(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
本発明のゴム組成物は、ジエン系ゴムおよび補強性充填剤からなる。ジエン系ゴムは、少なくとも1種のスチレン−ブタジエン共重合体を必ず含む。本明細書において、少なくとも1種のスチレン−ブタジエン共重合体からなるポリマー成分を「スチレン−ブタジエン共重合体成分」ということがある。本発明において、スチレン−ブタジエン共重合体成分は、以下の(1)〜(4)の特性をすべて満たす。
(1)結合スチレンの含量が5〜50重量%
(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2−結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2−結合したブタジエン由来単位を1つ含む分解成分V1が20モル%以上
(3)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2−結合したブタジエン由来単位を含む分解成分の合計100モル%中、スチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つ含む分解成分S2V1が4モル%未満
(4)ブタジエン部分のビニル含有量が20%以上50%未満
【0013】
スチレン−ブタジエン共重合体成分が単独のスチレン−ブタジエン共重合体で構成されるとき、そのスチレン−ブタジエン共重合体は上述した(1)〜(4)の特性をすべて満たす必要がある。
【0014】
またスチレン−ブタジエン共重合体成分が、複数のスチレン−ブタジエン共重合体のブレンド物で構成されるとき、スチレン−ブタジエン共重合体成分は全体として上述した(1)〜(4)の特性をすべて満たす必要がある。スチレン−ブタジエン共重合体成分が全体として(1)〜(4)の特性をすべて満たす限り、ブレンド物を構成する各スチレン−ブタジエン共重合体は、夫々が上述した(1)〜(4)の特性をすべて満たしても、満たさなくてもよい。好ましくはブレンド物を構成するスチレン−ブタジエン共重合体が夫々(1)〜(4)の特性をすべて満たすとよい。スチレン−ブタジエン共重合体成分を、(1)〜(4)の特性をすべて満たす2種以上のスチレン−ブタジエン共重合体で構成することにより、ゴム組成物の引張破断強度、引張破断伸びをより優れたものにすることができる。
【0015】
本発明において、スチレン−ブタジエン共重合体成分は、(1)結合スチレンの含有量が5〜50重量%、好ましくは10〜40重量%である。スチレン−ブタジエン共重合体成分のスチレン含有量をこのような範囲内にすることにより、ゴム組成物の引張破断強度および引張破断伸びと、ウェットスキッド特性とのバランスを良好にすることができる。スチレン−ブタジエン共重合体成分のスチレン含有量が5重量%未満であるとウェットスキッド特性、引張破断強度および引張破断伸びが悪化する。スチレン−ブタジエン共重合体成分のスチレン含有量が50重量%を超えるとスチレン−ブタジエン共重合体成分のガラス転移温度(Tg)が上昇し、粘弾性特性のバランスが悪くなり、発熱性が大きくなる。すなわちヒステリシスロスとウェットスキッド特性のバランスが悪化する。なおスチレン−ブタジエン共重合体成分のスチレン含有量は
1H−NMRにより測定するものとする。
【0016】
本発明で使用するスチレン−ブタジエン共重合体成分は、オゾン分解により得られる分解成分を特性が異なるカラム2本を用いて液体クロマトグラムによる分別を2段階で行う質量分析計により測定する(以下、「LC×LCMS分析」と記すことがある)。このLC×LCMS分析によりオゾン分解成分の組成および量をより詳しく分析することができ、オゾン分解成分中のスチレン由来単位に加え、ブタジエンの1,2−結合由来の単位を定量化することができる。
【0017】
スチレン−ブタジエン共重合体は、スチレンおよびブタジエンの共重合体であり、スチレンの繰り返し単位(スチレン単位)とブタジエンの繰り返し単位(ブタジエン単位)からなる。ブタジエン単位は、ブタジエンが1,2−結合で重合する部分(側鎖にビニル基を有するエチレンの繰り返し単位)および1,4−結合で重合する部分(2−ブチレンの2価基の繰り返し単位)からなる。また1,4−結合で重合する部分は、trans−2−ブチレン構造の繰り返し単位およびcis−2−ブチレン構造の繰り返し単位からなる。
【0018】
スチレン−ブタジエン共重合体をオゾン分解すると1,4−結合で重合したブタジエン部分が開裂する。また1,2−結合で重合したブタジエン部分の側鎖のビニル基が酸化されてヒドロキシメチル基になる。これによりスチレン−ブタジエン共重合体は、隣接する2つの1,4−結合で重合したブタジエン単位に挟まれた繰り返し単位がオゾン分解成分として生成する。例えば主鎖中1つだけの1,2−結合したブタジエン単位が2つの1,4−結合で重合したブタジエン単位に挟まれた部分がオゾン分解すると下記一般式(I)で表される化合物が生成する。本明細書において、一般式(I)で表される化合物を「オゾン分解成分V1」という。なお本明細書において、隣接する単位と連鎖する方向は、頭−尾結合、頭−頭結合のどちらでもよく、化学式であらわされる頭−尾結合/頭−頭結合は相互に置き換えられるものとする。
【化1】
【0019】
また主鎖中、2つのスチレン単位および1つの1,2−結合で重合したブタジエン単位が隣接する1,4−結合で重合したブタジエン単位に挟まれた部分がオゾン分解すると下記一般式(II)で表される化合物が生成する。本明細書において2つのスチレン由来単位および1つの1,2−結合で重合したブタジエン由来単位からなる分解成分を「オゾン分解成分S2V1」という。
【化2】
【0020】
なお上記一般式(II)で表される化合物は、2つのスチレン由来単位と1つの1,2−結合したブタジエン由来単位の並び順、頭−尾結合/頭−頭結合およびその並び順から選ばれる少なくともの1つが異なる化合物をも包含するものとする。
【0021】
上記の通り隣接する2つの1,4−結合で重合したブタジエン単位に挟まれた部分は、オゾン分解により、スチレン由来単位および/または1,2−結合したブタジエン由来単位が両末端のヒドロキシエチル基で挟まれた分解成分として生成する。また1,4−結合で重合したブタジエン単位が2以上連続する繰り返し部分からは、1,4−ブタンジオールが生成する。
【0022】
本発明で使用するスチレン−ブタジエン共重合体成分は、オゾン分解により得られる分解成分をLC×LCMS分析で測定したとき、(2)オゾン分解により得られる成分のうち、スチレン由来単位および/または1,2−結合したブタジエン由来単位を含む分解成分の合計100モル%中、1,2−結合したブタジエン由来単位を1つ含む分解成分V1が20モル%以上である。1,2−結合したブタジエン由来単位を1つ含む分解成分とは、上述した通り1,2−結合したブタジエン由来単位を1つだけ含むオゾン分解成分V1をいう。オゾン分解成分をLC×LCMS分析で測定することにより、各分解成分のモル数が求められる。次にオゾン分解により生成したスチレン由来単位および/または1,2−結合したブタジエン由来単位を含む分解成分のモル数の合計を算出しこれをオゾン分解成分100モル%とする。1,2−結合したブタジエン由来単位を1つ含む分解成分V1の量は、オゾン分解成分100モル%中、20モル%以上であり、好ましくは20モル%以上45モル%未満であるとよい。オゾン分解成分V1を20モル%以上にすることにより引張破断強度および引張破断伸びをより優れたものにすることができる。
【0023】
また上記に加え本発明で使用するスチレン−ブタジエン共重合体成分は、(3)オゾン分解により得られる分解成分をLC×LCMS分析で測定したとき、スチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つ含む分解成分S2V1が4モル%未満、好ましくは2モル%以上4モル%未満である。ここでオゾン分解成分S2V1は、上述した通り2つのスチレン由来単位および1つの1,2−結合したブタジエン由来単位だけを含むオゾン分解成分であり、前記一般式(II)で表される分解成分に相当する。オゾン分解成分をLC×LCMS分析で測定することにより、一般式(II)で表される分解成分のモル数が求められる。スチレン由来単位および/または1,2−結合したブタジエン由来単位を含む分解成分のモル数の合計を算出しこれをオゾン分解成分100モル%とするとき、このスチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つからなるオゾン分解成分S2V1は4モル%未満であることが必要である。こうすることにより引張破断強度および引張破断伸びをより優れたものにすることができる。
【0024】
本明細書において、スチレン−ブタジエン共重合体成分をオゾン分解する方法およびオゾン分解物の測定は、田中ら〔Polymer, 22, 1721(1981)〕および〔Macromolecules, 16, 1925(1983)〕に記載された方法に従って行うものとする。なお田中らに記載された解析方法では、スチレン由来単位を1つだけ含むオゾン分解成分S1および1つのスチレン由来単位と1以上の1,2−結合したブタジエン由来単位を含むオゾン分解成分S1Vn(nは1以上の整数)の合計を「スチレン単連鎖」と呼んでいる。これに対し本発明は、上述した通り、スチレン由来単位を1つだけ含むオゾン分解成分S1および2つのスチレン由来単位と1つの1,2−結合したブタジエン由来単位を含むオゾン分解成分S2V1のモル数に着目し、LC×LCMS分析により個別に解析を行うものである。
【0025】
本明細書において、オゾン分解成分をLC×LCMS分析で測定する条件は、以下の通りにすることができる。
液体クロマトグラフ:包括的二次元LC Nexera‐e(島津製作所社製)
質量分析計:LCMS−8040またはLCMS−8050(いずれも島津製作所社製)
1次元目カラム:固定相がポリマーゲルであるカラム(A)(昭和電工社製Shodex Mspak GF−310 2D、内径:2.0mm、長さ150mm、粒径5μm)を2本および固定相がポリマーゲルであるカラム(B)(東ソー社製Super HZ 1000、内径:2.0mm、長さ250mm、粒径3μm)を1本、計3本を直列に連結して使用
注入量: 1μL(試料溶液濃度:10mg/mL)
移動相: THF
流速: 0.02mL/min
2次元目カラム:固定相がオクタデシル基で修飾されたコアシェルポリマーゲルであるカラム(A)(Phenomenex社製KinetexC18、内径:3.0mm、長さ50mm、粒径2.6μm)
移動相A: 水:メタノール=1:1
移動相B: メタノール
流速: 2.0mL/min
タイムプログラム:B conc.20%(0分)→100%(0.75分)→20%(0.76分)→STOP(1分)
インターフェイス温度:350℃
脱溶媒温度:200℃
インターフェイス電圧:4.5V
インターフェイス(イオン化法):(APCI positiveモード)
質量分析条件:SIM測定 9event (ev1:S1〜S1V10, ev2:S2〜S2V10, ev3:S3〜S3V10, ev4:S4〜S4V10, ev5:S5〜S5V10, ev6:S6〜S6V10, ev7:S7〜S7V10, ev8:S8〜S8V10, ev9:V1〜V10) 合計98ch SIM+各分個別のSIM 98event(検量線作成用)合計107event
検出イオン:プロトン付加イオン(m/z=[M+H]+)
【0026】
ここで、標準試料には市販の試料を用いても良いし、SBRのオゾン分解物から分離採取して、純度をNMR等で算出した試料を用いても良い。例えば標準試料の調製を以下の通り行うことができる。
【0027】
スチレン量36重量%、ブタジエン中のビニル含量42%の溶液重合SBRをオゾン分解処理し、日本分析工業社製のLC−9104(分取GPC)と低分子用カラム4本(JAIGEL-1H、JAIGEL−2H各2本ずつ)を用いてクロロホルム溶媒にてS1、S1V1、S2、S2V1、S3、S3V1、V1の計7成分を分取し、NMRにて純度を算出して標準試料とした。
【0028】
ビニル含量70%のポリブタジエンをオゾン分解処理し、島津製作所株式会社製のHPLCシステムProminenceにてカラム(VP−ODS 150mm×4.6mm)を用い、移動相Aを水、移動相Bをメタノールとして、流速1mL/min、注入量0.2μLで20%B−100%Bの40分のグラジエント測定にてまず質量分析イオン化条件APCI+にて成分の溶出時間を確認後、V1、V2、V3を時間にて分取し、NMRにて純度を算出して標準試料とした。
【0029】
またLC×LCMS分析は以下の操作により行うことができる。
分析は、島津製作所株式会社製のLCMS−8040(製品名)またはLCMS−8050(製品名)を用い、APCI positive MSモードにより、上記で得られた標準試料について測定を行う。
【0030】
質量分析計の検出結果に基づき、各標準試料の濃度とイオン強度の相関図(検量線)を作成した。作成した相関図を
図1及び
図2に示す。
図1及び
図2において、「S1V1」や「V1」、「S2」等の記号は、その検量線を示す化合物の1,2−結合したブタジエン由来単位の数とスチレン由来単位の数を表す。例えば記号「S1V1」は、その化合物が1個の1,2−結合したブタジエン由来単位と1個のスチレン由来単位を有することを表している。
図1及び
図2から分かるように、化合物に含まれるスチレン由来単位の数、1,2−結合したブタジエン由来単位の数によって検量線が異なることが分かる。
【0031】
<検量線の推定>
構造が未知のSBRの場合、そのオゾン分解成分には様々な種類があり、
図1及び
図2に示す化合物の検量線だけでは、全ての分解物成分の定量分析を行うことができない。そこで、上述の標準試料について求めた検量線から、質量電荷比が未知の分解物成分の検量線を推定した。
【0032】
具体的には、スチレンのみの連鎖成分Snについては、S1〜S3の検量線から、スチレンの連鎖数が1個増えたときの検量線の傾きの変化量を計算により求めて、連鎖成分Sn(n≧4)の傾きを推定した。1,2−結合したブタジエン由来単位からなる連鎖成分(Vm)についても同様の方法で検量線の傾きを推定した。推定された検量線の傾きを
図3に示す。
【0033】
一方、スチレン由来単位と1,2−結合したブタジエン由来単位から成る連鎖成分(SnVm)については、スチレンの連鎖数を固定して1,2−結合したブタジエンの連鎖数を変化させたときの傾きの変化量、1,2−結合したブタジエンの連鎖数を固定してスチレンの連鎖数を変化させたときの傾きの変化量から、検量線の傾きに対するスチレン及び1,2−結合したブタジエン由来単位の寄与度を求め、スチレン及び1,2−結合したブタジエン由来単位の寄与度と連鎖数から連鎖成分SnVmの検量線の傾きを推定した。
図3〜
図5に、実際に測定した結果から求めた連鎖成分の検量線の傾き、及び上述した方法により推定した検量線の傾きを示す。
【0034】
<二次元クロマトグラムの作成>
次に、オゾン分解物成分をLCxLCMSにより分析した。分析に用いた装置及び分析条件は、検量線の作成に用いたものと同じである。
【0035】
質量分析計の検出結果を解析ソフトウエアChromSquare(島津製作所社製)を用いて解析し、1次カラムの溶出時間を横軸、2次カラムの溶出時間を縦軸、信号強度を等高線で表した二次元クロマトグラムを作成した。LCxLCを用いることにより、S2V1、S1V1のように溶出時間が非常に近い成分でも、分離することができるため、試料に含まれるスチレン由来単位及び1,2−結合したブタジエン由来単位の連鎖構造の同定が可能となった。
【0036】
本発明で使用するスチレン−ブタジエン共重合体成分は、(4)ブタジエン部分のビニル含有量が20%以上50%未満、好ましくは21〜49%である。スチレン−ブタジエン共重合体成分におけるブタジエン部分のビニル含有量を20%以上50%未満にすることにより、ブタジエン部分のビニル含有量を20%以上50%未満にすることにより、引張破断強度および引張破断伸びを維持、向上することができる。なおブタジエン部分のビニル含有量は
1H−NMRにより測定するものとする。
【0037】
(1)〜(4)の特性を有するスチレン−ブタジエン共重合体成分の含有量は、ジエン系ゴム100重量%中、好ましくは40重量%以上、より好ましくは60〜100重量%、さらに好ましくは80〜100重量%である。特性(1)〜(4)により特定されたスチレン−ブタジエン共重合体成分を40重量%以上含有することにより、ゴム組成物の引張破断強度をより優れたものにし、引張破断伸びを維持・向上することができる。
【0038】
本発明のゴム組成物は、特性(1)〜(4)をすべて満たすスチレン−ブタジエン共重合体成分以外の他のジエン系ゴムを含むことができる。他のジエン系ゴムとして例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(低シスBR)、高シスBR、高トランスBR(ブタジエン部のトランス結合含有量70〜95%)、スチレン−イソプレン共重合ゴム、ブタジエン−イソプレン共重合ゴム、溶液重合ランダムスチレン−ブタジエン−イソプレン共重合ゴム、乳化重合ランダムスチレン−ブタジエン−イソプレン共重合ゴム、乳化重合スチレン−アクリロニトリル−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、高ビニルSBR−低ビニルSBRブロック共重合ゴム、ポリイソプレン−SBRブロック共重合ゴム、ポリスチレン−ポリブタジエン−ポリスチレンブロック共重合体等を挙げることができる。
【0039】
他のジエン系ゴムの含有量は、ジエン系ゴム100重量%中、好ましくは60重量%以下、より好ましくは0〜40重量%、さらに好ましくは0〜20重量%である。他のジエン系ゴムを含有することにより耐摩耗性などの各種物性の改善が可能になる。
【0040】
本発明のゴム組成物は、ジエン系ゴムおよび補強性充填剤を含む。補強性充填剤としては、例えばカーボンブラック、シリカ、クレイ、水酸化アルミニウム、炭酸カルシウム、マイカ、タルク、水酸化アルミニウム、酸化アルミニウム、酸化チタン、硫酸バリウム等の無機フィラーや、セルロース、レシチン、リグニン、デンドリマー等の有機フィラーを例示することができる。なかでもカーボンブラック、シリカから選ばれる少なくとも1種を配合することが好ましい。
【0041】
ゴム組成物にカーボンブラックを配合することにより、ゴム組成物の引張破断強度を優れたものにすることができる。カーボンブラックの配合量は、特に限定されるものではないが、ジエン系ゴム100重量部に対し好ましくは10〜100重量部、より好ましくは25〜80重量部であるとよい。
【0042】
カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどのカーボンブラックを配合してもよい。これらの中でも、ファーネスブラックが好ましく、その具体例としては、SAF、ISAF、ISAF−HS、ISAF−LS、IISAF−HS、HAF、HAF−HS、HAF−LS、FEFなどが挙げられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、これらのカーボンブラックを種々の酸化合物等で化学修飾を施した表面処理カーボンブラックも用いることができる。
【0043】
またゴム組成物にシリカを配合することにより、ゴム組成物の低発熱性およびウェットグリップ性能を優れたものにすることができる。シリカの配合量は、特に限定されるものではないが、ジエン系ゴム100重量部に対し好ましくは10〜150重量部、より好ましくは40〜100重量部であるとよい。
【0044】
シリカとしては、タイヤトレッド用ゴム組成物に通常使用されるシリカ、例えば湿式法シリカ、乾式法シリカあるいは、カーボンブラック表面にシリカを担持させたカーボン−シリカ(デュアル・フェイズ・フィラー)、シランカップリング剤又はポリシロキサンなどシリカとゴムの両方に反応性或いは相溶性のある化合物で表面処理したシリカなどを使用することができる。これらの中でも、含水ケイ酸を主成分とする湿式法シリカが好ましい。
【0045】
本発明において、シリカおよび/またはカーボンブラックを含む補強性充填剤の配合量は、ジエン系ゴム100重量部に対し好ましくは10〜150重量部、より好ましくは40〜100重量部であるとよい。補強性充填剤の配合量が10重量部未満であると補強性能を十分に得ることができず、引張り破断強度が不足する。また補強性充填剤の配合量が150重量部を超えると発熱性が大きくなるとともに、引張り破断伸びが低下する。
【0046】
本発明のゴム組成物は、シリカとともにシランカップリング剤を配合することにより低発熱性および引張破断伸びがさらに改善されるので好ましい。シリカとともにシランカップリング剤を配合することにより、シリカの分散性を向上しジエン系ゴムとの補強性をより高くする。シランカップリング剤は、シリカ配合量に対して好ましくは2〜20重量%、より好ましくは5〜15重量%配合するとよい。シランカップリング剤の配合量がシリカ重量の2重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が20重量%を超えると、ジエン系ゴム成分がゲル化し易くなる傾向があるため、所望の効果を得ることができなくなる。
【0047】
シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス−(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルジメトキシメチルシラン、3−メルカプトプロピルジメチルメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、及びエボニック社製のVP Si363等特開2006−249069号公報に例示されているメルカプトシラン化合物等、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3−オクタノイルチオプロピルトリエトキシシラン、3−プロピオニルチオプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシランなどを例示することができる。また、シランカップリング剤は有機ケイ素化合物であり、有機ケイ素化合物としてポリシロキサン、ポリシロキサンの側鎖又は両末端又は片末端又は側鎖と両末端両方にアミノ基又はエポキシ基又はカルビノール基又はメルカプト基又はカルボキシル基又はハイドロジェン基又はポリエーテル基又はフェノール基又はシラノール基又はアクリル基又はメタクリル基又は長鎖アルキル基などの有機基を1つ以上導入したシリコーンオイル、1種以上の有機シランを縮合反応させて得られるシリコーンオリゴマーなども例示することができる。なかでもビス−(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドが好ましい。
【0048】
本発明のゴム組成物には、上記成分以外に、常法に従って、加硫又は架橋剤、加硫促進剤、老化防止剤、加工助剤、可塑剤、液状ポリマー、熱硬化性樹脂、熱可塑性樹脂などのタイヤトレッド用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤトレッド用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって調製することができる。
【0049】
加硫又は架橋剤としては、特に限定はないが、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などのような硫黄;一塩化硫黄、二塩化硫黄などのようなハロゲン化硫黄;ジクミルパーオキシド、ジターシャリブチルパーオキシドなどのような有機過酸化物などが挙げられる。これらの中でも、硫黄が好ましく、粉末硫黄が特に好ましい。これらの加硫又は架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。加硫剤の配合割合は、ジエン系ゴム100重量部に対して、通常0.1〜15重量部、好ましくは0.3〜10重量部、さらに好ましくは0.5〜5重量部の範囲である。
【0050】
加硫促進剤としては、特に限定はないが、例えば、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド、Nt−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤;ジエチルチオウレアなどのチオウレア系加硫促進剤;2−メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2−メルカプトベンゾチアゾール亜鉛塩などのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸亜鉛などのジチオカルバミン酸系加硫促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛などのキサントゲン酸系加硫促進剤;などの加硫促進剤が挙げられる。なかでも、スルフェンアミド系加硫促進剤を含むものが特に好ましい。これらの加硫促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。加硫促進剤の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.1〜15重量部、より好ましくは0.5〜5重量部である。
【0051】
老化防止剤としては、特に制限はないが、2,2,4−トリメチル-1,2-ジヒドロキノリンポリマー、p、p′−ジオクチルジフェニルアミン、N,N′-ジフェニル−p−フェニレンジアミン、N−フェニル-N′-1,3−ジメチルブチル-p−フェニレンジアミンなどのアミン系老化防止剤、2,6−ジ-t−ブチル−4−メチルフェノール、2,2′−メチレンビス(4−メチル−6−t−ブチルフェノール)などのフェノール系老化防止剤が挙げられる。これらの老化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。老化防止剤の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.1〜15重量部、より好ましくは0.5〜5重量部である。
【0052】
加工助剤としては、特に制限はないが、例えばステアリン酸などの高級脂肪酸、ステアリン酸アミドのような高級脂肪酸アミド、ステアリルアミンのような脂肪族高級アミン、ステアリルアルコールのような脂肪族高級アルコール、グリセリン脂肪酸エステルなどの脂肪酸と多価アルコールの部分エステル、ステアリン酸亜鉛などの脂肪酸金属塩、酸化亜鉛などを用いることができる。配合量は適宜選択されるが、高級脂肪酸、脂肪族高級アミド、高級アルコール、脂肪酸金属塩の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.05〜15重量部、より好ましくは0.5〜5重量部である。酸化亜鉛の配合量は、ジエン系ゴム100重量部に対して、好ましくは0.05〜10重量部、より好ましくは0.5〜3重量部である。
【0053】
配合剤として用いられる可塑剤としては、特に限定はないが、例えば、アロマ系、ナフテン系、パラフィン系、シリコーン系などの伸展油が用途に応じて選択される。可塑剤の使用量は、ジエン系ゴム100重量部あたり、通常1〜150重量部、好ましくは2〜100重量部、さらに好ましくは3〜60重量部の範囲である。可塑剤の使用量がこの範囲にある時には、補強剤の分散効果、引張強度、引張破断伸び、耐熱性等が高値にバランスされる。その他の可塑剤として、ジエチレングリコール、ポリエチレングリコール、シリコーンオイルなどが挙げられる。
【0054】
熱硬化性樹脂としては、特に制限はないが、例えば、レゾルシン−ホルムアルデヒド樹脂、フェノール−ホルムアルデヒド樹脂、ウレア−ホルムアルデヒド樹脂、メラミン−ホルムアルデヒド樹脂、フェノール誘導体−ホルムアルデヒド樹脂等、具体的には、m−3,5−キシレノール−ホルムアルデヒド樹脂、5−メチルレゾルシン−ホルムアルデヒド樹脂等の、加熱により、あるいは、熱とメチレンドナーを与えることにより、硬化あるいは高分子量化する熱硬化型樹脂や、その他グアナミン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂などが挙げられる。
【0055】
熱可塑性樹脂としては、特に制限はないが、例えば、汎用のものとしてポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂などが挙げられる。その他、スチレン-α-メチルスチレン樹脂、インデン-イソプロペニルトルエン樹脂、クマロン―インデン樹脂などの芳香族炭化水素系樹脂、ジシクロペンタジエン樹脂、主原料が1,3―ペンタジエン、ペンテン、メチルブテン等である石油樹脂などの炭化水素樹脂、アルキルフェノール樹脂、変性フェノール樹脂、テルペンフェノール樹脂、テルペン系樹脂、芳香族変性テルペン樹脂などが挙げられる。
【0056】
本発明のゴム組成物は、引張破断強度および引張破断伸びを従来レベル以上に向上するようにしたので、空気入りタイヤの耐破壊性および耐久性を従来レベル以上に改良することができる。
【0057】
本発明のゴム組成物は、空気入りタイヤのキャップトレッド部、アンダートレッド部、サイドウォール部、ビードフィラー部、およびカーカス層、ベルト層、ベルトカバー層などのコード用被覆ゴム、ランフラットタイヤにおける断面三日月型のサイド補強ゴム層、リムクッション部などに好適に使用することができる。
【0058】
以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【実施例】
【0059】
7種類のスチレン−ブタジエン共重合体を、表1,2に示した配合比でブレンドしたスチレン−ブタジエン共重合体成分を調製し、(1)結合スチレンの含量(重量%)、(2)1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分V1のモル%、(3)スチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1のモル%、並びに(4)ブタジエン部分のビニル含有量(重量%)を測定した。またスチレン−ブタジエン共重合体のタフデン2330,NS570,NS460,NS522,Nipol 1739は油展品であるため、実際の配合量とともに括弧内に正味のゴム成分の配合量を記載した。
【0060】
スチレン−ブタジエン共重合体成分の(1)結合スチレンの含量、および(4)ブタジエン部分のビニル含有量は、
1H−NMRにより測定した。
【0061】
スチレン−ブタジエン共重合体成分のオゾン分解の条件は、前述の通りにした。また(2)1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分V1のモル%、(3)スチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1のモル%は、LC×LCMS分析で前述した条件に基づき測定した。
【0062】
表3に示す配合剤を共通配合とし、表1,2に示すスチレン−ブタジエン共重合体成分(複数のスチレン−ブタジエン共重合体のブレンド物)および他のジエン系ゴムの配合からなる9種類のゴム組成物(実施例1〜5、比較例1〜4)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーを用いて6分間混合し、150℃でミキサーから放出後、室温まで冷却した。その後、再度1.7リットルの密閉式バンバリーミキサーを用いて3分間混合し、放出後、オープンロールにて硫黄および加硫促進剤を混合することによりゴム組成物を調製した。得られたゴム組成物を所定のモールドを用いて、160℃で30分間加硫して加硫ゴム試験片を作製した。得られた加硫ゴム試験片を使用し、引張破断強度および引張破断伸びを以下の測定方法により評価した。
【0063】
引張り破断強度、引張り破断伸び
得られた加硫ゴム試験片を使用し、JIS K6251に準拠して、ダンベルJIS3号形試験片を作製し、室温(20℃)で500mm/分の引張り速度で引張り試験を行い、破断したときの引張り破断強度および引張り破断伸びを測定した。得られた結果は、比較例1の値をそれぞれ100にする指数として表1,2の「引張破断強度」および「引張り破断伸び」の欄に記載した。「引張破断強度」の指数が大きいほど引張破断強度が強く優れることを意味する。「引張破断伸び」の指数が大きいほど引張破断伸びが大きく優れることを意味する。
【0064】
【表1】
【0065】
【表2】
【0066】
表1,2において、使用した原材料の種類は、以下の通りである。
・NS116:日本ゼオン社製NS116、結合スチレン量が20.9重量%、ビニル含有量が63.8%、非油展品
・タフデン2330:旭化成ケミカルズ社製タフデン2330、結合スチレン量が25.8重量%、ビニル含有量が28.5%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NS570:日本ゼオン社製NS570、結合スチレン量が40.6重量%、ビニル含有量が19.0%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NS460:日本ゼオン社製NS460、結合スチレン量が25.1重量%、ビニル含有量が62.8%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NS522:日本ゼオン社製NS522、結合スチレン量が39.2重量%、ビニル含有量が42.2%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・5360H:Korea Kumho Petrochemica社製5260H、結合スチレン量が27.6重量%、ビニル含有量が55.2%、非油展品
・Nipol 1739:日本ゼオン社製Nipol 1739、結合スチレン量が39.8重量%、ビニル含有量が18.4%、SBR100重量部にオイル成分37.5重量部を添加した油展品
・NR:天然ゴム、TSR20
・BR:ポリブタジエン、日本ゼオン社製Nipol BR1220
・オイル:昭和シェル石油社製エクストラクト4号S
【0067】
【表3】
【0068】
なお、表3において使用した原材料の種類を下記に示す。
・シリカ:日本シリカ社製ニップシールAQ
・シランカップリング剤:スルフィド系シランカップリング剤、デグッサ社製Si69VP
・カーボンブラック:昭和キャボット社製ショウブラックN339M
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:日油社製ステアリン酸
・老化防止剤:Solutia Euro社製Santoflex 6PPD
・ワックス:大内新興化学工業社製パラフィンワックス
・硫黄:軽井沢精錬所製油処理硫黄
・加硫促進剤−1:三新化学社製サンセラーCM−PO(CZ)
・加硫促進剤−2:三新化学社製サンセラーD−G(DPG)
【0069】
表1,2から明らかなように実施例1〜7のゴム組成物は、引張破断強度および引張破断伸びを改良することが確認された。
【0070】
比較例2のゴム組成物は、スチレン−ブタジエン共重合体成分が、ビニル含有量が50%以上であるので、引張破断強度および引張破断伸びが劣る。
【0071】
比較例3のゴム組成物は、スチレン−ブタジエン共重合体成分が、1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分V1が20モル%未満であるので、引張破断伸びが劣る。また引張破断伸びを高くすることができない。
【0072】
比較例4のゴム組成物は、スチレン−ブタジエン共重合体成分が、ビニル含有量が50%以上、スチレン由来単位を2つおよび1,2−結合したブタジエン由来単位を1つ含むオゾン分解成分S2V1が4モル%以上であるので、引張破断強度および引張破断伸びが劣る。