(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0028】
以下に説明する最良の実施形態は、本発明を容易に理解するために用いられている。従って、当業者は、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。
【0029】
図1は、本発明に従う表示装置の1つの用途の説明図である。
図1の例において、表示装置として、例えばヘッドアップディスプレイ装置100が示され、ヘッドアップディスプレイ装置100は、例えば自動車である車両に適している。ヘッドアップディスプレイ装置100は、車両のダッシュボード内に設けられ、表示画像を表す表示光Lをウインドシールド200で反射させることにより、運転者250等の乗員は、例えば車両情報を表す表示画像の虚像Vを視認することができる。
【0030】
図2は、
図1のヘッドアップディスプレイ装置100の表示機構の説明図である。
図2の例において、ヘッドアップディスプレイ装置100は、例えば、照明部10と、照明光学系20と、表示素子30と、検出部40と、投射光学系50と、スクリーン60と、平面ミラー70と、凹面ミラー75と、表示画像Mが出射する窓部81を有するハウジング80と、を備えている。
【0031】
図2の照明部10は、発光可能な光源部11(
図3参照)を有し、例えば、光源部11を実装する回路基板(図示せず)と、反射透過光学部(図示せず)と、輝度ムラ低減光学部(図示せず)と、を更に有することができる。光源部11は、例えば赤色光を発する発光ダイオード11r(広義には、第1の発光素子)と、例えば緑色光を発する発光ダイオード11g(広義には、第2の発光素子)と、例えば青色光を発する発光ダイオード11b(広義には、第3の発光素子)と、を備えている(
図3参照)。
【0032】
図2の照明光学系20は、例えば凹状のレンズ等で構成され、照明部10から出射された照明光Cを表示素子30の大きさに調整することができる。
図2の表示素子30は、例えば、可動式の複数のマイクロミラーを備えたDMD(Digital Micro-mirror Device)であり、複数のマイクロミラーの各々は、個別に制御される。マイクロミラーがONである時に、マイクロミラーは、ヒンジ(図示せず)を支点に例えば+12度傾斜し、照明光学系20から出射された照明光Cを投射光学系50方向に反射することができる。マイクロミラーがOFFである時に、マイクロミラーは、ヒンジを支点に例えば−12度傾斜し、照明光Cを投射光学系50方向に反射することができない。
【0033】
図2の検出部40は、照明部10の光源部11の出力強度を検出することができ、好ましくは、光源部11の温度も検出することができる。
図2の投射光学系50は、例えば凹レンズ又は凸レンズ等で構成され、表示素子30から投影された表示画像Mの表示光Lをスクリーン60に効率よく照射することができる。
図2のスクリーン60は、例えば拡散板、ホログラフィックディフューザ、マイクロレンズアレイ等で構成され、投射光学系50からの表示光Lをスクリーン60の下面で受光し、スクリーン60の上面に表示画像Mを表示することができる。
【0034】
図2の平面ミラー70は、スクリーン60に表示された表示画像Mを凹面ミラー75に向かって反射させることができる。
図2の凹面ミラー75は、例えば凹面鏡等であり、平面ミラー70からの表示光Lを凹面で反射させ、反射光は、窓部81に向かって出射する。このような表示機構を介して表示光Lは、
図1の運転者250に到達し、運転者250によって認識される虚像Vは、スクリーン60に表示された表示画像Mが拡大された大きさを有する。
【0035】
図2のハウジング80の材料は、例えば硬質樹脂等であり、ハウジング80の上方に所定の大きさの窓部81が設けられている。
図2の窓部81の材料は、例えばアクリル等の透光性樹脂であり、窓部81の形状は、例えば湾曲形状である。窓部81は、凹面ミラー75からの表示光Lを透過させることができる。
【0036】
図3は、本発明に従う表示装置の構成例を示す。
図1において、表示装置は、ヘッドアップディスプレイ装置100として示され、ヘッドアップディスプレイ装置100は、例えば
図3の制御部90、照明制御部91及び表示制御部92によって制御される。
図3の例において、ECU(Electronic Control Unit)は、映像信号300を生成し、制御部90は、例えばLVDS(Low Voltage Differential Signal)方式の通信で映像信号300を入力することができる。制御部90は、典型的には、例えばFPGA(Field Programmable Gate Array)で構成されるが、ASIC(Application Specific Integrated Circuit)、マイクロコンピュータ等で構成されてもよい。また、制御部90、照明制御部91及び表示制御部92は、例えば統合ICで構成されてもよい。
【0037】
図3の制御部90は、映像信号300の要求する光の輝度と発光タイミングで照明部10を制御するための照明制御データD1を照明制御部91に出力するとともに、映像信号300の要求する表示画像Mを表示素子30で形成するための表示制御データD2表示制御部92に出力することができる。表示画像Mを表示する周期であるフレームFは、複数の時間に分割されたサブフレームSFにより構成され(
図7参照)、
図3の照明制御部91は、サブフレームSF毎に異なる色の発光ダイオード11r、11g、11bを照明制御データD1の要求する光強度とタイミングで高速に順次切替えさせるフィールドシーケンシャル駆動方式により照明部10を制御することができる。
【0038】
図3の表示制御部92は、表示制御データD2に基づき、表示素子30の個々のマイクロミラーを例えばPWM方式により、ON/OFF制御し、照明部10の出射する照明光Cをスクリーン60の方向へ反射させる時に、発光ダイオード11r、11g、11bを基本色として利用し、加法混合方式による混色又はフルカラーで表示画像Mを表現することができる。
図3の検出部40は、例えばフォトダイオードであるセンサ41と、アナログデータをデジタルデータに変換するA/D変換器42と、を含み、発光部11の出力強度データPを制御部90に出力することができる。検出部40は、発光ダイオード11r、11g、11b毎に設けられ、センサ41は、典型的には、3つの光強度検出センサを有することができる。
【0039】
好ましくは、
図3の検出部40は、発光部11の温度データTも制御部90に出力し、センサ41は、典型的には、3つの発光ダイオード11r、11g、11bに対応する3つの温度検出センサを更に有することができる。なお、発光部11の温度データTは、例えば発光ダイオード又はLEDチップの周囲温度であり、制御部90は、その周囲温度と、LEDチップから周辺雰囲気までの熱抵抗と、投入電力と、に基づき、ジャンクション温度を算出してもよい。
【0040】
図4は、
図3の表示装置の動作例を表すフローチャートを示す。例えばステップST01において、制御部90は、新調光値を入力する。典型的には、
図1の車両又はヘッドアップディスプレイ装置100は、車両の前方照度等の外光の照度を検出する照度センサを備え、制御部90は、照度データに応じて映像信号300の要求する光の輝度を決定することができる。言い換えれば、新調光値は、典型的には、例えば照度データである。代替的に、新調光値は、例えば
図3のECU又は図示されない他のECU(広義には、車載装置)によって決定されてもよく、或いは、運転者250の操作によって決定されてもよい。
【0041】
新調光値が入力された後に、制御部90は、発光部11の温度(例えば赤色光を発する発光ダイオード11rの温度)を入力する(
図4のステップST02)。次に、制御部90は、新調光値に応じた光源部11の目標出力強度(例えば発光ダイオード11rの目標光強度)を決定する(ステップST03)。次に、制御部90は、新調光値に基づき設定又は変更された目標出力強度と現在の出力強度との差が閾値(第1の閾値又は強度閾値)以上であるか否かを判定する(ステップST04)。
【0042】
目標出力強度と現在の出力強度との差が閾値以上である時に、制御部90は、目標出力強度と現在の出力強度との差と、発光部11の温度と、に基づき補正値を決定する(ステップST05)。なお、表示装置又はヘッドアップディスプレイ装置100が発光部11の温度を検出しない時に、ステップST02は、省略され、ステップST05において、制御部90は、目標出力強度と現在の出力強度との差に基づき補正値を決定してもよい。
【0043】
図5は、目標出力強度に対応する制御値を補正する補正値の説明図である。
図3の制御部90は、光源部11の目標出力強度に対応する制御値を記憶し、例えば目標出力強度p1及びp2に対応する制御値は、それぞれ、d1及びd2である(
図5参照)。例えば
図5に示されるような関係式は、発光ダイオード11r,11g,11bの個体差を考慮して製造時に設定されている。目標出力強度の値が例えば
図5のp1からp2に変更される時に、制御部90は、現在の出力強度を考慮することができる(
図4のステップST05)。
【0044】
例えば、発光ダイオード11rの現在の出力強度データPは、目標出力強度p1と一致し、照明制御部91が制御値d1で発光ダイオード11rを駆動することを仮定する。具体的には、制御部90は、現在の出力強度(=p1)が設定後又は変更後の目標出力強度p2までどのくらい離れているかを考慮することができる。より具体的には、照明制御部91は、設定後又は変更後の目標出力強度p2に対応する制御値d2で発光ダイオード11rを駆動する時に、その制御値d2は、現在の出力強度(=p1)から目標出力強度p2までの距離(=p1−p2)に基づく補正値Δによって補正することができる。
【0045】
現在の出力強度(=p1)を設定後又は変更後の目標出力強度p2まで下げる時に、照明制御部91は、減少された制御値(=d2−Δ=d2')で発光ダイオード11rを駆動することができる。言い換えれば、照明制御部91は、設定後又は変更後の目標出力強度p2よりも低い目標出力強度に対応する制御補正値d2'で発光ダイオード11rを駆動することができる。一般に、目標出力強度pが高い程、発光ダイオード11rは高温であるので、現在の出力強度(=p1)を設定後又は変更後の目標出力強度p2まで下げる時に、発光ダイオード11rの高温状態(発熱量)に起因して、制御値d2で駆動する発光ダイオード11rの輝度が大きいことを本発明者らは、認識した。
図3の照明制御部91では、現在の出力強度(=p1)を設定後又は変更後の目標出力強度p2まで下げる時に、減少された制御値(=d2−Δ=d2')で発光ダイオード11r等の光源部11を駆動するので、照明部10の輝度を的確に制御することができる。
【0046】
好ましくは、目標出力強度と現在の出力強度との差の絶対値が大きい程、補正値の絶対値は、大きく設定される。即ち、現在の出力強度(=p1)を設定後又は変更後の目標出力強度(<p2)まで下げる時に、照明制御部91は、より一層減少された制御値(<d2')で発光ダイオード11rを駆動することができる。現在の出力強度から目標出力強度までの距離が離れる程、照明制御部91は、その距離に応じて強く補正された補正値に基づき光源部11を駆動するので、制御部90は、照明部10の輝度をより一層的確に制御することができる。
【0047】
なお、
図5において、制御値dは、例えば発光ダイオード11r等の1つの発光素子をPWM駆動するDuty比とその発光ダイオード11rをPAM駆動する電流値との乗算値に基づく、発光ダイオード11の駆動電力である。1例として、PWM駆動のDuty比が一定である時に、制御値dは、発光ダイオード11の駆動電流である。或いは、駆動電流が一定である時に、制御値dは、PWM駆動のDuty比である。
【0048】
例えば、発光ダイオード11rの現在の出力強度データPは、目標出力強度p2と一致し、照明制御部91が制御値d2で発光ダイオード11rを駆動することを仮定する。現在の出力強度(=p2)を設定後又は変更後の目標出力強度p1まで上げる時に、照明制御部91は、増加された制御値(>d1)で発光ダイオード11rを駆動することができる。具体的には、制御部が目標出力強度に対応する制御値を記憶する時に、設定後又は変更後の目標出力強度よりも高い目標出力強度に対応する制御補正値で光源部を駆動することができる。一般に、目標出力強度pが低い程、発光ダイオード11rは低温であるので、現在の出力強度(=p2)を設定後又は変更後の目標出力強度p1まで上げる時に、発光ダイオード11rの低温状態(発熱量)に起因して、制御値d1で駆動する発光ダイオード11rの輝度が小さいことを本発明者らは、認識した。
図3の照明制御部91では、現在の出力強度(=p2)を設定後又は変更後の目標出力強度p1まで上げる時に、増加された制御値(>d1)で発光ダイオード11r等の光源部11を駆動するので、照明部10の輝度を的確に制御することができる。
【0049】
図3の制御部90は、光源部11の目標出力強度に対応する制御値を記憶する時に、制御値に関連付けられた光源部11の想定温度を記憶することができる。例えば制御値d1及びd2に対応する想定温度は、それぞれ、T1及びT2である(
図5参照)。
図4のステップST02において、例えば発光ダイオード11rの温度がTであり、例えば、発光ダイオード11rの現在の出力強度データPは、目標出力強度p1と一致し、照明制御部91が制御値d1で発光ダイオード11rを駆動することを仮定する。具体的には、制御部90は、現在の温度(=T)と現在の出力強度(=p1)に対応する現在の制御値(d1)に関連付けられた想定温度(=T1)との差が閾値(第2の閾値又は温度閾値)以上である時に、現在の温度(=T)が現在の想定温度(=T1)からどのくらい離れているかを考慮することができる。より具体的には、制御部90は、現在の温度(=T)と、現在の想定温度(=T1)と、設定後又は変更後の目標出力強度p2に対応する制御値d2に関連付けられた想定温度T2と、を比較することができる。
【0050】
現在の温度(=T)が設定後又は変更後の想定温度T2よりも現在の想定温度(=T1)から離れる時に、即ち、T<T2<T1が成立する時に、制御部90は、補正値Δを減少させることができる。現在の温度(=T)が現在の想定温度(=T1)よりも設定後又は変更後の想定温度T2から離れる時に、即ち、T2<T1<Tが成立する時に、制御部90は、補正値Δを増加させることができる。現在の温度(=T)が設定後又は変更後の想定温度T2と現在の想定温度(=T1)との間にある時に、即ち、T2<T<T1が成立する時に、制御部90は、補正値Δを減少させることができる。
【0051】
図4のステップST05において、制御部90は、上述したような補正値を決定することができる。ステップST04において、目標出力強度と現在の出力強度との差が閾値以上でない時に、制御部90は、ステップST05を省略し、言い換えれば、補正値にゼロを設定することができる。ステップST06において、制御部90は、補正値に基づき制御値を補正し、照明制御部91は、その補正制御値で光源部11を駆動することができる。照明制御部91が制御補正値に基づき光源部11を駆動した後に、制御部90は、検出部40によって検出された現在の出力強度を取り込み(ステップST07)、現在の出力強度が目標出力強度に一致するように、補正値を調整することができる(ステップST09)。
【0052】
1例として、照明制御部91は、
図5の補正制御値d2'が制御値d2に向かうように補正値Δを徐々に減少させることができる。ステップST07でリアルタイムに検出された現在の出力強度が目標出力強度で安定するまで(ステップST08)、制御部90は、補正値を調整することができる。現在の出力強度が目標出力強度で安定する時に、制御部90は、現在の出力強度を更新することができる(ステップST10)。具体的には、制御部90は、現在の出力強度として、安定した目標出力強度を採用することができる。
【0053】
図6は、
図2の表示画像Mを表示する周期であるフレームFの説明図である。フレームFは、表示素子30の個々のマイクロミラーが通常駆動する表示期間Faと、非表示期間駆動する非表示期間Fbと、を備える。フレームF内に占める表示期間Faの割合は、例えば50[%]であるが、これに限定されず、例えば70[%]又は100[%]に設定されてもよい。フレームF内に占める表示期間Faの割合は、一定でもよく、要求輝度に応じて決定されてもよい。表示期間Faは、照明部10からの照明光Cをスクリーン60に向けて表示画像Mとして投影する期間である。非表示期間Fbは、照明部10が消灯する(例えば3つの発光ダイオード11r,11g,11bのすべてが消灯する)期間である(
図7(d)〜
図7(f)参照)。
【0054】
表示期間内オン駆動期間Fapは、表示期間Fa内でマイクロミラーがONする期間であり、表示期間内オフ駆動期間Faqは、表示期間Fa内でマイクロミラーがOFFする期間である。非表示期間内オン駆動期間Fbpは、非表示期間Fb内でマイクロミラーがONする期間であり、非表示期間内オフ駆動期間Fbqは、非表示期間Fb内でマイクロミラーがOFFする期間である。マイクロミラーを駆動する時に、マイクロミラーの固着を防止するために、好ましくは、表示期間内オン駆動期間Fapと非表示期間内オン駆動期間Fbpとの和(総オン駆動期間Fp)と、表示期間内オフ駆動期間Faqと非表示期間内オフ駆動期間Fbqとの和(総オフ駆動期間Fq)とが略均等になるように、制御部90は、非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとを調整する。
【0055】
図7は、
図3の表示素子30及び発光部10の駆動方法の説明図である。
図7(a)〜
図7(c)に示すように、フレームFにおいて、表示素子30は、例えば緑色を単色で表示する単色ミラーEa、赤色と緑色の混色を表示する混色ミラーEb、何も表示しない消灯ミラーEcを含むことができる。単色ミラーEaは、
図7(a)に示すように、表示制御データD2に基づき、表示期間Faにおいては発光ダイオード11gの点灯タイミング(
図7(e)参照)でONされ、非表示期間FbにおいてはフレームF内のONする期間の和である総オン駆動期間Fpが、フレームFの略半分になるように、制御部90が非表示期間Fbにおける非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとを調整することができる。
【0056】
制御部90は、
図7(b)に示す混色ミラーEbのように、非表示期間Fb内におけるONとOFFとを、非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとに即した周期で繰り返すことで、総オン駆動期間Fpと総オフ駆動期間Fqとが略均等になるように、調整することができる。また、
図7(c)に示すように、消灯ミラーEcは、表示期間Faに渡ってオフ駆動であるため、非表示期間駆動は、非表示期間Fbに渡ってONすることができる。
【0057】
本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。