【実施例】
【0073】
(実施例1)
KOD Y7A変異体の作製
サーモコッカス・コダカラエンシス KOD1株由来の改変型耐熱性DNAポリメラーゼ遺伝子を含有するプラスミド、pKOD Y7A(配列番号11の19〜21番目のTACをGCCに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した。
【0074】
変異導入に使用されるDNA鋳型は、pBluescriptにクローニングされたサーモコッカス・コダカラエンシス KOD1株由来の改変型耐熱性DNAポリメラーゼ遺伝子(配列番号11)(pKOD)を用いた。変異導入にはKOD −Plus− Mutaagenesis Kit(Toyobo社製)を用いて、方法は取扱い説明書に準じて行った。変異作製用プライマーとしては、配列番号13及び14に記載されるプライマーを使用した。なお、変異体の確認は塩基配列の解読で行った。得られたプラスミドによりエシェリシア・コリJM109を形質転換し、酵素調製に用いた。
(実施例2)
改変型耐熱性DNAポリメラーゼ(KOD Y7A)の作製
実施例1で得られた菌体の培養は以下のようにして実施した。まず、滅菌処理した100μg/mlのアンピシリンを含有するTB培地(Molecular cloning 2nd edition、p.A.2)80mLを500mL坂口フラスコに分注した。この培地に予め100μg/mlのアンピシリンを含有する3mlのLB培地(1%バクトトリプトン、0.5%酵母エキス、0.5%塩化ナトリウム;ギブコ製)で37℃、16時間培養したエシェリシア・コリJM109(プラスミド形質転換株)(試験管使用)を接種し、37℃にて16時間通気培養した。培養液より菌体を遠心分離により回収し、50mlの破砕緩衝液(30mM Tris−HCl緩衝液(pH8.0)、30mM NaCl、0.1mM EDTA)に懸濁後、ソニケーション処理により菌体を破砕し、細胞破砕液を得た。次に細胞破砕液を80℃にて15分間処理した後、遠心分離にて不溶性画分を除去した。更に、ポリエチレンイミンを用いた除核酸処理、硫安塩析、ヘパリンセファロースクロマトグラフィーを行い、最後に保存緩衝液(50mM Tris−HCl緩衝液(pH8.0)、50mM 塩化カリウム、1mM ジチオスレイトール、0.1% Tween20、0.1%ノニデットP40、50%グリセリン)に置換し、改変型耐熱性DNAポリメラーゼ(KOD Y7A)を得た。
【0075】
上記精製工程のDNAポリメラーゼ活性測定は以下の操作で行った。また、酵素活性が高い場合はサンプルを希釈して測定を行った。
(試薬)
A液: 40mM Tris−HCl緩衝液(pH7.5)、16mM 塩化マグネシウム、15mM ジチオスレイトール、100μg/ml BSA
B液: 1.5μg/μl 活性化仔牛胸腺DNA
C液: 1.5mM dNTP(250cpm/pmol [3H]dTTP)
D液: 20% トリクロロ酢酸(2mMピロリン酸ナトリウム)
E液: 1mg/ml仔牛胸腺DNA
(方法)
A液25μl、B液5μl、C液5μl及び滅菌水10μlをマイクロチューブに加えて攪拌混合後、上記精製酵素希釈液5μlを加えて75℃で10分間反応する。その後冷却し、E液50μl、D液100μlを加えて、攪拌後更に10分間氷冷する。この液をガラスフィルター(ワットマン製GF/Cフィルター)で濾過し、0.1N塩酸及びエタノールで十分洗浄し、フィルターの放射活性を液体シンチレーションカウンター(パッカード製)を用いて計測し、鋳型DNAへのヌクレオチドの取り込みを測定した。酵素活性の1単位はこの条件下で30分当り10nmolのヌクレオチドを酸不溶性画分に取り込む酵素量とした。
(実施例3)
KOD P36Hの作製
実施例2と同様の方法にて、pKOD P36H(配列番号11の106〜108番目のCCCをCACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P36H)。鋳型にはpKOD、変異作製用プライマーとしては配列番号15および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P36H)を得た。
(実施例4)
KOD P36Kの作製
実施例2と同様の方法にて、pKOD P36K(配列番号11の106〜108番目のCCCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P36K)。鋳型にはpKOD、変異作製用プライマーとしては配列番号16および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P36K)を得た。
(実施例5)
KOD P36Rの作製
実施例2と同様の方法にて、pKOD P36R(配列番号11の106〜108番目のCCCをCGTに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P36R)。鋳型にはpKOD、変異作製用プライマーとしては配列番号17および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P36R)を得た。
(実施例6)
KOD V93Qの作製
実施例2と同様の方法にて、pKOD V93Q(配列番号11の277〜279番目のGTCをCAGに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD V93Q)。鋳型にはpKOD、変異作製用プライマーとしては配列番号19および20に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD V93Q)を得た。
(実施例7)
KOD V93Kの作製
実施例2と同様の方法にて、pKOD V93K(配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD V93K)。鋳型にはpKOD、変異作製用プライマーとしては配列番号19および21に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD V93K)を得た。
(実施例8)
KOD V93Rの作製
実施例2と同様の方法にて、pKOD V93R(配列番号11の277〜279番目のGTCをCGTに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD V93R)。鋳型にはpKOD、変異作製用プライマーとしては配列番号19および22に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD V93R)を得た。
(実施例9)
KOD P115Δの作製
実施例2と同様の方法にて、pKOD P115Δ(配列番号11の343〜345番目のCCCを欠損した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P115Δ)。鋳型にはpKOD、変異作製用プライマーとしては配列番号23および25に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P115Δ)を得た。
(実施例10)
KOD Y7A/P36Hの作製
実施例2と同様の方法にて、pKOD Y7A/P36H(配列番号11の19〜21番目のTACをGCCに、配列番号11の106〜108番目のCCCをCACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P36H)。鋳型には(pKOD Y7A)、変異作製用プライマーとしては配列番号15および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P36H)を得た。
(実施例11)
KOD Y7A/P36Kの作製
実施例2と同様の方法にて、pKOD Y7A/P36K(配列番号11の19〜21番目のTACをGCCに、配列番号11の106〜108番目のCCCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P36K)。鋳型にはpKOD Y7A、変異作製用プライマーとしては配列番号16および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P36K)を得た。
(実施例12)
KOD Y7A/P36Rの作製
実施例2と同様の方法にて、pKOD Y7A/P36R(配列番号11の19〜21番目のTACをGCCに、配列番号11の106〜108番目のCCCをCGTに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P36R)。鋳型にはpKOD Y7A、変異作製用プライマーとしては配列番号17および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P36R)を得た。
(実施例13)
KOD Y7A/V93Kの作製
実施例2と同様の方法にて、pKOD Y7A/V93K(配列番号11の19〜21番目のTACをGCCに、配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/V93K)。鋳型にはpKOD Y7A、変異作製用プライマーとしては配列番号19および21に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/V93K)を得た。
(実施例14)
KOD Y7A/P115Δの作製
実施例2と同様の方法にて、pKOD Y7A/P115Δ(配列番号11の19〜21番目のTACをGCCに、配列番号11の343〜345番目のCCCを欠損した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P115Δ)。鋳型にはpKOD Y7A、変異作製用プライマーとしては配列番号23および24に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P115Δ)を得た。
(実施例15)
KOD P36H/V93Kの作製
実施例2と同様の方法にて、pKOD P36H/V93K(配列番号11の106〜108番目のCCCをCACに、配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P36H/V93K)。鋳型にはpKOD V93K、変異作製用プライマーとしては配列番号15および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P36H/V93K)を得た。
(実施例16)
KOD P36R/V93Kの作製
実施例2と同様の方法にて、pKOD P36H/V93K(配列番号11の106〜108番目のCCCをCGTに、配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD P36R/V93K)。鋳型にはpKOD V93K、変異作製用プライマーとしては配列番号17および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD P36R/V93K)を得た。
(実施例17)
KOD Y7A/P36H/V93Kの作製
実施例2と同様の方法にて、pKOD Y7A/P36H/V93K(配列番号11の19〜21番目のTACをGCCに、配列番号11の106〜108番目のCCCをCACに、配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P36H/V93K)。鋳型にはpKOD Y7A/V93K、変異作製用プライマーとしては配列番号15および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P36H/V93K)を得た。
(実施例18)
KOD Y7A/P36R/V93Kの作製
実施例2と同様の方法にて、pKOD Y7A/P36R/V93K(配列番号11の19〜21番目のTACをGCCに、配列番号11の106〜108番目のCCCをCGT、配列番号11の277〜279番目のGTCをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pKOD Y7A/P36R/V93K)。鋳型にはpKOD Y7A/V93K、変異作製用プライマーとしては配列番号17および18に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(KOD Y7A/P36R/V93K)を得た。
(実施例19)
KOD N210D変異体の作製
KOD N210Dは野生型KOD DNAポリメラーゼの3‘−5’エキソヌクレアーゼ領域への改変を含み、3‘−5’エキソヌクレアーゼ活性を欠損させた(エキソ(−))改変型DNAポリメラーゼである。実施例1〜18と同様の方法にて、pKOD N210Dに様々な変異を挿入した。pKOD N210Dは配列番号11の628〜630番目のAACをGACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミドであり、特許第3487394号に記載の配列である。更に実施例2同様の精製方法にて、それぞれ改変型DNAポリメラ−ゼを精製した。
(実施例20)
KOD D141A/E143A変異体の作製
KOD D141A/E143Aは野生型KOD DNAポリメラーゼの3‘−5’エキソヌクレアーゼ領域への改変を含み、3‘−5’エキソヌクレアーゼ活性を欠損させた(エキソ(−))改変型DNAポリメラーゼである。実施例1〜18と同様の方法にて、pKOD D141A/E143Aに様々な変異を挿入した。pKOD D141A/E143Aは配列番号11の421〜423番目のGACをGCCに、427〜429番目のGAAをGCAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミドであり、更に実施例2同様の精製方法にてそれぞれ改変型DNAポリメラ−ゼを精製した。
(実施例21)
KOD I142R変異体の作製
KOD I142Rは野生型KOD DNAポリメラーゼの3‘−5’エキソヌクレアーゼ領域への改変を含み、3‘−5’エキソヌクレアーゼ活性を欠損させた(エキソ(−))改変型DNAポリメラーゼである。実施例1〜18と同様の方法にて、pKOD I142Rに様々な変異を挿入した。pKOD I142Rは配列番号11の424〜426番目のATTをCGTに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミドであり、特許第3487394号に記載の配列である。更に実施例2同様の精製方法にてそれぞれ改変型DNAポリメラ−ゼを精製した。
(実施例22)
KOD H147E変異体の作製
KOD H147Eは野生型KOD DNAポリメラーゼの3‘−5’エキソヌクレアーゼ領域に改変を含むが、3‘−5’エキソヌクレアーゼ活性を維持した改変型DNAポリメラーゼである。実施例1〜18と同様の方法にて、pKOD H147Eに様々な変異を挿入した。pKOD H147Eは配列番号11の439〜442番目のCATをGAGに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミドであり、特許第3891330号に記載の配列である。さらに実施例2同様の精製方法にてそれぞれ改変型DNAポリメラ−ゼを精製した。
(実施例23)
Pfu Y7Aの作製
実施例2と同様の方法にて、pPfu Y7A(配列番号12の19〜21番目のTACをGCCに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu Y7A)。鋳型にはpPfu:pBluescriptに配列番号12の耐熱性DNAポリメラーゼ遺伝子をクローニングしたプラスミド、変異作製用プライマーとしては配列番号32および33に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu Y7A)を得た。
(実施例24)
Pfu P36Hの作製
実施例2と同様の方法にて、pPfu P36H(配列番号12の106〜108番目のCCAをCACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu P36H)。鋳型にはpPfu、変異作製用プライマーとしては配列番号34および35に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu P36H)を得た。
(実施例25)
Pfu V93Rの作製
実施例2と同様の方法にて、pPfu V93R(配列番号12の277〜279番目のGTTをCGTに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu V93R)。鋳型にはpPfu、変異作製用プライマーとしては配列番号36および37に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu V93R)を得た。
(実施例26)
Pfu Y7A/P36Hの作製
実施例2と同様の方法にて、pPfu Y7A/P36H(配列番号12の19〜21番目のTACをGCCに、配列番号12の106〜108番目のCCAをCACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu Y7A/P36H)。鋳型にはpPfu Y7A、変異作製用プライマーとしては配列番号34および35に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu Y7A/P36H)を得た。
(実施例27)
Pfu Y7A/V93Kの作製
実施例2と同様の方法にて、pPfu Y7A/V93K(配列番号12の19〜21番目のTACをGCCに、配列番号12の277〜279番目のGTTをAAAに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu Y7A/V93K)。鋳型にはpPfu Y7A、変異作製用プライマーとしては配列番号36および37に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu Y7A/V93K)を得た。
(実施例28)
Pfu N210D/Y7A/P36Hの作製
実施例2と同様の方法にて、pPfu N210D/Y7A/P36H(配列番号12の19〜21番目のTACをGCCに、配列番号12の106〜108番目のCCAをCACに、配列番号12の628〜630番目のAATをGACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu N210/Y7A/P36H)。鋳型にはpPfu Y7A/P36H、変異作製用プライマーとしては配列番号38および39に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu Y7A/P36H)を得た。
(実施例29)
Pfu N210D/Y7A/V93Kの作製
実施例2と同様の方法にて、pPfu N210D/Y7A/V93K(配列番号12の19〜21番目のTACをGCCに、配列番号12の277〜279番目のGTTをAAAに、配列番号12の628〜630番目のAATをGACに置換した改変型耐熱性DNAポリメラーゼ遺伝子を持つプラスミド)を作製した(pPfu N210/Y7A/V93K)。鋳型にはpPfu Y7A/V93K、変異作製用プライマーとしては配列番号38および39に記載のプライマーを使用した。更に実施例2同様の精製方法にて改変型耐熱性DNAポリメラ−ゼ(Pfu Y7A/V93K)を得た。
(実施例30)
改変された耐熱性DNAポリメラーゼのウラシルの感受性の評価
ウラシルの感受性は、以下のようにPCRを行い測定した。PCRにはKOD −Plus− Ver.2(Toyobo社製)添付のものを用い、1×PCR Buffer、および1.5mM MgSO
4、0.2mM dNTPs(dATP、dTTP、dCTP、dGTP)、約1.3kbを増幅する15pmolの配列番号25及び26に記載のプライマー、10ngのヒトゲノムDNA(Roche社製)、1Uの各酵素を含む50μlの反応液中に、dUTP(Roche社製)を終濃度0.5、5、50、100、200μMになるよう添加した。94℃、30秒の前反応の後、98℃、10秒→65℃、30秒→68℃、1分30秒を30サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社製)を用いて行った。反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下約1.3kbの増幅DNA断片を確認した。
【0076】
結果、サーモコッカス・コダカラエンシス(KOD)の野生型のDNAポリメラーゼでは0.5μMのdUTPの添加で阻害がかかり、PCR産物が確認できないところ、Y7A、P36H、P36K、P36R、V93Q、V93K、V93Rのウラシル結合ポケットへの変異体では、多少のdUTPを添加してもPCR産物の確認が出来た。またP36KとP36K/Y7Aを比較すると、単変異に比べ2重変異を入れたものの方が、高濃度のdUTP添加に寛容で、増幅量が多い結果となった(
図3、
図4)。
【0077】
PfuにおいてもY7AとP36Hの単変異体とY7A/P36Hの多重変異体を比較し、多重変異体の方が、増幅量が多いといった同様の結果が得られた。
【0078】
また、KODポリメラーゼにおいて野生型のDNAポリメラーゼに比べ、エキソ(−)の変異体であるN210DやD141A/E143A、I142Rの変異体はdUTPへの感受性が弱く、エキソ(−)の変異体に加え、Y7AやP36位やV93位への変異を施すとさらにdUTPへの感受性が弱まることが確認された(
図4)。これは、DNAポリメラーゼがdUTPをDNAに取り込んだ際、野生型は校正機能が働き3‘−5’エキソヌクレアーゼを用い、dUTPを切断してしまうのに対し、エキソ(−)の変異体では、dUTPを切断できないため、そのまま伸長を進めることが可能なためだと考えられる。そのため、ウラシル結合ポケットへの変異に加え、エキソ活性を欠損させる改変を行うとdUTPの含まれるPCRにおいて、増幅量が向上することが示唆される(
図7、8)。
(実施例31)
改変された耐熱性DNAポリメラーゼを用いたPCR増幅量の評価
PCRにおいてdTTPとdUTPでの増幅の違いを、Human β−グロビンの482bpを増幅することで比較し、dUTPへの感受性を調べた。この際、各酵素は、1Uあたり1μgのKOD抗体と混合したものを用いた。PCRにはKOD −Plus− Ver.2(Toyobo社製)添付のものを用い、1×PCR Buffer、および1.5mM MgSO
4、481kbを増幅する15pmolの配列番号27及び28に記載のプライマー、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した1Uの各酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP、dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP、dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用いた。94℃、2分の前反応の後、98℃、10秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。反応終了後、MulitiNA(島津製作所社製)のDNA−1000キットに供し増幅DNA断片を確認した。
【0079】
結果、Y7Aの変異体単体ではPCR増幅が出来なかったが、V93KやP36H、P36K、P36Rと組み合わせることでPCR増幅が可能になった。中でも、V93Kに比べV93K/Y7Aとの組み合わせでは大幅に増幅量が向上することが示された(
図5、
図6)。
【0080】
また、野生型のDNAポリメラーゼにV93K/Y7AやP36Hなどの変異を施したものとエキソ(−)の変異体であるN210Dの変異体に、V93K/Y7A、P36Hなどの変異を施したものを比較するとエキソ(−)のDNAポリメラーゼに変異を施した方が増幅量が多い結果となり、エキソ(−)へ変異を入れたものではdUTPとdTTPで増幅量の差がほとんど見られなかった。ウラシル結合ポケットへの変異に加え、エキソ領域への変異を入れるとdUTPの感受性が減少し、増幅量が向上することが示唆される(
図7、
図8)。
【0081】
PfuにおいてもN210Dの変異体にY7A/P36H、Y7A/V93Kの変異をいれ、同様の結果が得られた。
(実施例32)
改変された耐熱性DNAポリメラーゼを用いた長鎖DNA増幅の評価
dUTPを含むPCRにおいてHuman β−グロビンの1.3kbpおよび、2.8kbp、3.6kbpの増幅を比較した。この際、各酵素は、1Uあたり1μgのKOD抗体と混合したものを用いた。PCRにはKOD −Plus− Ver.2(Toyobo社製)添付のものを用い、1×PCR Buffer、および1.5mM MgSO
4、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP、dCTP、dGTP)、15pmolのプライマー(1.3kbpの増幅では配列番号25及び26、2.8kbpの増幅では配列番号26および29、3.6kbpの増幅では配列番号30および31)、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した1Uの各酵素を含む50μlの反応液を用いた。94℃、2分の前反応の後、98℃、10秒→65℃、30秒→68℃、1kbpあたり約1分(1.3kbpの増幅では1分30秒、2.8kbpの増幅では3分、3.6kbpの増幅では4分)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)にてPCRを行った。またコントロールとして、Taq DNAポリメラーゼでの増幅も行った。Taq DNAポリメラーゼはToyobo社製のものを用い、Anti−Taq High(Toyobo社製)と混合したものを用いた。反応は1×BlendTaqに添付のBuffer、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP、dCTP、dGTP)、10pmolのプライマー(上記と同様)、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した2.5Uの酵素を含む50μlの反応液を、94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1kbpあたり約1分(1.3kbpの増幅では1分30秒、2.8kbpの増幅では3分、3.6kbpの増幅では4分)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社製)にてPCRを行った。それぞれ反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下約増幅DNA断片の増幅量を確認した。
【0082】
V93KとY7A/V93K、またP36HとY7A/P36H、P36RとY7A/P36R、P36HやV93KとP36H/V93Kの増幅量を比較した結果、V93Kの変異より、P36位への変異の方が増幅量が多く、長いターゲットまで増幅できることが確認された。また、単変異のものよりウラシル結合ポケットへ二重変異入れたものの方が、増幅量が多くなった。これらの変異体はTaqでは増幅できないような長鎖長を増幅することが可能となっていた(
図9)。また、野生型のDNAポリメラーゼにV93KやP36Hなどの変異を施したものとエキソ(−)の変異体であるN210D、I142R、D141A/E143Aの変異体に、V93K、P36Hなどの変異を施したものを比較するとエキソ(−)のDNAポリメラーゼに変異を施した方が、増幅量が多い結果となった(
図10)。さらに、野生型のDNAポリメラーゼにV93KやP36Hなどの変異を施したものとPCR効率が向上する変異体であるH147EにV93K、P36Hなどの変異を施したものを比較すると、H147E変異体の方が多い増幅量を示された。これはH147Eの改変の効果がウラシル結合ポケットへの改変とは独立しており、H147Eの改変による効果により増幅量が増えたことが考えられる。
【0083】
実施例30〜32の結果を表1に示す。表1において、dUTP耐性における11段階評価は、0に近いほどdUTPに対する感受性が強く、10に近いほどdUTPに対する感受性が低いことを表す。また表1中、○は十分に増幅した、△はある程度増幅した、×は増幅しないことを表している。
【0084】
【表1】
【0085】
PfuにおいてもY7AとP36H、V93Kの単変異体とY7A/P36H、Y7A/V93Kの多重変異体を比較し、多重変異体の方増幅量が多いといった同様の結果が得られた。
【0086】
また、野生型のDNAポリメラーゼのウラシル結合ポケットに変異を施したものとエキソ(−)の変異体N210Dのウラシル結合ポケットに変異を施したものでは、エキソ(−)のDNAポリメラーゼに変異を施した方が、増幅量が多い結果になった。PfuにおいてもN210Dの変異体にY7A/P36H、Y7A/V93Kの変異をいれ、同様の結果が得られた。
(実施例33)
イノシンが含まれたプライマーを用いた増幅比較
イノシンが含まれたプライマーを用いて、PCRでの増幅の違いを比較した。比較には、1Uあたり1μgのKOD抗体と混合したKOD変異体とKOD(野生型)、抗体を混合したTaq DNAポリメラーゼ(Taq DNAポリメラーゼ(Toyobo社製)とAnti−Taq High(Toyobo社製)を等量混合したもの)を用いた。KOD変異体とKODのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSO
4、dNTPsを用い、1×PCR Buffer、および1.5mM MgSO
4、0.2mM dNTPs(dATP、dTTP、dCTP、dGTP)、75pmolおよび150pmolのプライマー(配列番号40および41)、100ngのPsychrobacter DNA、抗体と混合した1Uの各酵素を含む50μlの反応液を、94℃、2分の前反応の後、98℃、10秒→54℃、10秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、0.2mM dNTPs(dATP、dUTP、dCTP、dGTP)、75pmolおよび150pmolのプライマー(上記と同様)、100ngのPsychrobacter DNA、抗体と混合した2.5Uの酵素を含む50μlの反応液を、94℃、2分の前反応の後、94℃、30秒→54℃、30秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。反応終了後、MulitiNA(島津製作所社製)のDNA−1000キットに供し増幅DNA断片を確認した。
【0087】
結果、KOD(野生型)はイノシンを含んだプライマーから増幅することはできず、KOD変異体(Y7A/V93K、Y7A/P36H、N210D/Y7A/P36H)、およびTaq DNAポリメラーゼからはしっかりとした増幅が確認された(
図11)。このことから、ウラシル感受性が低い変異体はイノシンにも感受性が低いことがわかる。KODはTaq DNAポリメラーゼより正確性が高いため、増幅産物にエラーが入ることなく増幅が可能となる。クローニングにおいて、正確性が高いことは非常に重要であり、Taq DNAポリメラーゼよりKOD変異体の方が優位だと考えられる。またTaq DNAポリメラーゼは150pmolのプライマーを添加しないと増幅が見られないところ、KOD変異体では75pmolの添加で増幅が見られ、KOD変異体の方が、増幅効率が良いことが示される。
(実施例34)
バイサルファイト処理したDNAの増幅比較
バイサルファイト処理したDNAを鋳型に、様々なプライマーでPCRの増幅の違いを比較した。比較には、1Uあたり1μgのKOD抗体と混合したKOD変異体(Y7A/V93K)とKOD(野生型)、抗体を混合したTaq DNAポリメラーゼ(Taq DNAポリメラーゼ(Toyobo社製)とAnti−Taq High(Toyobo社製)を等量混合したもの)を用いた。バイサルファイト処理したDNAは、ヒトゲノムDNA(Roche製)をInvitrogen社のMethylCode Bisulfite Conversion Kitで処理したものを用いた。KOD変異体(Y7A/V93K)とKODのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSO
4、dNTPsを用い、1×PCR Buffer、および1.5mM MgSO
4、0.2mM dNTPs(dATP、dTTP、dCTP、dGTP)、15pmolのプライマー(MINT1の増幅では配列番号42及び43、RARの増幅では配列番号44および45、THBS1の増幅では配列番号46および47、MINT31の増幅では配列番号48および49)、バイサルファイト処理したDNA抽出液1μl、抗体と混合した1Uの各酵素を含む50μlの反応液を、94℃、2分の前反応の後、98℃、10秒→55℃、15秒→68℃、1分を40サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、0.2mM dNTPs(dATP、dUTP、dCTP、dGTP)、15pmolのプライマー(上記と同様)、バイサルファイト処理したDNA抽出液1μl、抗体と混合した2.5Uの酵素を含む50μlの反応液を、94℃、2分の前反応の後、94℃、30秒→55℃、30秒→68℃、1分を40サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。反応終了後、MulitiNA(島津製作所社製)のDNA−1000キットに供し増幅DNA断片を確認した。
【0088】
結果、KOD(野生型)はバイサルファイト処理したDNAから増幅することはできず、KOD Y7A/V93K、およびTaq DNAポリメラーゼからはしっかりとした増幅が確認された(
図12)。KOD Y7A/V93K変異体と同様の方法でKOD Y7A/P36H変異体やKOD N210D Y7A/P36H変異体、Pfu Y7A/V93K変異体でも同様の結果が得られている。このことから、ウラシル感受性が低い変異体はテンプレートにウラシルが含まれていても増幅ができることがわかり、バイサルファイト処理したDNAからでも増幅ができることがわかった。
(実施例35)
dUTP存在下で増幅したDNAのUNGによる分解確認
ウラシル感受性を弱めたKOD変異体(N210D/Y7A/P36H)を用いてdUTPを含むPCRで増幅したHuman β−グロビンの0.7kbpを、UNGと反応させることで分解できるかを確認した。PCRにはKOD −Plus− Ver.2(Toyobo社製)添付のものを用い、1×PCR Buffer、および1.5mM MgSO
4、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP、dCTP、dGTP)、15pmolのプライマー(配列番号50及び51)、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した1Uの酵素を含む50μlの反応液を用いた。94℃、2分の前反応の後、98℃、10秒→60℃、30秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)にてPCRを行った。その増幅産物を、上記1×PCR Bufferで10ng/μlに希釈し、希釈した増幅産物8μlと様々な濃度のUNG(Roche社製)2μlを混合し、37℃、10分反応させた。反応終了後、MulitiNA(島津製作所社製)のDNA−1000キットに供し増幅産物の量を確認した。
【0089】
結果、0.25UのUNGで80ngのDNAが完全に分解されたことが確認できた。このことからウラシル感受性を弱めたKOD変異体(N210D/Y7A/P36H)で増幅したDNAでも、UNGを反応させることで分解できることが示された。他の変異体(KOD Y7A/V93K、Pfu Y7A/V93K、KOD Y7A/P36H)で増幅したDNAにおいても、上記と同様の方法で、UNGにより分解できたという同様の結果が得られている。