(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0008】
図2は、ダイ200を備えるフラッシュメモリシステムのアーキテクチャの一実施形態を表す。ダイ200は、データを記憶するためのメモリアレイ215及びメモリアレイ220であって、以前に
図1においてメモリセル10として説明された型のメモリセルの行及び列を備える、メモリアレイ215及び220と、ダイ200の他の構成要素と、典型的には、次にピン(図示せず)に接続するワイヤボンド(図示せず)と、又はSOC(システムオンチップ)上で他のマクロに相互接続するためのパッケージ化されたチップ又はマクロインターフェースピン(図示せず)の外側から集積回路にアクセスするために使用されるパッケージバンプとの間の電気通信を可能にするためのパッド240及びパッド280と、正及び負電圧源をシステムに提供するために使用される高電圧回路275と、冗長性及び組み込み自己試験機能などの様々な制御機能を提供するための制御論理270と、アナログ回路265と、メモリアレイ215及びメモリアレイ220からデータをそれぞれ読み出すために使用される検知回路260及び261と、メモリアレイ215及びメモリアレイ220の行にそれぞれアクセスして、読み出し及び書き込みを行うために使用される行デコーダ回路245及び行デコーダ回路246と、メモリアレイ215及びメモリアレイ220のバイトにそれぞれアクセスして、読み出し及び書き込みを行うために使用される列デコーダ回路255及び列デコーダ回路256と、プログラム及び消去動作のための増加した電圧をメモリアレイ215及びメモリアレイ220にそれぞれ提供するために使用されるチャージポンプ回路250及びチャージポンプ回路251と、読み出し及び書き込み動作のためにメモリアレイ215及びメモリアレイ220によって共有される負電圧ドライバ回路230と、読み出し及び書き込み動作中にメモリアレイ215によって使用される高電圧ドライバ回路225及び読み出し及び書き込み動作中にメモリアレイ220によって使用される高電圧ドライバ回路226と、を備える。
【0009】
読み出し、消去、又はプログラムコマンドに応答して、論理回路270は、選択メモリセル10及び非選択メモリセル10の両方の様々な部分に、適時に、ディスターブが最も少ない方法で様々な電圧を供給させる。
【0010】
選択及び非選択メモリセル10に対し、印加される電圧及び電流は次のとおりである。
以下に使用されるように、次の略語、つまり、ソース線又は第1領域14(SL)、ビット線20(BL)、ワード線22(WL)、結合ゲート26(CG)が使用される。
【0011】
選択メモリセル10及び非選択メモリセル10の読み出し、消去、及びプログラム動作を行う従来技術の方法は、以下の電圧を印加することを含む。
【0013】
1つの実施形態では、読み出し及びプログラム動作中にメモリセル10が非選択であるときに、負電圧をワード線22に印加することができ、よって、以下の電圧が印加される。
【0015】
別の実施形態では、読み出し、消去、及びプログラム動作中にメモリセル10が非選択であるときに、負電圧をワード線22に印加することができ、そして、消去動作中に負電圧を結合ゲート26に印加することができ、よって、以下の電圧が印加される。
【0017】
上に列記されたCGINH信号は、消去ゲート28を選択セルと共有する非選択セルの結合ゲート26に印加される、抑制信号である。
【0018】
図3を参照すると、上で説明した動作#3の下でのプログラム動作の信号タイミング波形の1つの実施例が示されている。メモリセル10の端子WL、BL、CG、SL、EGにそれぞれ対応する信号WL、BL、CG、SL、EGは、上で説明したとおりである。
プログラミングの場合、信号WL302は、最初に、(下で述べられるデコーダ回路1600内の制御信号を設定するなどのために)高くなり(例えば、Vdd以下)、次いで、(バイアス電圧Vpwlに)落ち着き始める。次いで、信号BL304及びCG306が、高く、例えば、それぞれ、Vinh以下=Vdd以下及び10〜11vになり、次いで、SL308が高く(例えば、4.5v以下〜5v)なる。代替的に、CG306は、(破線の波形によって示されるように)SL308の後に高くなる。信号CGINH312は、CGINHレベルによる非選択CGに対するディスターブの影響を低減させるために、信号306と同時に、又はほぼ同時に高く(例えば3〜6Vに)なり、好ましくは、EG310が高く(例えば6〜9Vに)なる前に高くなる。代替的に、信号CGINH312は、信号EG310とほぼ同時に高くすることができる。信号WL302は、電圧Vpwl(例えば1v)に落ち着き、信号BL304は、CGが高になるにつれて、電圧Vdp(例えば0.5v以下)に落ち着く。非選択WLは、選択WL302が高くなる前、又はそれと同時に、0V又は負(例えば−0.5v)まで下がる。非選択CG及びEGは、スタンバイ時の値(例えば0〜2.6v)にとどまる。非選択SLは、CG306が高くなるにつれて、スタンバイ時の値(例えば0v)にとどまるか、又はバイアス電圧(例えば1v)に切り換わる(非選択SLが、バイアスレベルに切り換わり、BLを通して非選択セルを通した漏れ電流を防止する)。P型基板12は、プログラミング時に、0ボルトであるか、又は代替的に、負電圧レベルとすることができる。
【0019】
信号BL304は、様々な信号がプログラミング電圧へのランピング中にまだ安定していないことによる不用意なプログラムディスターブを防ぐために、最初に、Vinh(抑制電圧)まで高くなる。時限シーケンスCG306対SL310は、ディスターブの影響、例えばより多くのディスターブを引き起こすどの信号でも最後に高くなること、を低減するために最適化される。プログラミングパルスのランプダウンは、ディスターブを最小化するために逆になる(即ち、最初に上がる信号は、ここで最後に下がる)。信号SL310が下がり、次いで、CG306が下がり、次いで、WL302及びBL304が下がる。例えば−1vなどの負になる基板Pを使用するプログラミングの実施形態では、この負の切り換えは、信号WLが低くなる又はCGが高くなるのと同時に起こる。EG310及びCGINH312の時限シーケンスは、示されるように、ディスターブの影響(共有EGの非選択行におけるソフト消去)を低減させるように最適化される。信号CGINH312は、信号EG312の前に、又はそれとほぼ同時に高くなる。ランプダウンは、信号EG312の後に、又はそれとほぼ同時にCGINH312が下がることによって逆になる。
【0020】
図4を参照すると、上で説明した動作#3の下での消去動作の信号タイミング波形の1つの実施例が示されている。消去の場合、信号WL302は、(下で述べられるデコーダ回路1600における制御信号を設定するなどのために)高く、例えばVddになり、次いで、低く、例えば0V(又は代替的に、−0.5vなどの負)になる。WL302が低くなるのとほぼ同時に、又はその少し後に、信号CG306は、負(例えば−6V〜−9V)になる。次いで、選択EG310が高く(例えば9V〜6Vに)なる。信号BL304、SL308は、スタンバイ値(例えば0V)にとどまる。非選択WLは、選択EG310が高くなる前に、又はそれと同時に、0V又は負(例えば−0.5V)まで下がる。
非選択CG及びEGは、スタンバイ時の値(例えば0〜2.6V)にとどまる。代替的に、非選択CGは、負レベル(選択CG負レベルと同じ)とすることができる。非選択SLは、スタンバイ時の値(例えば0v)にとどまる。P型基板12は、消去を高めるために、0ボルトであるか、又は代替的に、負電圧レベルとすることができる。
【0021】
消去パルスのランプダウンは、ほぼ順番が逆になる(即ち、最初に上がる信号はここで最後に下がる)。信号EG310及びCG306は、スタンバイ値(例えば0V)になる。
【0022】
図5を参照すると、上で説明した動作#3の下での読み出し動作の信号タイミング波形の1つの実施例が示されている。
図6を参照すると、本発明のメモリ装置10で使用するための、上で説明した正/負バイアスレベルの読み出し信号の信号タイミング波形の1つの実施例が示されている。この読み出し信号波形は、完全な不揮発性消去/プログラム/読み出し動作のために、
図3のプログラム及び消去信号波形に付随する。正常読み出し波形の場合、SL308は、スタンバイ値(例えば0V)である。CG306は、(読み出し状態においてFG電位に結合するCG電圧によるメモリセル電流の増加を補助するために)スタンバイ値(例えば0V又は2.6V)であるか、又は代替的に、読み出し時に、より高いバイアス値(例えば3.6V)に切り換わる。EG310は、(読み出し状態においてFG電位に結合するEG電圧によるメモリセル電流の増加を補助するために)スタンバイ値(例えば0V又は2.6V)であるか、又は代替的に、読み出し時に、より高いバイアス値(例えば3.6V)に切り換わる。スタンバイ値は、プログラム及び消去状態のスタンバイ値と同様である。WL302及びBL304は、読み出すための選択メモリセルに対して、それぞれ、読み出し時にバイアスレベル(例えば2.6V及び1.0V)に切り換わる。非選択WLは、(非選択行に関する漏れを低減させるために)0ボルト又は負電圧レベル(例えば−0.5V)にバイアスすることができる。非選択SLは、(非選択行に関する漏れを低減させるために)0ボルト又は正バイアス電圧レベル(例えば0.1〜0.7V)にバイアスすることができる。非選択BLは、0ボルトにバイアスするか、又は代替的に、フロートさせることができ、いかなる電圧も印加されない(読み出し時に、BL−BLキャパシタンスを効果的に低減させる)ことを意味する。
【0023】
図6を参照すると、読み出しマージン0の動作は、弱いプログラミングセルを検出するようにアレイ全体をプログラミングした後に実行される。プログラミング後、セル電流は、通常<ナノアンペア(nA)の非常に低い値であり、これは「0」デジタル値(セル電流が流れない)の読み出しに相当する。しかしながら、いくつかのセルは、(セル漏れ、弱いセルプログラミングの結合比、プロセスの幾何学的な影響などの様々な理由による弱いプログラミングのため)2〜3マイクロアンペアでわずかにとどまる場合があり、これは、メモリ装置10の動作寿命中に、読み出し「0」を失敗させ得る。読み出しマージン0は、それらの弱いセルを除外するために使用される。読み出しマージン0波形の場合、SL308は、スタンバイ値(例えば0v)である。正常読み出し状態と同じように、WL302及びBL304は、読み出すための選択メモリセルに対して、それぞれ、読み出し時にバイアスレベル(例えば2.6v及び1.0v)に切り換わる。CG306は、弱いプログラムセルを検出するために、読み出し時に、マージン0値(例えば3V)にバイアスされる。CG電圧は、弱いプログラミングの影響を増幅するためにFG電位と結合し、セル電流を実際的に増加させ、したがって弱いセルはここで「0」の代わりに「1」として読み出される(セル電流が流れない代わりに実際にセル電流が存在する)。
【0024】
読み出しマージン1の動作は、弱い消去されたセルを検出するため、アレイ全体の消去後に実行される。負CGは、ここで、この状態を検出するために利用される。SL308は、スタンバイ値(例えば0v)である。正常読み出し状態と同じように、WL302及びBL304は、読み出すための選択メモリセルに対して、それぞれ、読み出し時にバイアスレベル(例えば2.6v及び1.0v)に切り換わる。CG306は、弱い消去セルを検出するために、読み出し時にマージン1値(例えば−3v〜−5v)にバイアスされる。CG電圧は、弱い消去された影響を増幅するためにFG電位と負に結合し、セル電流を実際的に減少させ(FG電位より少なく)、したがって弱いセルはここで「1」の代わりに「0」として読み出される(セル電流の代わりに実際にセル電流が流れない)。
【0025】
図7Aを参照すると、メモリセル10の装置断面の一実施形態が示されている。メモリセル10の装置断面の代替の実施形態は、高電圧P型ウェル710及びディープN型ウェル720を伴わないP型基板730である。ソース領域14、ビット線領域16、チャネル領域18、及び基板領域12を有するメモリセル10は、高電圧(HV)P型ウェル710の領域の内側に座った状態で示される(メモリセル10の他の領域又は端子は、図示されていない)。P型ウェル710の領域は、ディープN型ウェル(DNW)領域720の内部に位置する。ディープN型ウェル領域720は、P型基板730の内部に位置する。DNW領域720の絶縁特徴のため、典型的には0ボルト又はVddに接続され、HV P型ウェル710は、負にバイアスして、消去時又はプログラム時などに、メモリセルの電気的性能を高めることができる。
【0026】
図7における装置の断面はまた、それぞれメモリセル10の領域16、14、18を高電圧nmosソース、ドレイン、及びチャネルに置き換えて、ディープN型ウェルの高電圧nmosトランジスタにも適用することができる。ディープN型ウェル720は、同様に、高電圧nmosを負電圧動作に適用することができるように、電圧絶縁領域としての役割を果たす。実施形態は、DNWの中のHV nmosのトランジスタ端子及び接合部全体にわたる応力の低減を確実にするために行われる。
【0027】
図7Bを参照すると、メモリセル10の記号的表現740が表され、ディープN型ウェル720が「DNW」として示され、HV P型ウェル710が「P−well」として示されている。
図7Bには、ディープN型ウェル720内部のHV P型ウェル710のNMOSに関するトランジスタ記号750が示される。
【0028】
図8を参照すると、レベルシフタの第1実施形態、負高電圧レベルシフタ800が示され、これは、
図2の論理270、負電圧ドライバ回路230、高電圧ドライバ回路225、及び/又は高電圧ドライバ回路226に含むことができる。
【0029】
負高電圧レベルシフタ800は、入力INを受信し、出力VNBNを生成する。負高電圧レベルシフタ800は、トランジスタ820及びトランジスタ830のディープN型ウェルDNWB804を駆動して、トランジスタ820及びトランジスタ830の層の間での破損の発生を最小にする。DNW制御回路835は、トランジスタ820及び830の電圧応力の低減に応じて、入力IN2 802を受信して、出力DNWB804を生成する。インバータ805は、入力INを受信し、インバータ出力INBを生成し、該インバータ出力は、インバータ810及びPMOSトランジスタ825のゲートへの入力である。インバータの出力810は、PMOSトランジスタ815のゲートに結合される。PMOSトランジスタ815及び825は、示されるように、NMOSトランジスタ820及び830に結合される。出力VOUT808は、VHVNEG806及びVddの間で変動させることができ、この実施例では、それぞれ、−8V及び2Vである。DNWBレベルは、例えば、0VからVdd(例えば2.5V)までとすることができ、VHVNEGが−8Vであるときには、0Vである。これは、トランジスタ820及び830のDNWBと、HV P型ウェルと、ソース/ドレインとの間の電圧応力を(8V+2.5V=10.5Vではなく)8Vに最小化する。代替的に、DNWBレベルは、更に電圧応力を最小化するために、VHVNEGが−8Vであるときに、(P型基板−DNW接合部に転送することなく)−0.5Vに駆動することができる。VHVNEGが0ボルトである、又は小さい負電圧であるときなどの他の時点で、DNW制御回路835は、DNWBを正に、例えばVddレベルになるように駆動して、ノイズ又はラッチアップを最小にする(P型基板からディープN型ウェル接合部への転送を防止する)ことができる。DNWBを駆動するためのこの技術は、下で説明される全ての実施形態に適用することができる。
【0030】
図9を参照すると、レベルシフタの第2実施形態、負高電圧レベルシフタ900が示され、これは、
図2の論理270、負電圧ドライバ回路230、高電圧ドライバ回路225、及び/又は高電圧ドライバ回路226に含むことができる。負高電圧レベルシフタ900は、負高電圧レベルシフタ800と同じ構成要素を備えるが、示されるように、カスコードPMOSトランジスタ935及び945、並びにカスコードNMOSトランジスタ940及び950が追加されている。負高電圧レベルシフタ900は、入力INを受信し、出力OUT908を発生させる。出力OUT908は、VHVNEG906とVddとの間で変動し、この実施例では、それぞれ、−8V及び2Vである。DNWB信号904は、電圧応力を最小化するために、負高電圧レベルシフタ回路800のものと同様に駆動される。PMOSトランジスタ935及び945のゲートは、ゲート−ソース/ドレイン端子にわたる電圧応力を最小化するために、gnd(=Vddではなく=0V)に接続される。NMOSトランジスタ940及び950のゲートは、ゲート−ソース/ドレイン(例えば、8+Vdd=10.5Vではなく8V−3V=5V)、ソース−ドレイン(例えば、8+Vdd=10.5Vではなく8V−3V−Vt=4v以下、Vt=NMOS閾値電圧)にわたる電圧応力を最小化するために、VNBN960(Vddと中間負レベル(例えば−3V)の間)に接続される。
【0031】
図10を参照すると、レベルシフタの第3実施例、負高電圧レベルシフタ1000が示され、これは、
図2の論理270、負電圧ドライバ回路230、高電圧ドライバ回路225、及び/又は高電圧ドライバ回路226に含むことができる。負高電圧レベルシフタ1000は、負高電圧レベルシフタ900と同じ構成要素を備えるが、PMOSトランジスタ1075及び1085、並びにNMOSトランジスタ1080及び1090からなる中間(中)負レベルシフタ1002が追加されている。中間負レベルVHVNEGM(例えば−3V)、及び追加のPMOSトランジスタのゲートのための中間負バイアスレベルVNBP1065及びNMOSトランジスタのゲートのためのVNBNを伴う、中間負レベルシフタ1002の導入は、負(高)レベルシフタにおけるPMOS及びNMOSの端子にわたる電圧応力を低減させるためである。負高電圧レベルシフタ1000は、入力INを受信し、出力OUT1008を発生させる。出力OUT1008は、VHVNEG1006と、GNDと、Vddとの間で変動し、この実施例では、それぞれ、−8V、0V、及び2Vである。出力OUT1008は、VHVNEG1006とGND(=VDDSWX1012)との間で変動し、この実施例では、電圧VHVNEG1006が最大高負電圧−8Vであるときに、それぞれ、−8V及び0Vである。VHVNEGMは、−3Vの負電力源を備えることができる。中間負レベルシフタ1002の出力OUTM1086及びOUTM_N1076は、VHVNEGMとVddとの間で変動し、この実施例では、それぞれ、−3V及び2Vである。VDDSWX1012は、2Vと0Vとの間で切り換わる、交換供給とすることができる。VDDSWX(Vdd高供給源)1012は、最初に、Vdd(例えば2V)であり、VHVNEG1006が最大負電圧のほぼ半分(例えば−4V)であるときに、又は最大負電圧(例えば−8V)であるときに、0Vに切り換えられる。VNBP1065は、0Vと−3Vとの間で切り換えることができる。VDDSWX1012が0Vであるとき、VNBP1065は、−3Vであり、出力OUTM_N 1076は、−3V(=VHVNEGM)であり、0Vを出力OUT1008に渡す。電圧VNBP1065が中間負電圧−3Vであるので、トランジスタ1035及び1045のゲート−ソース/ドレインにわたる電圧応力が低減される。電圧VNBN1060が中間負電圧−3Vであるので、トランジスタ1040及び1050のゲート−ソース/ドレインにわたる電圧応力が低減され、また、トランジスタ1020及び1030のソースドレインにわたる電圧応力が低減される。電圧OUT1008が(=Vddではなく)0Vであるので、トランジスタ1020及び1030のゲート−ソース/ドレインにわたる電圧応力が低減され、また、トランジスタ1040及び1050のソースドレインにわたる電圧応力が低減される。カスコードPMOSトランジスタ1035及び1045は、バルクとドレイン/ソースとの間の電圧応力を低減させるために、そのソースに接続されるそのバルク(nwell)を有する。カスコードNMOSトランジスタ1040及び1050は、バルクとドレイン/ソースとの間の電圧応力を低減させるために、そのソースに接続されるそのバルク(Pwell)を有する。
【0032】
図11を参照すると、電圧源回路1100が示されている。電圧源回路1100は、第1負電圧レベルシフタ回路1105及び第2負電圧レベルシフタ回路1110を備え、これらはそれぞれ、負高電圧レベルシフタ800、900、及び1000のうちの1つを備えることができる。この実施形態において、第1負電圧レベルシフタ回路1105及び第2負電圧レベルシフタ回路1110は、ともに負高電圧レベルシフタ1000を備え、また、入力INを受信し、この実施例では2Vと−3Vとの間で変動する中(中間)負電圧VHVNEGM、及びこの実施例では0Vと−8Vとの間で変動する高負電圧VHVNEGを発生させる。第1負電圧レベルシフタ回路1105及び第2負電圧レベルシフタ回路1110は、示されるように、NMOSトランジスタ1115(カスコードトランジスタ)及びNMOSトランジスタ1120に結合される。DNWBは、Vdd又は0Vの値を受容し、VPNext_pin1101は、2V又は−8Vの電圧を受容する。回路1100が有効になったときに、回路1105及び1110の出力は、例えば2Vに等しくなり、これは、NMOSトランジスタ1115及び1120が、VPNext_pin1101レベルをVHVNEG1106に渡すことを可能にする。回路1100が無効になったときに、回路1105及び1110の出力は、それぞれ、例えば−3V及び−8vに等しくなり、これらは、NMOSトランジスタ1115及び1120を無効にする。
【0033】
図12を参照すると、電圧源回路1200が示されている。電圧源回路1100は、負電圧レベルシフタ回路1225及び1240を備え、これらはそれぞれ、負高電圧レベルシフタ800、900、及び1000のうちの1つを備える。電圧源回路1200は、「オフ」状態において0Vであり、「オン」状態において2Vであるイネーブル信号EN_TXNを受信し、この実施例では0Vと−8Vとの間で変動する高負電圧VHVNEGを発生させる。VNEG_3Vは、2V又は−3Vである。負チャージポンプ1230及び1235は、それぞれ、−8Vの入力を−12Vの出力にポンプする。回路1200が有効になったときに、回路1230及び1235の出力は、例えば−12Vになり、したがって、PMOSトランジスタ1215及び1220が、VHVNEG1206にVPNext_pinレベルからの電圧を渡すことを可能にする。回路1200が無効になったときに、回路1230及び1235の出力は、それぞれ、例えば2V及び0Vであり、したがって、PMOSトランジスタ1215及び1220を無効にする。PMOSトランジスタ1210及び1245は、それぞれ、トランジスタ1205及び1250の電圧応力を低減させる、カスコードトランジスタをとしての役割を果たす。
【0034】
図13を参照すると、負高電圧放電回路1300が示されている。入力IN3、IN1st、及びIN2ndの状態が有効に変わったときに、トランジスタ1315及び1325が有効になり、そして、回路1350及び1355の出力が、例えばVdd(2V)に等しくなり、VHVNEGが、N2を通して−8Vから約−0.7Vまで放電される。NMOSトランジスタ1340(カスコードトランジスタ)及び1345のゲートは、負レベルVHVNEGをNMOSトランジスタ1335から分離するために、オフ状態(回路1350及び1355が無効である)において、例えば−3V及びー8Vに等しくなる。
放電電流は、最初に、電流バイアス1310(入力IN1stによって有効にされる)によって制御され、次いで、トランジスタ1325(入力IN2ndによって有効にされる)によって制御される。
【0035】
図14を参照すると、負高電圧放電回路1400が示されている。入力IN1st及びIN2ndの状態が有効に変わったときに、VHVNEGが、−8Vから、ダイオード接続されたNMOSトランジスタ1455及び1460のVt(閾値電圧)の数によって決定される、中間負電圧レベルまで放電される。放電電流は、最初に、電流バイアス1435(入力IN1stによって有効にされる)によって制御され、次いで、トランジスタ1445(入力IN2ndによって有効にされる)によって制御される。次いで、VHVNEGが、N1 1415及びN2 1420トランジスタを通して、中間負レベルから約0.0Vまで急速に放電される。NMOSトランジスタ1415(カスコードトランジスタ)及び1420のゲートは、それぞれ、中負レベルシフタ1405及び高負レベルシフタ1410によって制御される。
【0036】
図15を参照すると、接地スイッチ回路1500が示されている。接地スイッチ回路1500は、負高電圧回路1505と、負高電圧回路1510と、NMOSトランジスタ1515と、NMOSトランジスタ1520と、を備える。接地スイッチ回路1500は、入力信号を受信し、出力信号VHVNEGを発生させる。
【0037】
図16を参照すると、デコーダ回路1600が示されている。デコーダ回路1600は、
図2の論理270、負電圧ドライバ回路230、高電圧ドライバ回路225、及び/又は高電圧ドライバ回路226内に含むことができる。デコーダ回路1600は、高電圧レベルシフタ1605と、負高電圧レベルシフタ1610と、高電圧ディサイダイネーブル回路1615と、消去ゲートデコーダ1620と、制御ゲートデコーダ1625と、ソース線デコーダ1630と、を備える。高電圧イネーブル回路1615は、高電圧レベルシフタ1605から高電圧を印加し、及び/又は負高電圧レベルシフタ1610から負高電圧を印加して、ゲートデコーダ1620、結合ゲートデコーダ1625、及び/又はソース線デコーダ1630を消去するために使用される。
【0038】
図17を参照すると、制御ゲートデコーダ1625の一実施形態1700が示されている。制御ゲートデコーダ1700は、PMOSトランジスタ1705によって制御される電流による読み出し動作中に制御ゲートにバイアス電圧VCGSUPRを提供するPMOSトランジスタ1705及び1710と、負高電圧に絶縁を提供するPMOSトランジスタ1725と、プログラム時にPMOSトランジスタを通して正高電圧を提供するPMOSトランジスタ1715及び1720と、プログラム時に制御ゲートに抑制電圧を提供することができるNMOSトランジスタ1730、1735、1740、及び1745と、消去時に制御ゲートにNMOSトランジスタ1730とともに負高電圧を提供することができるNMOSトランジスタ1750及び1755と、を備える。NMOSトランジスタ1755は、制御ゲートの負電圧源の電流制御としての役割を果たす。NMOSトランジスタ1750は、消去時にローカルデコードセクタ有効化線SECHV_ENによって有効にされる負電圧レベルシフタによって有効にされる。示されるように、回路1700は、4つの制御ゲートCG[3:0]、1つの消去ゲートEG、及び1つのソース線SLにデコードを提供する。4つのグローバルプレデコードCG線CGPH_HV_N[3:0]によって有効にされるゲートを有する、4つのPMOSトランジスタ1715がある。
ローカルデコードセクタ有効化線SECHV_ENによって有効にされるゲートを有する、4つのPMOSトランジスタ1710がある。接地線によって有効にされるゲートを有する、4つの絶縁PMOSトランジスタ1725がある。4つのグローバルプレデコードCG線CGNH_HV_N[3:0]によって有効にされるゲートを有する、4つのNMOSトランジスタ1730がある。PMOSトランジスタ1720は、ローカルデコードセクタ有効化線SECHV_ENによって有効にされて、制御ゲートに正高電圧VCGSUPを渡す。NMOSトランジスタ1735及び1740は、それぞれ、グローバル制御信号CGN_ISO1及びCGN_ISO2によって有効にされて、CG_LOW_BIAS(プログラム時の抑制電圧など)を渡すか、又は絶縁電圧(例えばそれぞれ−8V及び−3V)としての役割を果たす。NMOSトランジスタ1745は、ローカルデコードセクタ有効化線SECHV_ENによって有効にされて、制御ゲートにCG_LOW_BIASレベルを渡す。DNWB1704は、VHVNEGが負電圧(例えば−8V)であるときに、0Vになるように制御される。示されるように、CGデコーダ1700における正CGデコード機能において、いかなるカスコードトランジスタも必要とされない。代替的に、負CGデコードの場合、カスコードNMOSトランジスタ1740は、随意である。代替的に、負CGデコードの場合、電流制御NMOSトランジスタ1755は、随意である。
【0039】
図18を参照すると、消去ゲートデコーダ1620の一実施形態1800が示されている。消去ゲートデコーダ1800は、PMOSトランジスタ1805及び1810と、NMOSトランジスタ1815と、を備える。PMOSトランジスタ1810は、消去ゲートに電圧又は高電圧VEGSUPを渡すように制御される電流である。PMOSトランジスタ1805は、ローカルデコードセクタ有効化線EN_HV_Nによって有効にされて、消去ゲートに電圧VEGSUPレベルを渡す。NMOSトランジスタ1815は、消去ゲートに電圧EG_LOW_BIASレベル(例えば0V〜2.6V)を渡すために使用される。デコード消去ゲートは、メモリセルの多数の行にわたって共有される。示されるように、EGデコーダ1620には、いかなるカスコードトランジスタも必要とされない。代替的に、カスコードトランジスタPMOS及びNMOSをEGデコーダ1629に実装することができる。
【0040】
図19を参照すると、ソース線デコーダ1630の一実施形態1900が示されている。ソース線デコーダ1900は、NMOSトランジスタ1905、1910、1915、及び1920を備える。ソース線デコーダ1900は、約0.5Vの値で、非選択のセルのソース線にバイアス電圧(SLP_LOW_BIAS)を提供する。このバイアス電圧を印加することは、非選択メモリセルの漏れを防止する。NMOSトランジスタ1915は、プログラム時に、ソース線にVSLSUPレベルを渡すために使用される。デコードソース線は、メモリセルの多数の行にわたって共有される。NMOSトランジスタ1920は、プログラム時に、ソース線からのVSLMONレベルを監視するために使用される。NMOSトランジスタ1905は、読み出し時に、ソース線にSLRD_LOW_BIASレベル(例えば0V)を渡すために使用される。
【0041】
図20を参照すると、高電圧負チャージポンプ回路2000が示されている。高電圧負チャージポンプ回路2000は、負ポンプ出力に結合されるPMOSトランジスタ2005及びPMOSトランジスタ2010と、正ポンプ出力に結合されるNMOSトランジスタ2015及びNMOSトランジスタ2020と、ポンプ段回路2025、2030、2035、及び2040と、を備える。高電圧負チャージポンプ回路2000は、高負電圧VHV_NEG及び高正電圧VHV_POSを提供し、ポンプ段回路2025、2030、2035、及び2045の各々は、電圧を受信し、より高い正電圧又は高負電圧を出力する。示されるように、各段のパスNMOSトランジスタのバルク(pwell)は、前段の出力に結合される。NMOSトランジスタのDNWBは、負電圧ポンプにおいて0Vに、正電圧ポンプにおいてHVに、及び随意に、他の時点においてVddにバイアスされる。
【0042】
図22A、22B、及び22Cを参照すると、チャージポンプ回路2000において使用することができるキャパシタの実施例が示され、PMOSトランジスタ2205、キャパシタ2210、及びNMOSトランジスタ2215の使用を含む。
【0043】
図21を参照すると、負高電圧レベルシフタ2100が示されている。負高電圧レベルシフタ2100の構成要素は、
図10に示される負高電圧レベルシフタ1000の構成要素と同一であるが、トランジスタにおける接合部の破損を最小化するために、特定のトランジスタがオフであるときに、
図21の入力インバータによって駆動されるHV nwell(PMOSトランジスタのバルク)が0Vであることが異なる。
【0044】
図23を参照すると、負高電圧レベルシフタ2300が示されている。負高電圧レベルシフタ2300は、入力INを受信し、出力OUTを発生させる。OUTは、この実施例において、−8V又は2Vである。DNWBは、Vdd又は0Vによって駆動される。この回路では、レベルシフタの各レグには、直列の2つのPMOSがあるが、NMOSは1つだけである。
【0045】
図24を参照すると、NMOSパスゲートだけを有する多重化回路2400が示されている。
【0046】
図25を参照すると、負高電圧レベルシフタ2500が示されている。負高電圧レベルシフタ2100の構成要素は、
図9に示される負高電圧レベルシフタ900の構成要素と同一であるが、カスコードの目的で、PMOS及びNMOSトランジスタがそれ自体の別個のバルクを有することが異なる。
読み出し、消去、及びプログラム動作中に、負電圧を非選択又は選択メモリセル10のワード線22又は結合ゲート26に印加する利点は、メモリセルをより効果的に縮小することを可能にすることである。消去の間、選択メモリセルのワード線上の負電圧は、消去電圧全体を低くすることができ、したがってセルの寸法をより小さくすることを可能にする(水平又は垂直の間隔、分離、幅、長さなど様々なセル間又は層間の寸法にわたって少ない電圧を維持する)。プログラムの間、非選択メモリセルのワード線上の負電圧は、非選択メモリセルに対する漏れを低減し、より少ないディスターブ(同一のセクタ内の非選択セルに対する)、より正確なプログラミング電流(選択セルに対してより少ない漏洩障害)、及びより少ない消費電力をもたらす。読み出しでは、非選択メモリセルのワード線上の負電圧は、漏れによる障害がより少ないことによる、より正確な検知をもたらす。消去/プログラム電圧及び電流の低減、より効果的な消去及びプログラミング、より少ないセルディスターブ、及びより少ないセルの漏れをもたらす、メモリアレイ動作用に負ワード線、負結合ゲート、及び負P基板を結合することは、有利でもある。