(58)【調査した分野】(Int.Cl.,DB名)
第3の層(30)によって画定され、そして第3のマーク(32)によって識別される平面内に第2の極性形成の軸線(31)を有する圧電材料の第3の層(30)を提供するステップ、
前記第1の層(10)の前記変形の優先的な軸線(4、5)を前記第3の層(30)の前記第2の極性形成の軸線(31)に整列させるステップ、
前記第1の層(10)を前記第3の層(30)に組み込むステップであって、ここで前記第1の層(10)が前記第2の層(20)と前記第3の層(30)との間に配置されているステップ、
を含むことを特徴とする請求項13〜15のいずれか一項に記載の層のスタック(100、01)を製造する方法。
【背景技術】
【0002】
磁気歪みは、一般に、機械的形態と磁気的形態との間の可逆的なエネルギー交換に対応する。最もよく知られている磁歪効果は、ジュール効果である。それは、磁場の影響下での強磁性ロッドの、正の磁歪係数の場合の膨張、または負の磁歪係数の場合の収縮に対応する。磁場がなければ、棒は理論的に元の形に戻る。磁場の方向に長手方向に伸長する場合には、棒の体積を実質的に一定に維持するように、収縮が横方向に現れる。
【0003】
磁力線が磁歪材料のブロックを磁気的に飽和させるとき、材料が等方性であるか異方性であるかにかかわらず、これらの磁力線に平行な軸線に沿っての変形が最大となる。異方性磁歪材料のブロックが磁気的に飽和されていないときには、それは、材料の結晶方位に依存して、ブロックの固有の特性である変形の優先的な軸線を有している。変形の優先的な軸線は、この軸線に平行な磁場の存在下で、変形の振幅が最大になる軸線を示している。「変形の優先的な軸線」および「磁化の優先的な軸線」という用語は同じ軸線を示しており、したがって、本明細書全体にわたって交換可能に使用される。
【0004】
ピエゾ電気(圧電)は、機械的応力の影響下での電荷の発生である。圧電材料のうち、PZT(鉛、ジルコニウム、およびチタン合金)が知られている。2つの電極を備えたPZTは、電圧が電極に印加される間に、そのキュリー温度よりもわずかに低い温度で熱処理することによって、予め二極化され得る。この場合、材料の極性形成の軸線は一方の電極から他方の電極の方向に確立される。この極性形成は、特に、圧電材料に加えられる応力に応答して現れる過剰な電荷の電極を決定する。平行な上面及び下面を備えているPZT材料の層を考慮すると、極性形成の軸線は、各面上に電極が存在するせいで、両面に直交する方向に配向され得る。あるいは、極性形成の軸線は、層の2つの面のうちの少なくとも一方の上に櫛形電極を使用して、面に平行な方向に向けられてもよい。後者の場合、極性形成の軸線は、面の平面に平行であり、櫛形電極を形成している導電性材料のフィンガに対して直交している。応力/変形を、電極端子での電位差に変換するためには、歪みが極性形成の軸線に直交している(d
31として知られているモード)か、または歪みが極性形成の軸線に平行である(d
33として知られているモード)かによって、2つの特定のモードのうちの1つが採用されてもよい。
【0005】
磁場の源、およびその磁力線が基準面に平行であり、磁場における変化を2つの電気端子間の電位差に変換することができる磁電変換器を備える発電機は、現技術水準(非特許文献1(T.Lafontらによる論文、「エネルギー収穫のための磁歪 − 圧電複合構造」、Journal of Micromechanics and Microengineering、no.22、2012))から知られている。変換器は、一方では、機械的変形をその電極に接続されている2つの電気端子間の電位差に変換することができる圧電層を備える電気機械変換器からなる。変換器はまた、基準面に従って固定され、電気機械変換器に対する自由度がなく、磁場における変化を機械的変形に変換することができ、電気機械変換器に適用される磁歪層から構成されている。
【0006】
変換器の上方で回転運動をする永久磁石(基準面における磁場の向きの変化を許容する)の場合、この文献は、等方性磁歪材料、特に、FeSiB(鉄、シリコンおよびホウ素に基づく合金)の使用を推奨している。この場合、磁歪層の変形の優先的な軸線は、基準面内の磁場の方向に追従し、磁石の回転に対する反作用トルクをもたらさない。
【0007】
しかしながら、この材料は磁歪係数が非常に低く、変換器の変換効率が低くなる。変換器の変換効率は、回収されるべきエネルギーにおける所与の変動(磁場の変化)に関連して生成される電気エネルギーの量(すなわち、2つの電気端子間の電位差)として定義される。
【0008】
より高い磁歪係数を有する既知の材料は、異方性(例えば、組成がTbDyFeのテルフェノール、鉄と希土類の合金)である。このタイプの材料を使用する発電機は、技術水準、特に特許文献1(WO2015/059421)および特許文献2(WO2015/059422)から知られている。
【発明の概要】
【発明が解決しようとする課題】
【0011】
これらの磁歪材料は、飽和されるために十分に強い磁場を必要とし、そして、等方的な変形領域で機能する。磁場源のサイズが大きいため、もはや発電機の小型化を維持することができなくなる。
【0012】
本発明の目的は、従来技術の欠点の全てまたはいくつかを是正するための装置および方法を提供することである。本発明の目的の1つは、具体的には、コンパクトな発電機内に効率的な磁電変換装置を提供することである。言い換えると、本発明は、効率を一定に保つ発電機の全体的な寸法を縮小することを目的とし、または一定の全体寸法で発電機の効率を高めることを目的としている。
【課題を解決するための手段】
【0013】
本発明は、第1に、2つの電気端子を備え、磁場の変化を2つの電気端子の間の電位差に変換することができ、且つ基準面を規定する異方性磁歪材料の第1の層と圧電材料の第2の層とのスタックを含む変換器であって、第1の層は、基準面内に少なくとも1つの変形の優先的な軸線を有し、且つ第2の層は、第2の層によって画定される平面内に、前記基準面に平行な極性形成の軸線を有し、そして、第1の層の変形の優先的な軸線が、第2の層の極性形成の軸線に15°以内に整列されている変換器と、基準面内に前記磁場を発生させる源であって、それの強度が第1の層の材料を磁気的に飽和させるには不十分である磁場源を備える発電機に関している。
【0014】
本発明による発電機の磁場源および変換器は、基準面内の磁場の向きを変えるべく互いに対して回転することができる。
【0015】
本発明による発電機は、異方性磁歪材料を飽和させるのに必要な高い磁場強度を必要としないので、磁場源は小さくてもよい。したがって、発電機はコンパクトさの必要性を満たすことができる。磁歪材料の第1の層は、高い磁歪係数を有する異方性材料から選択され、したがって変換感度を促進させる。後者は、第1の層の変形の優先的な軸線と第2の層の極性形成の軸線との制御された整列によって最大化される。(第1の層の変形の優先的な軸線に平行な磁場の存在下における)最大の変形が、(変形の優先的な軸線に対して15°以内に整列されている)その極性形成の軸線に沿って、すなわち、電荷を生成するための高効率な構成において、第2の圧電層に伝達される。したがって、本発明による発電機は、小型化および変換効率の点で利点を提供する。
【0016】
別々のまたは組み合わせての本発明の有利な特徴によれば、磁場源は、磁場が支配的なハウジングを画定し、変換器はハウジング内に配置される。磁場源はハルバッハシリンダ(Halbach cylinder)である。
【0017】
磁場源のこの構成は、小さな発電機サイズを可能にする。
【0018】
本発明はまた、層によって画定される平面内に少なくとも1つの変形の優先的な軸線を備える異方性磁歪材料の層であって、当該層は、変形の優先的な軸線を識別する、少なくとも1つのマークを有するか、少なくとも1つのマーキング手段が設けられている異方性磁歪材料の層に関する。
【0019】
効率的な発電機を形成するのに必要とされる、第1の層の変形の優先的な軸線と第2の層の極性形成の軸線との間の15°以内への整列は、本発明による磁歪材料の層によって可能にされ、実際に、この層は、制御された整列を実施するのに必要なマーキング手段を含んでいる。
【0020】
別々のまたは組み合わせての本発明の有利な特徴によれば、マークは、層の一方の縁部においての平坦部または刻み目、または層の一方の面の彫刻である。異方性磁歪材料の層は、2つの変形の優先的な軸線、主軸線と副軸線とを備え、マークまたはマーキング手段が主軸線を識別させる。
【0021】
本発明はまた、層のスタックであって、上述したような磁歪材料の第1の層、第1の層によって画定される平面に平行に、第2の層によって画定される平面内に第1の極性形成の軸線を有する圧電材料の第2の層であって、当該第1の極性形成の軸線は第2のマークによって識別される第2の層、を備え、第1の極性形成の軸線および変形の優先的な軸線が、15°以内に整列されている
層のスタックに関する。
【0022】
別々のまたは組み合わせての本発明の有利な特徴によれば、層のスタックは、第1の層と第2の層との間に結合層を備えている。第2の層は、その面の少なくとも1つまたはその側縁部に、金属の電極を備えている。第1の極性形成の軸線および変形の優先的な軸線は、5°以内に整列されている。層のスタックは、第3の層によって画定される平面内に第2の極性形成の軸線を有する圧電材料の第3の層を備え、第1の層は、第2の層と第3の層との間に配置され、そして、第2の極性形成の軸線と変形の優先的な軸線が、15°以内に整列されている。磁歪材料の第1の層は、層によって画定される平面内に、変形の主軸線および変形の副軸線を備え、圧電材料の第2の層の第1の極性形成の軸線は、変形の主軸線(4)に15°以内に整列され、圧電材料の第3の層の第2の極性形成の軸線は、変形の副軸線に15°以内に整列されている。圧電材料は、PZT、PMN−PT、PVDF、BaTiO3またはAlNからなっている。磁歪材料は、テルフェノール−D、ガルフェノール、テルビウム鉄または鉄−コバルトで構成されている。
【0023】
本発明はまた、磁場の変化を2つの電気端子間の電位差に変換することができる変換器であって、上述のような層のスタックを含むことができる変換器に関する。
【0024】
別々にまたは組み合わせて採用される本発明の有利な特徴によれば、変換器は、2つの電気端子、前記スタックの圧電材料の少なくとも1つの層を両電気端子に接続するために、層のスタックに組み込まれたプリント回路層、スタックとプリント回路層との間に配置され、その材料が吸音特性を有するバッファ層を備えている。
【0025】
本発明はまた、異方性磁歪材料からなる層(10)を処理する方法であって、層によって画定される基準面内に変形の優先的な軸線(4、5)を識別するステップ、変形の優先的な軸線を識別するために、層にマーク12を形成するステップ、を備える点で顕著な、異方性磁歪材料からなる層を処理する方法に関する。
【0026】
本発明の有利な特徴によれば、変形の優先的な軸線を識別するステップは、基準面内に配向された磁場に層を位置決めすること、基準面内で層を回転させるのに必要なトルクを、複数の角度位置で、計測すること、変形の優先的な軸線を識別するために、トルクの極値に対応する少なくとも1つの角度位置を測定すること、を含んでいる。
【0027】
本発明はまた、層のスタックを製造する方法であって、異方性磁歪材料の第1の層を提供するステップ、第1の層によって画定される基準面内に少なくとも1つの変形の優先的な軸線を識別するステップ、第2の層によって画定され、そして第2のマークによって識別される平面内に第1の極性形成の軸線を有する圧電材料の第2の層を提供するステップ、第1の層の変形の優先的な軸線を第2の層の第1の極性形成の軸線に整列させるステップ、層のスタックを形成するべく、第1の層を第2の層に組み込むステップ、を含んでいる層のスタックを製造する方法に関する。
【0028】
別々のまたは組み合わせての本発明の有利な特徴によれば、層のスタックを製造する方法は、第3の層によって画定され、そして第3のマークによって識別される平面内に第2の極性形成の軸線を有する圧電材料の第3の層を提供するステップ、第1の層の変形の優先的な軸線を第3の層の第2の極性形成の軸線に整列させるステップ、第1の層を第3の層に組み込むステップであって、ここで第1の層が第2の層と第3の層との間に配置されているステップ、を含んでいる。圧電材料の第2の層および第3の層は、それぞれ、それらの面の少なくとも1つに金属の電極を含んでいる。接合するステップは、接合されるべき層の少なくとも1つの面に接着剤を付着させ、そして前記面を接触状態に置くことを備えている。
【0029】
本発明は、最後に、第1の層が基準面を画定する、層のスタックを製造すること、圧電材料の少なくとも1つの層を2つの電気端子に接続し、そして磁電変換器を形成するために、層のスタックをプリント回路層に組み込むこと、磁場源によって画定され磁場が支配的であり磁力線の一部が基準面に含まれているハウジング内に変換器を配置すること、を備える発電機を組立てる方法に関する。
【発明を実施するための形態】
【0031】
図1は、本発明による発電機400のブロック図を示している。これは、磁場源300と、磁場Bにおける変化を電気端子間の電位差に変換することができる磁電変換器200とを備えている。変換器200は、2つの電気端子202、203と、基準面(x、y)を画定する磁歪材料の第1の層10と、圧電材料の第2の層20とからなるスタック100とを備えている。磁場Bの線の一部は、基準面(x、y)に平行である。磁場源300および変換器200は、基準面内の磁場Bの向きを変えるように、互いに対して回転することができる。
【0032】
本発明によれば、発電機400の全体的な寸法(例えば、1立方センチメートル程度)を制限するために、磁場源300のサイズが縮小され、それによって磁場Bが生成され、それの強度は、比較的弱い、すなわち、層10の材料を磁気的に飽和させるには不十分である。磁場の強度は、0.3テスラ程度、または0.1テスラと0.6テスラとの間であってもよい。有利には、磁歪材料は、磁歪係数が高く、例えば、100ppmを超えるように選択される。これには、テルフェノール(Terfenol)、ガルフェノール(Galfenol)、テルビウム鉄、または鉄−コバルトの結晶形が含まれる。不飽和磁化領域では、これらの材料は異方性であり、したがって1つまたは複数の変形の優先的な軸線を提示する。
【0033】
本発明の有利な態様によれば、コンパクトさの要件を満たすために、磁場源300には、磁場Bが広がり、そして変換器200が配置されているハウジングが設けられる。一例として、磁場源300は、例えば、永久磁石、例えば、ハルバッハシリンダ(Halbach cylinder)であってもよい。
【0034】
発電機400の変換効率および/または全体の寸法を改善するためには、不飽和モードにおける磁歪材料の異方性特性を考慮することが有利である。本発明による発電機は、磁歪材料の第1の層10の変形の優先的な軸線が圧電材料の第2の層20の極性形成の軸線と整列している点で顕著である。このようにして、第2の層20の変形を誘発する、第1の層10のいかなる変形も、この第2の層20における電荷の最適な発生をもたらし、また、変換器200の端子202、203における最大の電位差の創造をもたらす。しかしながら、第1の層10の変形の優先的な軸線は、本出願人によって実施された予備実験によって示されるように、通常容易に入手可能な情報の要素ではない。
【0035】
序文
磁歪材料の層10を得るために、磁歪材料の棒1が、公知の方法、例えば垂直ゾーン溶融法(Free−Stand Zone MeltのFSZM)または「修正された Brigman」法を用いて、最初に形成される。
図2aに示されるように、棒1の長手方向の軸線3は、棒1の変形の優先的な軸線(これはテルフェノール棒の軸線<112>である)と整列している。従来、先行技術によれば、層は、この軸線に平行な平面内に形成されている。しかしながら、本発明の一態様によれば、磁歪材料の層10は、好ましくは、
図2bに示されるように、棒1の横断方向の切断から作られる。棒1の大部分は、このようにして、複数の層10、10’、10”・・・を形成するために使用される。各横断方向の切断は、要求される品質および寸法の層10を提供するべく、ラッピング、研磨、トリミング、エッジ処理によって、処理されてもよい。従って、磁歪材料の棒1は、複数の層10、10’、10”を提供することができ、その面11a、11bは、基準面(x、y)に本質的に平行である。棒1に由来する層10、10’、10”の各々の配向を識別するために、その形成に続いて、横断面を切断する前に、その長手方向軸線に沿って棒1に配向平坦部が形成されてもよい。
【0036】
この方法を用いて得られた層10、10’、10”を特徴づけ、これらの層の異方性の影響を説明するために、本出願人は、テルフェノール−D(Terfenol−D)の層10で発生された磁化レベルを、異なる角度位置(配向平坦部に対して0°〜360°)に対応する異なる方向において、各方向に平行な均一磁場を印加するときに計測した。磁化のレベルは、層10が振動運動を実行するコイルの端子に発生される電圧を計測することによって測定される。磁場の強さは、材料を磁気的に飽和させるには不十分である、2kOe(キロエルステッド)であった。
図3aは、テルフェノール−Dの層10について、他の方向と比較して磁化レベルが高い、2つの磁化の優先的な軸線4、5が存在することを示している。主軸線は軸線4であり、副軸線5の磁化レベルよりも高い最大磁化レベルを有する。主軸線4は、テルフェノール−Dの場合、結晶軸線<111>と整列している。副軸線5は、結晶軸線<110>と整列している。優先的な軸線4、5の方向の外側では、テルフェノール−Dの磁化レベルは、15%〜20%まで低下することも観察されている。
【0037】
同一のテルフェノールの棒1から得られた複数の層10、10’、10”に対して、この測定プロトコルを繰り返すことにより、本出願人は、層10、10’、10”の磁化の優先的な軸線の向きが、層ごとに異なる可能性があることを観察した。これは
図3bに示されており、そこでは、棒1に最初に形成された配向平坦部点の反対側においての各層10、10’、10”の優先的な軸線4、5の位置が、同一ではないことが分かる。したがって、棒1に平坦部または刻み目を創造するなどの、その成長後および横断面を切断する前の、通常のマーキング技術は、層10、10’、10”の磁化の優先的な軸線を識別することを可能にするものではない。
【0038】
磁歪材料の層の処理
この問題を解決し、層10の整列されたアセンブリを許容するために、本発明は、異方性の磁歪材料の層10の処理を提供している。この層10は、前の段落で説明されたように、磁歪材料の棒1の横断切断から導き出され得る。処理は、最初に、層10によって画定される、すなわち、層10の面11aおよび11bに平行な基準面における少なくとも1つの磁化の優先的な軸線4、5(
図4(a))を識別するステップを備えている。
【0039】
一例として、磁化の優先的な軸線を識別するこのステップは、以下を備えてもよい。
・基準面内において所定の方向に配向されている磁場b内に層10を位置決めすること。層10は、回転運動の自由度を有しているので、それは磁化の優先的な軸線4、5の一方を磁場Bの方向に自然に整列させることになり、それにより、この位置は、第1の安定位置(
図4(b)にP1で示されている)に対応する。
・基準面内で層10を回転させるのに必要とされるトルクを、複数の連続する角度位置において、計測すること。例えば、層10を、第1の安定位置P1(
図4(b))から第2の安定位置P2(
図4(c))に回転移動させるのに必要なトルクの計測が実行される。
・磁化の優先的な軸線を識別するために、トルクの極値に対応する少なくとも1つの角度位置を測定すること。安定位置は、磁化の優先的な軸線の識別を許容する。磁化の主軸線4に対応する安定位置P1から引き出すためには、磁化の副軸線5に対応する安定位置P2からよりも、より多くの努力が必要とされる。このトルクの差が、層10の平面内に数個存するときに優先的な軸線を区別することを可能にしている。
【0040】
第2の例によれば、磁化の優先的な軸線を識別するステップは、例えばX線計測によって、層10の結晶軸線を識別することを含むことができる。
【0041】
第3の例によれば、磁化の優先的な軸線は、
図3aに記載された手法を適用することによって、異なる角度位置における各層10についての磁化レベルを計測することによって得られる。
【0042】
層10の処理はまた、少なくとも1つの磁化の優先的な軸線4、5を識別するために、層10にマーク12を形成するステップを含むこともできる。有利には、磁化の主軸線4は、例えば(
図5に示されるような)平担部、線、(例えば、(e)の化学的またはレーザーエッチングによって実施される)彫刻または刻み目・・・のような、層の縁部のマーク12によって識別されるであろう。
【0043】
場合によっては、マーク12は、関心の磁化の優先的な軸線に直接に、またはこの軸線に関して所定の角度位置(例えば、90°、45°、30°・・・)に位置決めされてもよい。いずれにしても、且つ、このマーク12の形態または位置が何であれ、後者は、層10の磁化の優先的な軸線4、5の識別を許容する。
【0044】
この処理の完了時には、層10によって画定された平面内に少なくとも1つの磁化の優先的な軸線4、5を備え、且つ変形の優先的な軸線4、5を識別する少なくとも1つのマーク12を備えている異方性の磁歪材料の層10が得られる。
【0045】
あるいは、マーク12を形成するステップは、変換器を形成するスタックの作成を参照してより詳細に説明されるであろう磁気配向の実施によって、置き換えられてもよい。
【0046】
変換器を形成するスタック
図1に関して見られるように、変換器200は、磁歪材料の第1の層10と圧電材料の第2の層20とを備えるスタックからなる。本発明の一態様によれば、既に言及した変換効率の理由から、第1の層10の変形の優先的な軸線4、5は、第2の層20の極性形成の軸線と15°でより良好に整列されている。
【0047】
スタック100の製造方法は、変形の優先的な軸線4、5を識別する少なくとも1つのマーク12を備える層10(
図6(a))を提供することを含んでいる。それはまた、第2の層20によって画定される平面内に極性形成の軸線21を有する圧電材料の第2の層20(
図6(b))を提供するステップを備えている。第2の層20の少なくとも1つの面は、電極、好ましくは櫛形電極23、24を備えている。後者の場合、その極性形成の軸線21は、第2の層20の面の平面に平行であり、櫛形電極23、24を形成している導電性材料のフィンガに直交している。圧電材料の層20は、それ故に、d
31モードよりも有利に敏感であり、変換器の効率を向上させるのに寄与するd
33モードで動作するように好ましくは準備される。
【0048】
第1の選択肢によれば、電極23、24は、第2の層20の面に接触する導電材料によって形成されてもよく、特に、円形の第2の層20の場合には、各電極の複数のフィンガが、
図6(b)に示されるように、半円形のセグメントによって接続されてもよい。
【0049】
第2の選択肢によれば、各電極のフィンガは、第2の層20の面またはその側縁部で、導電性要素、例えばワイヤボンディング、によって対に接続されてもよく、この構成は、特に、フィンガの寸法を増加させること(例えば、第2の層20の縁部まで)、且つそれ故に、第2の層20の面のより大きな表面上で電荷収集の能動部分を発展させることを可能にする。
【0050】
第3の選択肢によれば、電極23、24は、第2の層20の厚みに配列された導電性材料で形成されてもよく、第2の層20の一方の面に存在する電極の各フィンガが、それの厚み内に延在し、導電性材料の貫通ブレードを形成する。この第3の選択肢に従って、第2の層20を製造するためには、多層圧電スタック技術が参照されてもよい。この構成は、第2の層20の全厚を利用するので、電荷収集における効率を最大にする。この第3の選択肢は、上述の第1および第2の選択肢に説明された各電極のフィンガの接続モードのいずれかを、もちろんこれに制限されずに、組み込んでもよい。
【0051】
第2の層20の電極23、24の幾何形状は、極性形成の軸線21を識別することを可能にし、(第2のマーク22と称される)マークを構成することができる。選択肢として、この軸線21を識別するために、第2のマーク22を表す、平坦部、線または刻み目が第2の層20に形成されてもよい。第2のマーク22はまた、電極の少なくとも1つによって担持され、容易に識別され得る局部的な形状を提供してもよい。
【0052】
層のスタック100の製造方法は、第1の層10の変形の優先的な軸線4、5(好ましくは、主軸線4)を、第2の層20の極性形成の軸線21に整列させるステップを含み、この極性形成の軸線21は、説明の残りの部分をより明確にするために、「第1の極性形成の軸線」と称される。この整列ステップは、特に、第1の層10および第2の層20にそれぞれ存在するマーク12および22によって実行される。マーク12および22は、変形の優先的な軸線(特に、変形の主軸線4)が、第1の極性形成の軸線21に15°で、より良好に整列されるように配列されよう。
【0053】
変形の優先的な軸線4、5および第1の極性形成の軸線21は、実質的に平行な平面(それぞれ、第1の層10によって画定される基準面および第2の層20によって画定される平面)に包含されているので、これらの2つの軸線の間での整列は、それらが互いの間に形成する角度を、基準面による平面視で、制限することを含んでいる。換言すれば、基準面でのこれらの軸線の投影によって形成される角度が、本発明によれば、整列ステップのせいで、15°未満である。説明の残りの部分では、軸線間の整列が、「α以内」または「αより良好」とは、基準面でのこれらの軸線の投影間での「α」未満の角度と等価であると解釈されるべきである。
【0054】
有利には、変形の優先的な軸線および極性形成の軸線は、10°以内または5°以内にさえ整列されるであろう。
【0055】
1つの代替案によれば、変形の優先的な軸線と極性形成の軸線21を整列させるステップは、極性形成の軸線21が、後者に関して識別され得、電極23、24の交互に配置されたフィンガが、この代替における第2のマーク22を形成するので、層10のマーク12と電極23、24の交互に配置されたフィンガとの間の光学的整列によって実行され得る。
【0056】
別の代替案によれば、変形の優先的な軸線4、5を整列させるステップは、
図4(a)ないし
図4(c)に関連して説明された操作手順に従って、磁化方向を実現することに基づくことができ、磁歪材料の層10は、その変形の優先的な軸線の1つを、層の平面内に印加される磁場に自発的に整列させるように、磁場に曝されそして自由に回転するべく放置されてもよい。この位置は、層20の極性形成の軸線を整列させるために、次の組立ステップまで、例えば、層10を把持する装置によって継続して維持されてもよい。この代替例では、変形の優先的な軸線を識別する第1のマーク12は、層10に物理的には存在せず、その代わりに、層20との組立の前に層10を把持する装置を備えるマーキング手段によって置き換えられる。
【0057】
層のスタック100を製造する方法は、第1の層10を第2の層20と組み立てるステップを備える。組立ステップは、一方では、接着剤のフィルム40またはコイルを、第1の層10または第2の層20のそれぞれ接合される2つの面の少なくとも一方に、広げることを含んでいる。この広げるステップは、そのうちの少なくとも一方が接着剤を有している組み立てられる面に触れないように整列ステップが実行される状態で、整列ステップの前に実行されてもよい。
【0058】
図7の(a)ないし(f)は、そのような実施形態を示している。接着剤のフィルム40が、第2の層20上に広げられている(
図7(a))。第1の層10は、変形の主軸線4を第1の極性形成の軸線21に15°よりも良好に整列させるべく、第2の層20に対向して引き続き配列される(
図7(b))。さらに、組み立てステップは、組み立てられるべき層10および20の面を互いに接触させて配置することを含んでいる(
図7(c))。2つの層の間の界面に、均一な接着剤の層40’を得るために、変形の主軸線4と第1の極性形成の軸線21との間の整列を15°以内に維持しながら、2つの層を互いに接近させるように、均一な圧力が印加される。
【0059】
従って、層のスタック100は、圧電材料の第2の層20に接合された磁歪材料の第1の層10からなり、第2の層20は、その面の少なくとも1つに電極23、24を備えている。層のスタック100は、第1の層10の変形の優先的な軸線4、5(有利には、変形の主軸線4)と第2の層20の第1の極性形成の軸線21との間の不整列が15°未満である点で顕著である。好都合なことに、この不整列は10°未満であっても、実際には5°であってもよい。
【0060】
1つの代替案によれば、層のスタック101を製造する方法は、第3の層30によって画定される面に極性形成の軸線31を有し、場合によっては、第3のマーク32によって識別される、圧電材料の第3の層30を提供するステップを含んでいる(
図6(c))。有利には、第3の層30の面の少なくとも1つが櫛形電極33、34を有し、極性形成の軸線31は前記面の平面に平行であり、特に、櫛形電極33、34を形成する導電性材料のフィンガに対して直交している。
【0061】
製造方法はまた、第1の層10の変形の優先的な軸線4、5(好ましくは、変形の主軸線4であるが、代替では、副軸線5)を、第3の層30の極性形成の軸線31に整列させるステップを含む。この極性形成の軸線は、第2の層20の第1の極性形成の軸線に対してより明瞭にするために、「第2の極性形成の軸線」と呼ばれる。この整列ステップは、例えば、第1の層10および第3の層30にそれぞれ存する、マーク12、32を用いて、遂行される。マーク12および32は、変形の優先的な軸線(特に、変形の主軸線4、あるいは代替的に副軸線5)が、第2の極性形成の軸線31に15°より良好に整列されるように、整列される。上述した整列ステップの他の形態の実施形態も勿論使用可能である。
【0062】
製造方法は、最終的に、第1の層10が第2の層20と第3の層30との間に配置されるように、第3の層30を備える層のスタック100を組み立てるステップを備える。組立は、それ故に、接着剤のフィルムまたはコイル41を広げた後、および優先的な変形軸4、5と第2の極性形成の軸線31を整列させるべくマーク12および32を位置決めした後に、第1の層10の自由表面(第2の層20に接合される面と反対側の面)と第3の層30の面の1つとの間で遂行される。例として、接着剤のフィルム41が、
図7(d)に示されるように、第3の層30の面に塗布される。この製造方法は、変形の優先的な軸線4、5が第2の極性形成の軸線31と15°より良好に整列されるように、第1の層10と第3の層30を組み立てることを可能にする。
【0063】
好都合なことに、これらの2つの軸線の間のこの不整列は、10°未満、または実際は5°である。
【0064】
従って、層のスタック101は、圧電材料の第2の層20と第3の層30との間に配置された磁歪材料の第1の層10からなり、各々の層は、それらの少なくとも1つの面に電極23、24、33、34が設置されている(
図7(f))。層のスタック101は、第1の層10の変形の優先的な軸線4、5(好ましくは、変形の主軸線4)が、第2の層20および第3の層30のそれぞれの第1の極性形成の軸線21および第2の極性形成の軸線31に、15°より良好に整列されている点で顕著である。
【0065】
本発明による層のスタック101の有利な形態によれば、第1の層10の変形の優先的な軸線(有利には変形の主軸線4)は、第2の層20および第3の層30の、それぞれ、第1の極性形成の軸線21および第2の極性形成の軸線22に2°未満に整列されてさえいる。
【0066】
組立ステップ中に使用される接着剤は、層のスタック100、101の特定の特性を有利に働かせるために、異なるタイプの材料の中から選択されてもよい。
いくつかの接着剤材料の粘弾性挙動は、圧電材料の層20、30と磁歪材料の層10との間の熱膨張の差に適応するために有利であろう。より硬質でより硬い接着剤材料は、第1の層10から第2の層20および第3の層30への変形の有効な伝達を確実にするのに好ましい。層間の最小の滑りを許容する接着剤界面が、代替的に、組立てられる層を共焼結するか、またはさらに、接着剤材料の添加なく直接に接合することによって、作られてもよい。
【0067】
圧電材料は、これに限定されることなく、PZT、PMN−PT、PVDF、BaTiO
3またはAlNの中から選択されてもよい。
【0068】
変換器
本発明による磁電変換器200は、磁場の変化を2つの電気端子202、203の間の電位差に変換することができる。それは、上述したように、層のスタック100、101のいずれかを備えている。
【0069】
図8(a)〜
図8(c)に示されるように、一方の電気端子202は、櫛形電極23、33の一方に電気的に接続され、他方の電気端子203は、櫛形電極24、34の他方に、例えばプリント回路層またはキャリア層50(「プリント回路基板」を意味するPCBとしても知られている)を介して、接続されている。プリント回路層50は、例えば、層のスタック100、101の第2の層20または第3の層30の自由表面の接着剤の層42によって、組み立てられ得る(
図8の(a))。
図8の(a)に示されるように、裏打ち層50は、その裏面に、前面が層のスタック100、101に接合される状態で電気端子202、203を備えていてもよい。従って、これらの電気端子202、203は、発電機400を製造するために、他の要素に引き続き接続され得る。
【0070】
櫛形電極23、24、33、34の端子とプリント回路層50の接点との間の電気的接続(電位差を受ける2つの電気端子に接続され得ること)は、変換器200の側縁部、特に、層のスタック100、101の側縁部および裏打ち層50の側縁部または縁部に堆積された導電性接着剤のストリップ43によって確立されてもよい。側縁部は、主面が図における平面(x、y)に平行である状態で、層の主面を接続させる横向きの表面を意味している。層の縁部は、主面の周辺部に対応する。磁歪材料の第1の層10の側縁部は、特に、導電性接着ストリップ43が第1の層10と接触して短絡するのを防止するために、電気絶縁材料のフィルム44で、予め覆われている(
図8(c))。
【0071】
代わりに、櫛形電極23、24、33、34と裏打ち層50の接点との間の電気的接続は、ワイヤボンディングによって行うことができる。これらのワイヤボンディングは、電極23、24を備える第2の(および/または第3の)層20の面から、またはその側縁部から、裏打ち層50の面の1つまたはその側縁部に延在することができる。
【0072】
あるいは、櫛形電極23、24、33、34と裏打ち層50の接点との間の電気的接続は、層のスタック(100、101)を通過する導電性ビアホールによって確立されてもよい。
【0073】
プリント回路層50は、有利には、層のスタック100、101の形状と同様の形状、例えば円形形状を有する。1つの代替案によれば、それは、電極(23、24、33、34)に発生された電荷を収集し、前記電荷を蓄積し、および誘導された電気信号を処理するためのスイッチング機能を備える第2のプリント回路に結合されてもよい。
【0074】
別の有利な代替例によれば、プリント回路層50は、それ自体が、電極(23、24、33、34)に生成された電荷を収集する少なくとも1つのスイッチ機能を含むことができる。それはまた、電極23、24、33、34に生成された電荷を格納する少なくとも1つの記憶機能を含むことができる。それはまた、電極23、24、33、34に生成された電荷によって誘導された電気信号を処理する少なくとも1つの処理機能を含むことができる。
【0075】
さらに別の有利な代替案によれば、吸音特性を有する少なくとも1つの材料からなるバッファ層が、層のスタック100、101と裏打ち層50との間に配置される。このバッファ層は、接着剤の層を介して、一方ではスタック100、101と、また他方では裏打ち層50と一緒に接合されている。
【0076】
変換器200において、バッファ層の役割は、変換器200の端子での充電回復時に発生する可能性がある圧電材料の第2の層20および/または第3の層30の形状および/または状態の突然の変化によって生成され得る音響波を吸収することである(電荷の収集は、発電機の説明の際に、以下にさらに詳細に説明される)。これらの音響波は、各充電回復時に可聴クリックを生じさせ、これは一部のアプリケーションでは迷惑になることがある。バッファ層は、この音を吸収するか、または少なくとも大幅に減衰させ、かくて、音の迷惑さを排除または減衰させる。
【0077】
これに限定されないが、バッファ層は、有利には、特に開放セルを有するハニカム材料からなる。一例として、ポリウレタン発泡体のような材料が使用され得る。
【0078】
発電機
発電機400を形成するためには、磁電変換器200が、磁場源300によって画定されるハウジング内に配置されてもよい。ハウジング内は、磁力線の一部が、変換器200の磁歪材料からなる第1の層10によって画定される基準面に含まれる状態で、磁場Bが支配的である。かくて、特にコンパクトな発電機400が形成される。磁場源300および変換器200は、基準面内の磁場Bの向きを変えるように、互いに対して回転することができる。
【0079】
したがって、変換器200は、好ましくは均一な磁場Bによって貫通され、そして基準面(x、y)において、初期の磁場方向B
0に配向されている。この磁場の変化は、変換器200の2つの電気端子202、203の間の電位差に変換されることが意図されている。
【0080】
有利には、変換器は、初期の磁場方向B
0が磁歪材料の層10の変形の優先的な軸線(有利には主軸線4)と平行になるように、磁場源300のハウジング内に位置決めされている。
【0081】
図9(a)に示されるように、磁場Bの作用の下で、磁歪材料の第1の層10は磁化され、変形の主軸線4に沿って最大の変形を経験する(被る)。この変形は、基準面(x、y)における変形の主軸線4に沿う層のスタック100、101の最大の伸長、および基準面(x、y)における変形の副軸線5に沿う最大の収縮(すなわち、負の伸長、これは引き続き「最小伸長」と称される)に対応する。第1の層10の変形は、主軸線4に沿う変換器200の楕円形の歪みによって、
図9(a)に概略的に示されている。この変形は、第2の層20(および、存在する場合には第3の層30)にも適用され、変換器200の初期状態に対応する。
【0082】
磁場を変化させるために、その配向は、磁場源および/または変換器を回転させることによって、例えば、(
図9(b)に示されるように)初期の方向B
0から方向B
45°に時計回りに回転される。その結果、変換器200の層のスタック100、101は、その初期状態から第2の状態に変換される。この第2の状態では、第1の層は、変形の主軸線4に沿う磁場Bの成分の減少のせいで、最大伸長からより小さい平均伸長まで、変形の主軸線4に沿って収縮する。第1の層はさらに、最小伸長(最大収縮)からより大きな平均伸長まで、変形の副軸線5に沿って伸びる。
【0083】
磁場の変化(その方向の回転による)は、このように、第1の層10の変形の変化を誘発させる。後者は、これらの変化を、層のスタック100、101内で第1の層10に結合されている第2の層20(潜在的には第3の層30)に伝達する。
【0084】
磁場の方向を、方向B
45°から方向B
90°に(
図9(c)に示されるように)時計回りに回転し続けると、層のスタック100、101は、第2の状態から第3の状態に変換される。第3の状態では、第1の層は、主軸線4に沿って、平均伸長から最小伸長(最大収縮)まで依然として収縮し、第1の層は、平均伸長から副軸線5に沿う最大伸長まで、磁場のこの副軸線5との整列を考慮して、副軸線5に沿って伸びる。
【0085】
したがって、初期位置と第3の位置との間の磁場Bの変化は、第2の層20(および潜在的に第3の層30)に伝達される、第1の層10の変形における変化を引き起こす。圧電材料の第2の層20および第3の層30は、d
33モードで機能する、すなわち、極性形成の軸線が層の面内にあり、したがって、材料内での電荷の生成は、この同じ面内での変形に対して敏感である。
【0086】
本発明の有利な構成による変換器200の場合、圧電材料の第2の層20および第3の層30の第1の極性形成の軸線21および第2の極性形成の軸線31は、第1の層10における変形の主軸線4と微細に(15°より良好に)整列される。このようにして、第2の層20および第3の層30は、それらの極性形成の軸線21、31に沿って、初期状態と第3の状態との間で、最大伸びから最小伸び(最大収縮)までを経験する。最大量の電荷(例えば、負の電荷)は、それ故に、櫛形電極(例えば、23、33)のうちの1つに蓄積され、そして、例えば容量性素子の、発電機の電気端子202、203の1つに収集される。
【0087】
変換器200を初期状態から第3の状態に変換させる、磁場の変化の第1のシーケンス(B
0→B
90°)は、電気端子202、203間の電位差を生成させることができ、この電位差は、本発明による変換器200の構成のせいで最大であり、発電機400のコンパクトな構成において変換器200の良好な効率を保証している。
【0088】
第3の状態における電荷の収集に続いて、電気端子202、203間の電位差はゼロであり、変換器200の構造は、新しい初期状態と考えられる第4の状態にある。(時計回り方向でのB
90°からB
180°までの)磁場の変化は、層100、101の状態を第4の初期状態から第5の状態に変化させ、そこで、第1の層は、変形の主軸線4との磁場の整列が与えられている場合、最小の伸長から最大の伸長まで主軸線4に沿って伸長し、第1の層は、副軸線5に沿って、最大伸長から最小伸長(最大収縮)に収縮する。
【0089】
第2の層20(及び存在する場合には、第3の層30)は、第4の初期状態と第5の状態との間で、極性形成の軸線21、31に沿って、最小伸長状態から最大伸長状態まで、最大変形を経験する。最大量の電荷(例えば、正の電荷)は、それ故に、櫛形電極24、34の他方に蓄積され、発電機の電気端子202、203の一方に集められる。
【0090】
このように、本発明は、小型で、異方性の磁歪材料を飽和させない弱い磁場を含む構成で得られる効率的な磁電変換器200を含む、発電機400を提案している。
【0091】
本発明による発電機400はまた、改善された堅牢性および信頼性の利点を有している。実際には、摩耗および信頼性試験の間に反復変形サイクルを受けた変換器200は、磁歪材料の第1の層が磁気飽和モードで動作する変換器と比較して、いくつかの場合において、改善された機械的抵抗を示している。磁気飽和構成では、磁歪/圧電の層のスタックが、所定数の変形サイクル、例えば、10
6回後に、機械的破壊の限界に達することがある。比較のために、本発明による変換器200の変形サイクルに関する寿命は、10倍から1000倍まで増加させることができる。さらに、磁場の弱さは、変換器に印加される寄生トルクの振幅を制限し、磁歪材料の層の優先的な変形軸線を磁場との整列の中に置く傾向にある。
【0092】
例示的な実施形態
本発明の例示的な実施形態によれば、結晶テルフェノール−Dの層10は、長手方向軸線<112>の棒1から製造される。層10は、例えば、厚さ1mm、直径2cmである。
【0093】
上で詳細に説明されたように、磁化の優先的な軸線4、5に対応する結晶学的方向<111>および<110>は、これらの軸線の向きが同じ棒1内で変化するので、棒1上には直接にマーキングされていない。本発明による磁歪材料の層10の処理は、後で実行され、それは、磁化の優先的な軸線4、5の各層10での識別、および実施形態の形態による識別を可能にするためのマーク12の形成を許容する。このプロセスに続いて、層10は、側縁部に、例えば一方の面から他方の面に数百ミクロンの深さで延在する刻み目12(以下、第1の刻み目として知られる)を備える。刻み目12は、各層10の磁化の主軸線4の方向に配置されている。代わりに、刻み目12は、層10の表面の平坦部または実際には線または彫刻に置き換えられてもよい。
【0094】
続いて、PZTの第2の層20および第3の層30を組み立てることによって、層のスタック101が形成される。
【0095】
PZTの各層は、例えば、100ミクロンの厚さと2cmの直径を有する。この例示的な実施形態では、第2の層20および第3の層30の各々は、それぞれの面に櫛形電極23、24、33、34を有している。
【0096】
このような構成により、変形に応じて電荷を発生させる効率が向上する。これらの電極は櫛の形をしており、櫛のフィンガは、材料の極性形成の軸線に直交している。第2の層20および第3の層30の極性形成の軸線21、31は、それぞれ、PZTの第2の層20および第3の層30の第2の刻み目22および第3の刻み目32によってマークされ得る。非導電性の接着剤のフィルム40が、組み立てられるべき第2の層20の面に塗布され、第1の層10が、第2の層20の前記面の正面の頂部に配置される。第1の刻み目12と第2の刻み目22との間の整列は、マイクロメータの移動を許容する装置を用いて行われる。続いて、第1の層10および第2の層20を接触させ、そして接着剤のフィルム40を界面に均一に広げるべく圧力が加えられる。整列の精度は、変形の主軸線4と(第2の層の)第1の極性形成の軸線21との間の15°未満の不整列をもたらす。このようにして、層のスタック100が形成される。
【0097】
電気的に非導電性の接着剤のフィルム41が、続いて、接合されるべき第3の層30の面に塗布され、層のスタック100が頂部に配置され、そして第1の層10の自由表面が、第3の層30の接着剤付の面の正面に位置決めされる。第1の刻み目12(または第2の刻み目22)と第3の刻み目32との間の整列は、前と同じ装置を用いて実行される。続いて、接着されるべき面を接触させ、そして接着剤のフィルムを界面に均一に広げるべく、圧力が加えられる。整列の精度は、変形の主軸線4と(第3の層の)第2の極性形成の軸線31との間の15°内より良好な整列をもたらす。
【0098】
続いて、直径2cmおよび厚さ数百ミクロンのプリント回路の層50が、例えば、第3の層30の自由面に接合されるべく、その面の1つに実質的に接着(接着剤の層42)される。
【0099】
接着剤のフィルム44または他の電気的に非導電性の材料が、テルフェノールの第1の層10の側縁部を保護および絶縁するために塗布される。続いて、プリント回路の層50の電気端子202、203と、PZTの2つの層20、30の櫛形電極23、24、33、34とを電気的に接続するために、導電性材料のストリップ(例えば、導電性の接着剤)43が塗布される。
【0100】
磁電変換器200は、例えば、回転方向場を使用することにより、磁場Bに変化を加えることによって、電気端子202、203間に電位差を継続して発生させることができる。発電機400は、好ましくは、磁場が支配的なハウジングを画定する磁場源300を備えている。磁電変換器は、このハウジング内に、この磁場によって囲まれて配列されている。変換器200と磁場源300との間の相対的な回転運動が、磁場の変化を発生させる。
【0101】
テルフェノール−Dは、基準面(x、y)に2つの変形の優先的な軸線4、5を有するので、それが、変換器200の第1の層10の材料として、有利に使用され、本発明による発電機400の実現は、それ故に、4分の1回転の後の電荷収集シーケンスの場合に非常に好ましい。
【0102】
基準面において単一の変形の優先的な軸線を有する異方性磁歪材料が、勿論、使用されてもよい。
【0103】
本発明は、記載された実施形態に限定されず、特許請求の範囲によって画定される本発明の文脈から逸脱することなく、代替の実施形態が提供されてもよい。