることを示すことができる。第2のリソースは、高い優先順位のトラフィックによってプリエンプトされる可能性が高い。スケジューラは、制御情報が決定されたとき、プリエンプションが生ずるかどうかを知らない可能性のあることに留意されたい。第2のリソースは、構成されたRRARに対応することができる。
【0160】
プリエンプションが生じない場合、十分なエネルギーが蓄積されたと仮定して、すべてのトランスポートブロックの復号に成功することができる。他方で、プリエンプションが、トランスポートブロックの第2のグループ1308における第2のリソースの一部で、または、そのすべてで生じた場合、トランスポートブロックの第1のグループ1306は、トランスポートブロックの第2のグループが復号されない場合であっても、なお復号に成功することができる。スケジューラは、後続するTTIにおいて、トランスポートブロックの第2のグループ1308を再送信することができ、かつバッファ破損を阻止するために、関連する新データインジケータを切り換えることができる。
【0161】
図14を次に参照すると、トランスポートブロック割り当ての形成の別の例を示す図が示されている。
図14は、トランスポートブロックの部分的な送信がサポートされる場合を示す。図示のように、TTI1402は、7個のOFDMシンボルにわたることができる。制御情報は、第1のOFDMシンボル1404で提供することができる。データおよびさらなる制御情報は、その後のシンボルで提供され得る。この例では、リソースの第1のセットは、第1のトランスポートブロックグループ1406の符号ブロックのサブセットの送信に割り当てられる。リソースの第2のセットは、第2のトランスポートブロックグループ1408に割り当てられ、またリソースの第3のセットは、第3のトランスポートブロックグループ1410に割り当てられる。リソースの第3のセットは、第3のトランスポートブロックグループ1410の復号に使用され得るさらなる制御情報1412を含むことができる。
【0162】
ダウンリンク、アップリンク、またはサイドリンクにおいて、トランスポートブロックの所与のグループに割り当てられたリソースは、1つまたは複数の方法によって示すことができる。WTRUは、多重化情報の関数として、トランスポートブロックのグループを送信するために適用可能な物理リソース割り当てを決定することができる。この情報は、制御信号情報に基づいて決定され得る。
【0163】
WTRUは、同じセットの別のリソースと、時間および/または周波数で少なくとも部分的に重複する、1つまたは複数の送信リソースのセットを用いて適用可能なリソースを決定することができる。1つまたは複数の送信リソースのセットは、異なるスケジューリング粒度で動作することができる。一例では、1つまたは複数の送信リソースのセットは、時間/周波数において分離している(disjoint)場合であっても、トランスポートブロックおよび/またはHARQプロセスに関連付けられた1つまたは複数のリソースに対応することができる。別の例では、1つまたは複数の送信リソースのセットは、時間/周波数において分離している場合であっても、1つまたは複数の符号ブロック(符号ブロックベースのHARQが、適用可能なトランスポートブロックおよび/またはHARQプロセスに適用可能なとき)に関連付けられた1つまたは複数のリソースに対応することができる。
【0164】
別の例では、複数タイプの粒度を同時に使用することができる。例えば、符号ブロックベースの粒度(例えば、eMBB送信に対して)、およびトランスポートブロック/HARQベースの粒度(例えば、URLLC送信に対して)を使用することができ、またそれらの各リソースの重複に関して調整することができる。WTRUは、次いで、決定された多重化情報に基づき、適用可能な粒度で、各送信に対して相互に排除する物理リソースを計算することができる。WTRUは、半静的な構成から、動的に、またはその両方の組合せを用いて、多重化情報を決定することができる。
【0165】
WTRUは、例えば、半静的な構成に基づいて、トランスポートブロックの第1のグループに対する第1の物理リソースを決定できる。トランスポートブロックの第1のグループは、RRARとすることができる。WTRUは、次いで、DCIのフィールドからトランスポートブロックの第2のグループに対する第2の物理リソースを決定することができる。第2の物理リソースの一部は、トランスポートブロックの第1のグループに割り当てられた物理リソースと重複しないはずである。例えば、第2の物理リソースは、周波数割り当てフィールドにより、かつTTIの持続期間にわたる時間シンボルのセットにより示される周波数領域におけるリソースブロックのセットを含むことができる。制御情報の送信に使用されるリソースは除外することができる。TTIの持続期間は、1つまたは複数のスロットとすることができ、またDCIのフィールドによって示すことができる。
【0166】
第1の物理リソースおよび/または第2の物理リソースは、アンテナポートのセットを含むことができる。WTRUは、時間/周波数リソースが、アンテナポートの同じセットに対して、トランスポートブロックの第2のグループに割り当てられている場合、トランスポートブロックの1つのグループに対する時間/周波数リソースを除外することができる。あるいは、アンテナポートのセットが、トランスポートブロックの各グループの送信に使用されているとしても、その除外を適用することができる。
【0167】
WTRUは、y
1サブキャリアにわたるx
1シンボルに対応するトランスポートブロックに対する第1のリソースのセットを含む、RRARの半静的な構成を有することができる。WTRUは、y
2サブキャリアにわたるx
2シンボルに対応するリソースの第2のセットにわたる大きなトランスポートブロックをスケジュールする動的な制御信号(例えば、DCI)を受信することができる。リソースの第1のセット(x
1、y
1)は、リソースの第2のセット(x
2、y
2)のサブセットであり得る。
【0168】
WTRUが、リソースの第1のセットの構成が活動化されたと決定した場合、かつ/またはDCIが、リソースの第1のセットが、スケジュールされた時間間隔(例えば、スロット、サブフレームなど)に適用できるとの表示(indication)を含む場合、WTRUは、第1の送信(例えば、第1のトランスポートブロック、またはその再送信)がリソースの第1のセットで予想されるが、第2の送信(例えば、第2のトランスポートブロック、第2のトランスポートブロックの符号ブロックのセット、またはその再送信)が、(x
1、y
1)に対応する部分を除き、リソースの第2のセットで予想されると決定することができる。そうでなければ、WTRUは、(x
2、y
2)など、明示的に示されたリソースで予想されると決定することができる。これは、リソースの2セットを超えるものへと一般化できる。
【0169】
この技法は、物理データチャネル上のユーザプレーンもしくは制御プレーンデータ、および/または同じWTRUもしくは異なるWTRUに対する物理制御チャネル上のダウンリンク/アップリンク制御シグナリングなど、異なる送信を多重化するために、高レベルのスケジューリング柔軟性を可能にすることができる。粒度は、ネットワークにより制御され、かつ構成され得る。例えば、ネットワークは、HARQに対する(例えば、eMBBサービスに対する)符号ブロックベースの手法を用いてWTRUを構成することができる。ネットワークは、リソースを用いてURLLC送信をさらに構成することができ、それにより、URLLCトランスポートブロックは、eMBBトランスポートブロックに使用される符号ブロックの粒度に適合することができる。この手法は、パンクチャリングに対するロバスト性を高めることができ、またeMBB送信のパンクチャリングが生じたとき(例えば、符号ブロックベースのフィードバックおよび/または再送信がシステムでサポートされているとき)再送信オーバヘッドを最小化することができる。これは、送信時間の持続期間および/または送信帯域幅で異なっている任意の送信に対してさらに一般化することができる。
【0170】
トランスポートブロックの各グループに対する送信パラメータを、WTRUに示すことができる。送信パラメータは、少なくとも、トランスポートブロックのグループの各トランスポートブロックに対するMCS、ならびに受信もしくは送信に対するアンテナポートのセットおよび/またはビームプロセスを含むことができる。パラメータの少なくとも1つは、トランスポートブロックの複数のグループに共通とすることができる。例えば、各グループが2つのトランスポートブロックを含む場合、第1のグループに適用可能な2つのMCS値は、第2のグループにも同様に適用可能であり得る。あるいは、値の異なるセットを、トランスポートブロックの各グループに対して、独立して信号送りすることができる。
【0171】
トランスポートブロックの各グループは、別個のHARQプロセスに関連付けることができる。HARQプロセスの識別は、トランスポートブロックの少なくとも1つのグループに対して明示的に示され得る(例えば、DCIのフィールドから)。HARQプロセスの識別は、トランスポートブロックの少なくとも1つのグループに対して暗黙的に決定され得る。例えば、HARQプロセス識別は、各RRARに対して、上位レイヤにより構成することができる。WTRUは次いで、DCIによって示されたRRARの識別に基づき、トランスポートブロックグループに対するHARQプロセス識別を決定することができる。
【0172】
WTRUは、各トランスポートブロックに対して、新データインジケータ(NDI)、再送信シーケンス番号、および冗長バージョン(RV)のうちの少なくとも1つを決定することができる。これらの値の少なくとも1つは、DCIから明示的に示され得る。RVなどのいくつかの値は、上記で述べたHARQプロセス識別と同様な方法で、トランスポートブロックの少なくとも1つのグループに対して暗黙的に決定することができる。
【0173】
複数の分離された物理リソース(例えば、RRARなど)は、TTI内で構成することができ、かつ同じトランスポートブロックの特定の冗長バージョンの送信に割り当てることができる。例えば、RRARは、トランスポートブロックのグループに対するスロットの第3、第5、および第7のシンボルに構成することができる。第3のシンボルは、グループの各トランスポートブロックの第1の冗長バージョンを送信するために使用することができる。第5のシンボルは、グループの各トランスポートブロックの第2の冗長バージョンを送信するために使用することができる。第7のシンボルは、グループの各トランスポートブロックの第3の冗長バージョンを送信するために使用することができる。各分離されたリソースで使用できる冗長バージョンは、DCIから、または構成された、もしくは所定のシーケンスから取得することができる。
【0174】
WTRUは、最初にRRARのセットを用いて上位レイヤにより構成することができる。そのセットは、スロット内の時間シンボルのセットとして(例えば、第4および第6のシンボル)、また各シンボルに対する周波数割り当てとして規定することができる。周波数割り当ては、制御シグナリング(例えば、制御リソースセット)に使用されるリソースに対して規定することができる。周波数割り当ては、各時間シンボルとは別に行うことができる。
【0175】
WTRUは、TBの複数グループとの動作をサポートするDCIフォーマットを想定して、スロットにおける制御チャネルを監視することができる。DCIフォーマットは、以下のフィールドの1つまたは複数のものを含むことができる。
【0176】
DCIフォーマットは、トランスポートブロックの第1のグループに割り当てることのできるリソースの最大量を示す周波数割り当てフィールドを含むことができる。DCIフォーマットは、送信に関連付けられたアンテナポートを示すフィールドを含むことができる。DCIフォーマットは、トランスポートブロックの第1のグループに適用可能なHARQプロセスを示すHARQプロセス識別フィールドを含むことができる。DCIフォーマットは、グループ内の各トランスポートブロックに適用可能な変調および符号化を示す少なくとも1つのMCSフィールドを含むことができる。DCIフォーマットは、トランスポートブロックの少なくとも第1のグループに対する各トランスポートブロックに適用可能な少なくとも新データインジケータフィールド、および冗長バージョンフィールドを含むことができる。
【0177】
DCIフォーマットは、トランスポートブロックグループのインジケータフィールドを含むことができる。このフィールドは、トランスポートブロックの1つまたは複数のグループが送信されるかどうか、またどのリソースで送信されるかを示す複数の可能な値をとることができる。このフィールドはまた、トランスポートブロックの第2のグループに対する新データインジケータを、また(適用可能な場合)各グループに対するトランスポートチャネルのタイプを含むことができる。
【0178】
フィールドの第1の値は、トランスポートブロックの単一のグループが、TTI(またはスロット、もしくはスロットのセット)において送信されることを示すことができ、それは、次いで、TTIにわたる周波数割り当てフィールドにより示された全部のリソースに割り当てることができる。
【0179】
フィールドの第2の値は、トランスポートブロックの2つのグループが、TTI(またはスロット、もしくはスロットのセット)において送信されることを示すことができる。第1のグループは、第2のグループに割り当てられるリソースと重複するリソースを除いて、周波数割り当てフィールドによって示されたリソースに割り当てることができる。第2のグループは、RRARの構成されたセットのリソースに割り当てることができる。
【0180】
フィールドの第3の値は、トランスポートブロックの単一グループがTTI(またはスロット、もしくはスロットのセット)において送信されるが、このグループは、RRARの構成されたセットと重複するリソースを除外して、周波数割り当てフィールドにより示されたリソースに割り当てられるだけであることを示すことができる。この値は、例えば、スケジューラが、RRARは高い確率で別のWTRUに割り当てられるようになることを知っている場合に使用することができる。別の例では、RRARは、マルチスロット割り当てに対する後続するスロットの制御リソースセットに対応することができる。スケジューラは、別のWTRUをスケジュールするために制御リソースセットが使用される可能性が高いことを知っている場合、この値を使用して、後続するスロットの制御リソースセットのリソースから、データを復号すべきではないことを示すことができる。
【0181】
フィールドの第4の値は、2つのグループのトランスポートブロックが、TTI(またはスロット)で送信されることを示すことができる。加えて、この値は、第2のグループの両方のトランスポートブロックに対して、新データインジケータが切り換えられることを示すことができる。この場合、WTRUは、新しいデータを受信する前に、対応するHARQエンティティに記憶されたデータを消去することができる。この値は、前の送信においてプリエンプションが生じた場合、または第2のグループのトランスポートブロックが成功裏に受信された後に使用することができる。第2のグループに対する新データインジケータは、別個に提供される場合、この値を規定する必要はないはずである。
【0182】
WTRUは、HARQプロセスによって、送信の少なくとも一部がプリエンプションイベントを含むものと見なされると決定することができる。WTRUは、1つまたは複数のアクションを実施して、ソフト結合プロセスからプリエンプションイベントが生じた場合、起こり得るHARQバッファ破損が確実に回避されるようにすることができる。1つまたは複数のアクションを、HARQバッファ破損の回避と呼ぶことができる。WTRUは、関連するHARQプロセスに対する第2のソフトバッファをインスタンス化して、関連するHARQプロセスに対する送信を受信する前に、ソフトバッファの状態を維持するが、第1のソフトバッファにおける送信とのソフト結合を実施する。WTRUは続いて、関連する送信に対して、全体の送信が考慮され得るかどうかの決定に基づいて、第1または第2のソフトバッファのいずれを、さらなるHARQ処理(例えば、トランスポートブロックの復号、現在の送信に関連するHARQフィードバックの生成など)の決定に対して考慮すべきかを決定することができる。例えば、WTRUは、おそらく、有効であり、かつプリエンプションイベントによって破損される可能性がないと見なされる送信部分を用いて、関連する送信に対してプリエンプションイベントが行われたと決定した場合、トランスポートブロックのさらなる処理に対して、かつ/またはHARQフィードバックの生成に対して、第2のソフトバッファを考慮することができる。そうでなければ、第1のバッファを使用することができる。
【0183】
プリエンプションが生じたと決定するために、暗黙的な手段を使用することができる。WTRUは、プリエンプションイベントが生じたかどうかの決定を暗黙的に行うことができる。その決定は、関連するHARQプロセスに対するダウンリンク送信に関連付けられたPRBのセット、関連するHARQプロセスの識別から、関連付けられた制御チャネルから、かつ送信のタイミングから(例えば、TTIの範囲内の特定のTTIなど)のうちの1つまたは複数のものに基づくことができる。決定の手段は、WTRUの構成側面とすることができる。決定の手段は、周波数および/または時間におけるある範囲のアドレス指定可能なPRBの半静的構成、このような決定をサポートする1つまたは複数のプロセスIDのHARQエンティティを有する半静的構成、このような決定がサポートされることを示す制御チャネルに関連付けられた構成、ならびにある範囲のTTI内の1つまたは複数のTTIの半静的構成のうちの1つまたは複数のものにより構成することができる。
【0184】
プリエンプションが生じたことを決定するために、明示的な手段を使用することができる。WTRUは、DCIの受信に基づくなど、プリエンプションイベントが生じたかどうかの決定を明示的に行うことができる。DCIは、関連するHARQプロセス用の送信を行うために、プリエンプションに対する処理をWTRUが実施できることを示すことができる。決定は、本明細書で述べられる方法のいずれかに従って、または本明細書で述べられる方法のいずれかの組合せに従って行うことができる。
【0185】
所与のHARQプロセスに対して、WTRUは、送信ごとに、かつ/またはHARQプロセスの存続期間にわたって(例えば、プロセスが成功するまで、かつ/またはHARQ ACKが生成されるまで)HARQバッファ破損回避を実施できるかどうかを決定することができる。WTRUは、1つまたは複数の時点においてHARQバッファ破損の決定を行うことができる。WTRUは、新しいHARQプロセスが開始したと決定したとき、最初のHARQ送信が受信されたと決定したとき、NDIが切り換えられたと決定したとき、かつ/または送信が新しいトランスポートブロック(または同じHARQプロセスによりサポートされる場合、その複数のもの)に対するものであると決定したとき、決定を行うことができる。WTRUは、例えば、NDIがHARQプロセスに切り換えられた場合、HARQプロセスが、新しいトランスポートブロックの送信に対して(または同じHARQプロセス内でサポートされる場合、複数のトランスポートブロックに対して)アクティブになりつつあると決定することができる。
【0186】
所与のHARQプロセスに対するHARQバッファ破損回避の処理に対する決定は、それがHARQプロセスの最初の送信から決定されるとき、上記の暗黙的または明示的な表示(indication)の1つまたは複数のものと組み合わせて実施することができる。例えば、WTRUは、NDIがHARQプロセスに向けて切り換えられたと決定することができ、また最初の送信は、プリエンプションイベントを処理するように構成されたPRBのセットに対応すると決定することができる。このような場合、WTRUは、HARQプロセスが、少なくともこのHARQプロセスに対する1つの再送信に対して、かつ/または最初の送信のトランスポートブロックに関連付けられたすべての再送信に対して、HARQバッファ破損回避をサポートするようにインスタンス化され、かつ/または調整されるべきであると決定することができる。決定は、本明細書で述べる方法のいずれかに従って、または本明細書で述べられる方法のいずれかの組合せに従って行うことができる。
【0187】
ネットワークの観点からすると、上記の方法は、複数のWTRU間における異なるタイプのHARQプロセスに対する送信の統計的な多重化を可能にすることができる。知られており、かつ/または現在アクティブなHARQバッファ破損を有すると推定されるHARQプロセスに関連付けられた物理リソースを用いて、プリエンプションを実施するための十分な機会を生成することができる。スケジューラは、それにより、HARQのバッファリングおよびHARQ復号に対するメモリ空間のオーバープロビジョニングに関するWTRUの何らかの実装を有しない場合であっても、WTRUがそのHARQ機能を確実に超えないようにすることができる。例えば、非常に高いHARQ占有性で動作するWTRUは、このようなスケジューリング活動の期間中は、HARQバッファ破損回避が示されない、要求されない、または期待されないようにスケジュールされ得る。1つの、いくつかの、またはわずかのHARQプロセスに対するHARQバッファ破損回避をサポートする負担は、低い占有性を有する他のWTRUにわたり分散させることができる。あるいは、適用可能な場合、WTRUの機能に基づいて、また完全な占有性とHARQバッファ回避とを同時に可能にする特有のプロビジョンを有することのできるWTRUを考慮して、これを実施することができる。
【0188】
符号ブロックベースの送信が使用されるとき、データの破損、およびHARQ再送信を回避することができるが、ロードされたセルにおけるスケジューラは、プリエンプション送信を実施することができる。WTRUの観点からすると、1つの利益は、WTRUは、そのHARQ処理およびメモリ機能を過剰なサイズにする必要なく、HARQバッファ破損回避をサポートできることである。
【0189】
特徴および要素が、特定の組合せで上記において述べられているが、当業者であれば、各特徴または要素は、単独で、または他の特徴および要素との任意の組合せで使用できることが理解されよう。さらに、本明細書で述べる方法は、コンピュータまたはプロセッサにより実行するためにコンピュータ可読媒体に組み込まれたコンピュータプログラム、ソフトウェア、またはファームウェアで実施することができる。コンピュータ可読媒体の例は、電子信号(有線または無線接続を介して送信される)、およびコンピュータ可読記憶媒体を含む。コンピュータ可読記憶媒体の例は、これだけに限らないが、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリデバイス、内部のハードディスクおよび取外し可能なディスク、光磁気媒体などの磁気媒体、ならびにCD−ROMディスク、およびデジタル多用途ディスク(DVD)などの光媒体を含む。ソフトウェアに関連付けられるプロセッサは、WTRU、UE、端末、基地局、RNC、または任意のホストコンピュータで使用される無線周波数送受信機を実施するために使用され得る。