特許第6912609号(P6912609)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マイクロン テクノロジー, インク.の特許一覧

特許6912609抵抗を有するメモリセル及び抵抗を有するメモリセルの形成
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6912609
(24)【登録日】2021年7月12日
(45)【発行日】2021年8月4日
(54)【発明の名称】抵抗を有するメモリセル及び抵抗を有するメモリセルの形成
(51)【国際特許分類】
   H01L 21/8239 20060101AFI20210727BHJP
   H01L 27/105 20060101ALI20210727BHJP
   H01L 45/00 20060101ALI20210727BHJP
   H01L 49/00 20060101ALI20210727BHJP
【FI】
   H01L27/105 449
   H01L27/105 448
   H01L27/105 447
   H01L45/00 A
   H01L45/00 Z
   H01L49/00 Z
【請求項の数】15
【全頁数】19
(21)【出願番号】特願2019-571279(P2019-571279)
(86)(22)【出願日】2018年6月12日
(65)【公表番号】特表2020-526015(P2020-526015A)
(43)【公表日】2020年8月27日
(86)【国際出願番号】US2018036985
(87)【国際公開番号】WO2019005468
(87)【国際公開日】20190103
【審査請求日】2020年1月15日
(31)【優先権主張番号】15/632,536
(32)【優先日】2017年6月26日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】595168543
【氏名又は名称】マイクロン テクノロジー,インク.
(74)【代理人】
【識別番号】100074099
【弁理士】
【氏名又は名称】大菅 義之
(74)【代理人】
【識別番号】100106851
【弁理士】
【氏名又は名称】野村 泰久
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(72)【発明者】
【氏名】ペッリッツェル,ファビオ
(72)【発明者】
【氏名】レダエッリ,アンドレア
(72)【発明者】
【氏名】ピロヴァーノ,アゴスティーノ
(72)【発明者】
【氏名】トルトレッリ,インノチェンツォ
【審査官】 西出 隆二
(56)【参考文献】
【文献】 特開2014−229896(JP,A)
【文献】 特開2006−086526(JP,A)
【文献】 特開2013−145803(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/8239
H01L 27/105
H01L 45/00
H01L 49/00
(57)【特許請求の範囲】
【請求項1】
メモリセルを形成する方法であって、
第1の導電線を形成することと、
第2の導電線を形成することと、
前記第1の導電線と前記第2の導電線との間にメモリ素子を形成することとを含み、
前記メモリ素子を形成することは、
1つまたは複数のメモリ材料を形成することと、
前記1つまたは複数のメモリ材料と直列に抵抗を形成することとを含み、
前記抵抗は、前記メモリ素子の状態遷移中、前記メモリ素子の容量放電を低減するように構成され、
前記抵抗は、前記第1の導電線と前記メモリ素子との間に形成される第1の抵抗であり、前記方法は、前記第2の導電線と前記メモリ素子との間に少なくとも1つの第2の抵抗を形成することを含み、
前記第1の抵抗と前記少なくとも1つの第2の抵抗のうちの少なくとも1つを形成することは、複数のメモリセルにわたって連続する抵抗材料を形成することを含む、
前記方法。
【請求項2】
メモリセルを形成する方法であって、
第1の導電線を形成することと、
第2の導電線を形成することと、
前記第1の導電線と前記第2の導電線との間にメモリ素子を形成することとを含み、
前記メモリ素子を形成することは、
1つまたは複数のメモリ材料を形成することと、
前記1つまたは複数のメモリ材料と直列に抵抗を形成することとを含み、
前記抵抗は、前記メモリ素子の状態遷移中、前記メモリ素子の容量放電を低減するように構成され、
前記1つまたは複数のメモリ材料を形成することは、記憶素子及びスイッチ素子の両方として働く単一のメモリ材料を形成することを含む、前記方法。
【請求項3】
前記1つまたは複数のメモリ材料を形成することは、前記メモリ素子の記憶素子として働く第1のメモリ材料と、前記メモリ素子のスイッチ素子として働く第2のメモリ材料とを形成することを含む、請求項1に記載の方法。
【請求項4】
メモリセルを形成する方法であって、
第1の導電線を形成することと、
第2の導電線を形成することと、
前記第1の導電線と前記第2の導電線との間にメモリ素子を形成することとを含み、
前記メモリ素子を形成することは、
1つまたは複数のメモリ材料を形成することと、
前記1つまたは複数のメモリ材料と直列に抵抗を形成することとを含み、
前記抵抗は、前記メモリ素子の状態遷移中、前記メモリ素子の容量放電を低減するように構成され、
前記抵抗は、前記第1の導電線と前記メモリ素子との間に形成された第1の抵抗であり、前記方法は、前記第2の導電線と前記メモリ素子との間に少なくとも1つの第2の抵抗を形成することを含み、
前記第1の導電線は、第1の導体材料を含み、前記第2の導電線は、第2の導体材料を含み、前記第1の抵抗は、第1の抵抗材料を含み、前記第2の抵抗は、第2の抵抗材料を含み、前記方法は、
前記第1の導体材料上に前記第1の抵抗材料を形成することと、
前記第2の抵抗材料上に前記第2の導体材料を形成することと、
前記第1の導体材料、前記第1の抵抗材料、前記スイッチ素子、及び、前記記憶素子を通して第1のエッチングを行うことによって前記第1の導電線を形成することと、
前記第2の導体材料、前記第2の抵抗材料、前記スイッチ素子、及び、前記記憶素子を通して第2のエッチングを行うことによって前記第2の導電線を形成することと、
を含む、前記方法。
【請求項5】
前記第2の導電線を形成することは、前記第1の抵抗材料にエッチングすることをさらに含む、請求項に記載の方法。
【請求項6】
前記方法は、前記第1のエッチングを行うことが前記第2の抵抗材料のエッチングを含むように、前記第1のエッチングを行う前に前記第2の抵抗材料を形成することを含む、請求項に記載の方法。
【請求項7】
第1の方向に形成された複数の第1の導電線と、
第2の方向に形成された複数の第2の導電線と、
前記複数の第1の導電線と前記複数の第2の導電線との間に配置された複数のメモリセルと、
を含み、
前記複数のメモリセルの各メモリセルは、
1つまたは複数のメモリ材料を含むメモリ素子と、
抵抗であって、前記複数のメモリセルのうちの複数のメモリセルにわたって連続する抵抗材料から形成される前記抵抗と
を含
前記抵抗は、前記複数の第1の導電線のそれぞれの導電線と直接接触するように形成され、前記抵抗が前記それぞれの第1の導電線に結合された複数のメモリセルにわたって連続し、
前記複数のメモリセルの各メモリセルは、前記抵抗と前記メモリ素子との間に電極をさらに含む、
メモリセルアレイ。
【請求項8】
第1の方向に形成された複数の第1の導電線と、
第2の方向に形成された複数の第2の導電線と、
前記複数の第1の導電線と前記複数の第2の導電線との間に配置された複数のメモリセルと、
を含み、
前記複数のメモリセルの各メモリセルは、
1つまたは複数のメモリ材料を含むメモリ素子と、
抵抗であって、前記複数のメモリセルのうちの複数のメモリセルにわたって連続する抵抗材料から形成される前記抵抗と
を含み、
前記抵抗は、第1の抵抗を含み、前記複数のメモリセルの各メモリセルは、第2の抵抗をさらに含み、
前記第1の抵抗は、前記メモリ素子と、前記第1の導電線のそれぞれの導電線との間に形成され、
前記第2の抵抗は、前記メモリ素子と、前記第2の導電線のそれぞれの導電線との間に形成され、
前記第2の抵抗は、前記複数のメモリセルのうちの複数のメモリセルにわたって連続しないように、分離される、
メモリセルアレイ。
【請求項9】
メモリセルを形成する方法であって、
第1の導電線を形成することと、
第2の導電線を形成することと、
前記第1の導電線と前記第2の導電線との間にメモリ素子を形成することと、を含み、
前記メモリ素子を形成することは、
記憶素子及びスイッチ素子として働く1つまたは複数のメモリ材料を形成することと、
前記1つまたは複数のメモリ材料と直列に抵抗を形成することとを含み、
前記抵抗は、複数のメモリセルにわたって連続
前記第1の導電線を形成することは、第1の導体材料を形成することを含み、前記方法は、前記第1の導体材料を含むスタックに第1のエッチングを行い、前記第1の導電線が前記第1のエッチング中に画定されるようにすることを含み、前記抵抗は、前記抵抗が前記第1のエッチング中に画定されるように、前記第1のエッチングを行う前に前記第1の導体材料上に形成される第1の抵抗材料を含む、
前記方法。
【請求項10】
前記第2の導電線を形成することは、前記メモリ素子上に第2の導体材料を形成することを含み、前記方法は、前記第2の導体材料及び前記メモリ素子に第2のエッチングを行い、前記第2の導電線が前記第2のエッチング中に画定されるようにすることを含み、第2の抵抗は、前記第2の抵抗が前記第2の導体材料と共に画定されるように、前記第2のエッチングを行う前に前記メモリ素子上に形成される第2の抵抗材料を含む、請求項に記載の方法。
【請求項11】
前記方法は、前記抵抗が前記第2のエッチング中にさらに画定されるように、前記第1の抵抗材料に前記第2のエッチングを行うことを含む、請求項10に記載の方法。
【請求項12】
前記方法は、前記第2の抵抗が前記第1及び前記第2のエッチング中に画定されるように、前記第1のエッチングを行う前に前記メモリ素子上に前記第2の抵抗材料を形成することを含む、請求項10に記載の方法。
【請求項13】
メモリセルアレイを形成する方法であって、
第1の導電線材料とメモリ材料との間に形成された第1の抵抗材料を含む材料のスタックを形成することと、
前記スタックに第1のエッチングプロセスを行って、第1の方向に延びる複数の第1の導電線を画定することと、
その後、第2のエッチングプロセスを行うことと、
を含み、
前記第2のエッチングプロセスは、
前記スタックの上に形成された第2の導体材料にエッチングを行うことによって、第2の方向に延びる複数の第2の導電線を画定することと、
前記メモリ材料をエッチングすることによって、複数のメモリ素子を画定することと、
を含
前記第1のエッチングを行うことは、前記第1の方向に延びる複数の第1の抵抗材料線を生じ、前記第2のエッチングプロセスを行うことは、前記第1の抵抗材料が複数のメモリセルにわたって連続でないように、前記メモリ材料と前記複数の第1の抵抗材料線とにエッチングを行うこと
を前記方法は更に含み、
前記第2のエッチングプロセスを行うことは、前記スタック上に形成された第2の抵抗材料にエッチングを行って、前記第2の方向に延びる複数の第2の抵抗材料線を生じることを含む、
前記方法。
【請求項14】
メモリセルアレイを形成する方法であって、
第1の導電線材料とメモリ材料との間に形成された第1の抵抗材料を含む材料のスタックを形成することと、
前記スタックに第1のエッチングプロセスを行って、第1の方向に延びる複数の第1の導電線を画定することと、
その後、第2のエッチングプロセスを行うことと、
を含み、
前記第2のエッチングプロセスは、
前記スタックの上に形成された第2の導体材料にエッチングを行うことによって、第2の方向に延びる複数の第2の導電線を画定することと、
前記メモリ材料をエッチングすることによって、複数のメモリ素子を画定することと、
を含み、
前記材料のスタックを形成することは、第2の抵抗材料を形成することをさらに含み、前記第1のエッチングプロセスを行うことは、前記第2の抵抗材料にエッチングを行って、前記第1の方向に延びる複数の第2の抵抗材料線を形成することを含み、前記第2のエッチングプロセスを行うことは、前記第2の抵抗材料が複数のメモリセルにわたって連続しないように、前記複数の第2の抵抗材料線にエッチングを行うことを含む
前記方法。
【請求項15】
メモリセルアレイを形成する方法であって、
第1の導電線材料とメモリ材料との間に形成された第1の抵抗材料を含む材料のスタックを形成することと、
前記スタックに第1のエッチングプロセスを行って、第1の方向に延びる複数の第1の導電線を画定することと、
その後、第2のエッチングプロセスを行うことと、
を含み、
前記第2のエッチングプロセスは、
前記スタックの上に形成された第2の導体材料にエッチングを行うことによって、第2の方向に延びる複数の第2の導電線を画定することと、
前記メモリ材料をエッチングすることによって、複数のメモリ素子を画定することと、
を含み、
前記方法は、前記第1のエッチングプロセスを行う前に、
第1の誘電材料を前記第1の導電線材料上に形成することと
記第1の誘電材料に前記第2の方向に延びる複数の溝を形成することと、
前記複数の溝に前記第1の抵抗材料を形成することと、
前記複数の溝に形成された前記第1の抵抗材料にエッチングを行って、前記第2の方向に延びるそれぞれの複数の第1の抵抗材料線を形成することと、
によって、前記第1の抵抗材料を含む複数の垂直抵抗を形成することと、を含む
前記方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に、半導体メモリセル及び方法に関し、より詳細には、抵抗を有するメモリセル及び抵抗を有するメモリセルの形成に関する。
【背景技術】
【0002】
メモリデバイスは、典型的に、コンピュータまたは他の電子デバイスに、内部回路、半導体回路、集積回路、及び/または、外部のリムーバブルデバイスとして備えられる。揮発性メモリ及び不揮発性メモリを含む多くの異なる種類のメモリがある。揮発性メモリは、そのデータを維持するために電力を必要とし得る、また、ランダムアクセスメモリ(RAM)、ダイナミックランダムアクセスメモリ(DRAM)、及び、同期型ダイナミックランダムアクセスメモリ(SDRAM)等を含み得る。不揮発性メモリは、電源が入っていない時、記憶したデータを保持することによって永続的データを提供でき、NANDフラッシュメモリ、NORフラッシュメモリ、リードオンリメモリ(ROM)、並びに、相変化ランダムアクセスメモリ(PCRAM)、抵抗ランダムアクセスメモリ(RRAM)、磁気ランダムアクセスメモリ(MRAM)、及び、プログラム可能導体メモリ等の可変抵抗メモリを含み得る。
【0003】
メモリデバイスは、高いメモリ密度、高い信頼性、及び、低い消費電力のニーズから、広範な電子用途の揮発性メモリ及び不揮発性メモリとして利用できる。不揮発性メモリは、他の電子デバイスの中で特に、例えば、パーソナルコンピュータ、ポータブルメモリスティック、半導体ドライブ(SSD)、デジタルカメラ、携帯電話、MP3プレイヤ等のポータブルミュージックプレイヤ、及び、ムービープレイヤで使用され得る。
【0004】
可変抵抗メモリデバイスは、記憶素子(例えば、可変抵抗を有する抵抗メモリ素子)の抵抗状態に基づいてデータを記憶できる抵抗メモリセルを含み得る。従って、抵抗メモリセルは、抵抗メモリ素子の抵抗レベルを変えることによって、対象データ状態に対応するデータを記憶するようプログラムできる。抵抗メモリセルは、ある特定の時間、正または負の電気パルス(例えば、正または負の電圧または電流パルス)等の電場源またはエネルギー源をセルに(例えば、セルの抵抗メモリ素子に)印加することによって、(例えば、特定の抵抗状態に対応する)対象データ状態にプログラムできる。抵抗メモリセルの状態は、印加されたインテロゲーション電圧に応答してセルを通る電流を検出することによって決定できる。検出された電流は、セルの抵抗レベルに応じて変動し、セルの状態を示すことができる。
【図面の簡単な説明】
【0005】
図1】本開示の幾つかの実施形態による、抵抗を有するメモリセルアレイの部分のブロック図である。
図2A】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図2B】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連付けられた処理ステップの例の断面図を示す。
図2C】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図2D】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図2E】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図2F】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図2G】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3A】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3B】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3C】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3D】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3E】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3F】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3G】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3H】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図3I】本開示の幾つかの実施形態による、メモリセルアレイの部分を形成することに関連する処理ステップの例の断面図を示す。
図4】本開示の幾つかの実施形態による、抵抗を有するメモリセルアレイを含むコンピューティングシステムの形態の装置のブロック図である。
【発明を実施するための形態】
【0006】
本開示は、抵抗を有するメモリセルと、抵抗を有するメモリセルを形成する方法とを含む。例示の方法は、第1の導電線を形成することと、第2の導電線を形成することと、第1の導電線と第2の導電線との間にメモリ素子を形成することとを含む。メモリ素子を形成することは、1つまたは複数のメモリ材料を形成することと、1つまたは複数のメモリ材料と直列に抵抗を形成することとを含んでよい。抵抗は、メモリ素子の状態遷移中、メモリ素子の容量放電を低減するように構成されてよい。
【0007】
本開示の実施形態は、動作中のメモリセルの電流スパイクによって起こり得るセルの損傷を低減する等、従来の手法と比較して、利益を提供し得る。例えば、様々な従来の手法において、メモリ素子のスイッチ素子の「オフ」(例えば、高インピーダンス状態)から「オン」(例えば、低インピーダンス状態)への遷移は、素子(例えば、ビット線からワード線、または、その逆)の容量放電が過度になり、これは、メモリ素子に望ましくないストレスを加え、(例えば、セル材料を物理的に損傷し、それによって、電気的特性を変更し得ることによって)セルの信頼性及び/または耐用寿命を減らす可能性がある。
【0008】
幾つかの実施形態は、メモリ素子と直列に1つまたは複数の抵抗を形成することを含むことができ、これは、例えば、このようなオフ/オン遷移中、メモリセルの容量放電から生じる電流スパイクを低減するように働くことができる。幾つかの実施形態は、また、従来の手法と比較して、効率を向上させ、及び/または、メモリセルの形成に関連する処理ステップを減らすことができる。
【0009】
本開示の以下の詳細な記載において、その一部を形成する添付図面を参照する。図面では、開示の1つまたは複数の実施形態をどのように実践し得るかを実例として示す。これらの実施形態は、当業者が本開示の実施形態を実践できるように十分に詳細に記載され、
本開示の範囲を逸脱することなく、他の実施形態が利用されてよく、プロセス、電気的及び構造的変更が行われてよいことは理解されたい。
【0010】
本明細書で使用される場合、「N」及び「M」等の指定子は、図面の参照番号に関しては特に、指定した数の特定の特徴が含まれ得ることを示す。本明細書で使用される用語は、特定の実施形態を記載するためのみに使用されており、制限を意図してはいないことも理解されたい。本明細書で使用される場合、文脈より別段の指示のない限り、単数形「a」「an」「the」は、単数及び複数の指示対象の両方を含み得る。さらに、「幾つかの」「少なくとも1つ」及び「1つまたは複数」(例えば、幾つかのメモリバンク)は、1つまたは複数のメモリバンクを指すことができ、一方、「複数の」は、このような物の2つ以上を指すことを意図する。さらに、「can」及び「may」という語は、本出願書を通して、義務的な意味(例えば、must)ではなく、許可的な意味で(例えば、可能性を有する、することができる)使用されている。
【0011】
本明細書の図面は、最初の数字(単数または複数)が、図面番号に対応し、残りの数字が、図面の要素または構成要素を特定するという番号付け規則に従う。異なる図面間の類似の要素または構成要素は、類似の数字を使用して特定されてよい。例えば、110は、図1の要素「10」を指してよく、類似の要素は、図4では410とされてよい。
【0012】
図1は、本開示の幾つかの実施形態による、メモリセルのアレイ110の一部分のブロック図である。この例において、アレイ110は、本明細書ではワード線とも呼ばれてよい第1の複数の導電線102−0、102−1、...、102−N(例えば、アクセス線)と、本明細書ではビット線とも呼ばれてよい第2の複数の導電線104−0、104−1、...、104−M(例えば、データ線)との間に(例えば、交差点に)メモリセル106を含むクロスポイントアレイ110である。導電線102−0、102−1、...、102−N、及び、104−0、104−1、...、104−Mは、それぞれ、集合的に導電線102、導電線104と呼ばれてよい。座標軸101は、この例においては、導電線104はx方向に向き、導電線102はy方向を向くことを示す。図に示すように、導電線102は、互いに実質的に平行で、導電線104に対して実質的に直交しており、導電線104は、互いに実質的に平行である。しかしながら、実施形態はこれに限らない。本明細書で使用される場合、「実質的に」という語は、修飾された特性は、絶対である必要はなく、その特性の利点を達成するほど十分にその特性に近いということを示す。例えば、「実質的に平行」は、絶対平行に限らず、垂直な向きより少なくとも平行な向きに近い向きを含み得る。同様に、「実質的に直交」は、絶対直交に限らず、平行な向きより少なくとも垂直な向きに近い向きを含み得る。
【0013】
クロスポイントアーキテクチャで配置されたメモリセル106は、図2A図2G及び図3A図3Iに関連して示された例に従って形成されたメモリセル等のメモリセルであってよい。例として、メモリセル106は、他の種類のメモリセルの中で特に、相変化ランダムアクセスメモリ(PCRAM)セル、抵抗ランダムアクセスメモリ(RRAM)セル、導電性ランダムアクセスメモリ(CBRAM)セル、及び/または、スピントランスファートルクランダムアクセスメモリ(STT−RAM)セル、及び/または、3Dクロスポイントメモリセルであってよい。
【0014】
様々な実施形態において、メモリセル106は、メモリ素子を含む「スタック」構造を有してよく、メモリ素子は、1つまたは複数のメモリ材料を含み得る。ある実施形態においては、メモリ素子は、本明細書ではスイッチ及びストレージ材料(SSM)と呼ばれてもよい記憶素子及びスイッチ素子の両方として働き得るメモリ材料(例えば、カルコゲニド)を含んでよい。他の実施形態においては、メモリ素子は、2つ以上のメモリ材料を含み得る。例えば、メモリ素子は、スイッチ素子である1つのメモリ材料と、記憶素子であ
る他のメモリ材料とを含んでよい(例えば、記憶素子と直列に結合されたスイッチ素子)。スイッチ素子は、ダイオード、電界効果トランジスタ(FET)、バイポーラ接合トランジスタ(BJT)、オボニックメモリスイッチ(OMS)、または、オボニックスレッショルドスイッチ(OTS)等であってよい。幾つかの実施形態においては、1つまたは複数のメモリ材料は、カルコゲニド合金を含んでよいが、実施形態はこれに限らない。
【0015】
幾つかの実施形態において、各メモリセル106に関連するスイッチ素子及び記憶素子は、直列に結合された二端子デバイスであってよい。例えば、スイッチ素子は、二端子OTS(例えば、電極対の間に形成されたカルゴゲニド合金)であってよく、記憶素子は、二端子相変化記憶素子(例えば、電極の対の間に形成された相変化材料(PCM))であってよい。PCMと直列のOTSを含むメモリセル106は、相変化材料及びスイッチ(PCMS)メモリセルと呼ばれてよい。幾つかの実施形態において、電極は、メモリセル106のスイッチ素子と記憶素子の間で共有されてよい。また、幾つかの実施形態において、導電線104及び導電線102は、メモリセル106に対応する上部電極または下部電極として働くことができる。
【0016】
本明細書で使用される場合、記憶素子は、メモリセル106のプログラム可能な部分(例えば、各データ状態に対応する異なる抵抗レベルにプログラム可能な部分)を指す。例えば、PCRAMセル及びRRAMセルにおいて、記憶素子は、例えば、印加されたプログラム信号(例えば、電圧及び/または電流パルス)に応答してデータ状態にプログラム可能な抵抗を有するメモリセルの部分を含み得る。記憶素子は、例えば、相変化材料等の可変抵抗材料を含み得る。例として、相変化材料は、他の相変化材料の中で特に、インジウム(In)−アンチモン(Sb)−テルル(Te)(IST)材料(例えば、InSbTe、InSbTe、InSbTe等)、または、ゲルマニウム(Ge)−アンチモン(Sb)−テルル(Te)(GST)材料(例えば、GeSbTe、GeSbTe、GeSbTe、GeSbTe、GeSbTe等)等のカルゴゲニド合金であってよい。ハイフンでつながれた化学組成表記は、本明細書で使用される場合、混合物または化合物に含まれる要素を示し、示した要素に関わる全ての化学量を表すことを意図している。他の相変化材料は、例えば、Ge−Te、In−Se、Sb−Te、Ga−Sb、In−Sb、As−Te、Al−Te、Ge−Sb−Te、Te−Ge−As、In−Sb−Te、Te−Sn−Se、Ge−Se−Ga、Bi−Se−Sb、Ga−Se−Te、Sn−Sb−Te、In−Sb−Ge、Te−Ge−Sb−S、Te−Ge−Sn−O、Te−Ge−Sn−Au、Pd−Te−Ge−Sn、In−Se−Ti−Co、Ge−Sb−Te−Pd、Ge−Sb−Te−Co、Sb−Te−Bi−Se、Ag−In−Sb−Te、Ge−Sb−Se−Te、Ge−Sn−Sb−Te、Ge−Te−Sn−Ni、Ge−Te−Sn−Pd、及び、Ge−Te−Sn−Ptを含み得る。可変抵抗材料の他の例は、2つ以上の金属(例えば、遷移金属、アルカリ土類金属、及び/または、希土類金属)を含む遷移金属酸化物材料または合金を含む。実施形態は、メモリセル106の記憶素子に関連する特定の可変抵抗材料(複数可)に制限されない。例えば、記憶素子の形成に使用できる可変抵抗材料の他の例は、二成分金属酸化物材料、巨大磁気抵抗材料、及び/または、様々なポリマーベースの可変抵抗材料等を含む。
【0017】
図には示していないが、幾つかの実施形態においては、アレイ110は、複数のアレイ110が互いに垂直方向に積み重ねられた三次元(3D)クロスポイントアレイの一部分であってよい。このような実施形態においては、104等の導電線は、例えば、3Dクロスポイントメモリアレイの1つのレベルのビット線として、また、3Dクロスポイントメモリアレイの次のレベルのワード線として働いてよい。
【0018】
動作時、アレイ110のメモリセル106は、選択した導電線(例えば、ワード線10
2及びビット線104)を介してメモリセル106に電圧(例えば、書き込み電圧)を印加することによってプログラムされてよい。メモリセル106の電圧パルスの持続時間及び/または大きさは、メモリセル106を所望のデータ状態にプログラムするために、(例えば、記憶素子の抵抗レベルを調節することによって)調節(例えば、変更)されてよい。
【0019】
検出(例えば、読取)動作を使用して、メモリセル106のデータ状態を判断できる。例えば、電圧が、選択したメモリセル106に対応するビット線104及びワード線102に印加されてよく、生じた電圧差に応答してセルを通る電流を検出できる。検出動作は、選択したセル106のデータ状態を検出するために、選択されていないワード線及びビット線(例えば、選択されていないセルに結合されたワード線及びビット線)に特定の電圧でバイアスをかけることも含み得る。例えば、選択されていないワード線及びビット線は選択されたワード線及びビット線の電圧の半分でバイアスをかけられるという半選択方法が、選択したセル106を読み取る時に使用されてよい。
【0020】
メモリセル106をプログラムすること及び/または読み取ることは、相対的に非導電、高インピーダンスの「オフ」状態から導電、低インピーダンスの「オン」状態に選択した素子を切り替えることを含み得る。オフ状態からオン状態への遷移は、ビット線容量とワード線容量との間を均等化して、セルの電流スパイクを生じる場合があり、電流スパイクの大きさは、セルの内部抵抗に応じて決まる。本明細書でさらに記載するように、本開示の幾つかの実施形態は、セルメモリ素子に直列に少なくとも1つの抵抗を形成することを含み、これは、動作中の(例えば、スイッチ素子の「オフ」から「オン」への遷移による)セルの電流スパイクの大きさを低減し得る。
【0021】
例えば、幾つかの実施形態において、メモリセル106は、メモリセル106と複数の導電線102の各導電線との間に形成された第1の抵抗、及び/または、メモリセル106と複数の導電線104の各導電線との間に形成された第2の抵抗を含む。
【0022】
図2A図2Gは、本開示の幾つかの実施形態による、メモリセルアレイの一部分を形成することに関連する処理ステップの例の断面図を示す。図に示すように、図2A図2Gの左側は、y方向(例えば、ワード線方向)に沿った断面図を表し、図2A図2Gの右側は、x方向(例えば、ビット線方向)に沿った断面図を表す。しかしながら、実施形態は、これに限らない。例えば、x方向が、ワード線方向であってよく、y方向が、ビット線方向であってよい。
【0023】
図2Aは、基板212上に形成された材料スタックを含むアレイ構造210を示す。本明細書で使用される場合、「基板」という語は、シリコン・オン・インシュレータ(SOI)またはシリコン・オン・サファイア(SOS)技術、ドープ半導体及び非ドープ半導体、ベースの半導体の土台に支持されたシリコンのエピタキシャル層、相補型金属酸化物半導体(CMOS)、及び/または、他の半導体構造及び技術を含み得る。例えば、メモリアレイを動作させることに関連するデコード回路等の様々な回路が、基板212に形成されてよい。さらに、以下の記載において、「基板」に言及する時、ベースの半導体構造または土台に領域または接合部を形成するために、以前のプロセスのステップが使用されていてよい。
【0024】
図2Aにおいて、材料のスタックは、基板212上、例えば、基板212の表面上に形成された導体材料214を含む。導体材料は、例えば、タングステン、チタン、白金、ニッケル、ストロンチウム、ハフニウム、ジルコニウム、タンタル、アルミニウム、これらの酸化物及び窒化物、並びに、これらの組み合わせ等の、導体金属、及び/または、半導体金属、並びに、金属合金を含み得る。しかしながら、実施形態は、特定の導体金属及び
/または半導体金属や金属合金に制限されない。幾つかの実施形態においては、導体材料214は、アレイの複数の導電線として働くように処理されてよい。図2Aには示していないが、幾つかの追加の材料(例えば、誘電材料)が、導体材料214と基板212との間に形成されてよい。
【0025】
図2Aに示すアレイ構造210は、導体材料214上に形成された第1の抵抗材料216と、第1の抵抗材料216上に形成された第1の電極材料218と、第1の電極材料218上に形成されたメモリ材料220と、メモリ材料220上に形成された第2の電極材料222とを含む。第1の電極材料218及び第2の電極材料222は、様々な導体材料及び/または半導体材料、及び/または、これらの組み合わせを含み得る。幾つかの実施形態においては、第1の電極材料218及び第2の電極材料222は、非晶質炭素、黒鉛、ダイヤモンド、及び、フラーレン(例えば、バッキーボール)、カーボンナノチューブ、カーボンナノバッド、及び、カーボンナノファイバ等の様々な構造配置を有する炭素材料を含み得る。実施形態は、第1の電極材料218及び第2の電極材料222の特定の材料組成に制限されない。例えば、特定の電極材料218及び222は、他の要因の中でも特に、使用されるメモリ材料220及び/または導電線材料214の種類に基づいて、及び/または、処理に使用されるエッチャントの種類に基づいて、選択されてよい。
【0026】
メモリ材料220は、カルゴゲニド合金等のカルコゲニド材料、及び/または、記憶素子及びスイッチ素子として働き得るガラスであってよい。例えば、メモリ材料220は、印加された電圧に応答して、選択デバイス(例えば、切替)特性と、メモリ(例えば、記憶)特性との両方を示し得る。例として、セルの閾値電圧(VTH)未満の印加電圧に対しては、メモリ材料220は、「オフ」状態(例えば、非導電状態)のままであってよい。あるいは、閾値電圧より大きい印加電圧に応答して、メモリ材料220は、「オン」状態(例えば、導電状態)に切り替わってよい。
【0027】
しかしながら、実施形態は、図2Aに示す例に限らない。例えば、メモリ材料220は、(例えば、追加の電極材料を間に挟んで)一方は記憶素子材料として働き、他方はスイッチ素子材料として働く2つの異なる材料を含んでよい。例として、メモリ材料220は、メモリセルのスイッチ素子として働き得るスイッチ素子材料(例えば、OTSのカルゴゲニド合金)と、メモリセルの記憶素子として働き得る記憶素子材料(例えば、カルコゲニド等の可変抵抗材料、または、金属酸化物材料)とを含んでよい。
【0028】
図2A、及び、それに続く図2B図2Gに示す材料は、物理蒸着(PVD)プロセス、化学蒸着(CVD)プロセス、及び/または、原子層堆積(ALD)プロセスを含むが、これらに限らない様々な半導体プロセスを介して形成されてよい。このような処理は、様々なマスキング技術及びエッチング技術と、平坦化プロセス(例えば、化学機械平坦化(CMP))を組み込んでよい。
【0029】
図2Bは、エッチングを行って開口部(例えば、溝)240を生じた後の図2Aのアレイ構造210を示す。3つの開口部240を示すが、実施形態は、この特定の数に限らない。この例においては、エッチングは、第2の電極材料222、メモリ材料220、第1の電極材料218、第1の抵抗材料216、及び、第1の導体材料214を通してy方向に沿って行われる。図2Bに示すエッチングを行うことによって、エッチングの方向に延びる導電線214及び第1の抵抗216を画定する。
【0030】
図2Bに示す例においては、スタックは、第2の抵抗材料(例えば、図2Eに示す第2の抵抗材料228)を含まない。しかしながら、幾つかの実施形態においては、第2の抵抗材料が、(例えば、第2の抵抗材料が図2Bに示すスタックの他の材料と共にエッチングされるように)スタックのエッチングの前に、例えば、第2の電極材料222上に形成
(例えば、堆積)されてよい。以下にさらに記載するように、図2Bに示すスタックと共に第2の抵抗材料をエッチングすることによって、分離された第2の抵抗(例えば、x方向にもy方向にも複数のメモリセルにわたって連続しない材料228からなる抵抗)を含むセルを生じ得る。
【0031】
例として、開口部240は、単一パターンマスクエッチングプロセスを介して形成されてよい。しかしながら、実施形態は、これに限らない。例えば、ライナ材料(例えば、誘電体)が、メモリ材料がエッチングされた後、抵抗材料216及び/または導体材料214がエッチングされる前にスタック上に形成されてよく、これは、抵抗材料216及び/または導体材料214のエッチングに使用されるエッチャントからメモリ材料220を保護する等、(例えば、材料の交差汚染を防ぐ)利益を提供し得る。
【0032】
図2Cは、封止材料224及び充填材料226を、それぞれ、開口部240に形成した後の図2Bのアレイ構造210を示す。例として、封止材料224は、図2Bに示すスタック上に形成されてよい。封止材料224は、例えば、ALDプロセスまたはコンフォーマルCVDプロセス等のプロセスを介して形成されてよい。充填材料226は、例えば、スタック上に形成されてよく、メモリセルを分離する働きをすることができる。
【0033】
封止材料224及び充填材料226は、例えば、他の適切な誘電材料の中でも特に、酸化アルミニウム(Al)、窒化ケイ素(Si)、二酸化ケイ素(SiO)、二酸化チタン(TiO)、酸化ランタン(La)、アルミン酸ランタン(LaAlO)、酸化ガリウム(Ga)、酸化ジルコニウム(ZrO)、酸化ケイ素ジルコニウム(ZrSi)、酸化チタンジルコニウム(ZrTi)、酸化ハフニウム(HfO)、酸化チタンハフニウム(HfTi)、酸化チタンストロンチウム(SrTiO)、マンガン酸ランタンカルシウム(LCMO)、酸化マグネシウム(MgO)、二酸化スズ(SnO)、過酸化亜鉛(ZnO)、酸化ケイ素チタン(TiSi)、及び/または、酸化ケイ素ハフニウム(HfSi)等の誘電材料であってよい。
【0034】
図2Dは、平坦化プロセス(例えば、CMP)を行った後の図2Cのアレイ構造210を示す。例として、平坦化プロセスを行って、(例えば、封止材料224及び充填材料226の一部を取り除くことによって)電極材料222の上面を露出させることができる。
【0035】
図2Eは、図2Dのアレイ構造210の上に第2の抵抗材料228及び第2の導体材料230を形成した後の図2Dのアレイ構造210を示す。幾つかの実施形態において、導体材料230は、アレイの導電線(例えば、ビット線)として働くことができる。導体材料は、様々な他の適切な導体金属及び/または半導体金属、並びに、金属合金の中でも特に、タングステン、チタン、白金、ニッケル、ストロンチウム、ハフニウム、ジルコニウム、タンタル、アルミニウム、これらの酸化物及び窒化物、及び/または、これらの組み合わせを含み得る。
【0036】
図2Fは、エッチングを行って開口部242を生じた後の図2Eのアレイ構造210を示す。この例において、エッチングは、第2の導体材料230、第2の抵抗材料228、第2の電極222、メモリ材料220、及び、第1の電極218を通してx方向に沿って行われる。
【0037】
この例において、エッチングは、第1の抵抗材料216が複数のメモリセルにわたって(例えば、y方向に)連続するように、第1の抵抗材料216上で終了/停止する。しかしながら、実施形態はこれに限らない。例えば、図2Fに関連するエッチングは、第1の抵抗材料216をさらに画定するように、第1の抵抗材料216を通して行うことができ
る。結果として、第1の抵抗材料216は、(例えば、x方向にもy方向にも)複数のメモリセルにわたって連続していない完全に分離された第1の抵抗を生じるように、(例えば、図2Bに示すエッチング及び図2Fに示すエッチング中)二度、エッチングされる。
【0038】
例として、開口部242は、単一パターンマスクエッチングプロセスを介して形成されてよい。例えば、ライナ材料(例えば、誘電体)が、抵抗材料228をエッチングした後、メモリ材料220のエッチング前にスタック上に形成されてよく、これは、抵抗材料228及び/または導体材料230のエッチングに使用されるエッチャントからメモリ材料220を保護する等、(例えば、材料の交差汚染を防ぐ)利益を提供し得る。
【0039】
図2Gは、封止材料232及び充填材料234を、それぞれ、開口部242に形成した後の図2Fのアレイ構造210を示す。第2の抵抗材料228は、例えば、チタン−窒化ケイ素(TiSiN)であってよい。しかしながら、実施形態はこれに限らない。例えば、第1の抵抗材料216及び第2の抵抗材料228は、他の適切な材料の中でも特に、窒化タングステン(WN)、タングステン−窒化ケイ素(WSiN)、及び/または、炭化タングステン(WC)等の金属(または、半金属)材料であってよい。例えば、第1の材料216及び第2の材料228を形成する材料は、約1x10−6*オーム*cmから100x10−6*オーム*cmの抵抗率の範囲を有してよいが、実施形態はこれに限らない。例えば、抵抗材料216及び/または228は、少なくとも1x10−3*オーム*
cmの比較的高い抵抗を有してよい。幾つかの実施形態においては、抵抗材料216と228の少なくとも1つは、少なくとも300x10−6*オーム*cmの抵抗率を有する。さらに、第1の抵抗材料216及び第2の抵抗材料228は、それぞれ、異なる抵抗材料を含んでよい。
【0040】
第1の抵抗材料216及び/または第2の抵抗材料228を含み、各対応する導電線214と230との間に形成された抵抗は、(例えば、オフからオンへの)スイッチ素子の状態遷移に関連して対応するメモリセルの容量放電に関連する電流スパイクを防止、及び/または、大きさを低減できる。材料216及び228からなる各抵抗の抵抗は、メモリセルの動作に関連する電流スパイクの所望の適切な大きさを達成するように「調整」されてよい。例えば、抵抗材料216及び218の特定の特性(例えば、組成、厚さ等)は、所望の結果を達成する様々な他の要因の中で特に、メモリ材料220の組成等、様々な要因に基づいて選択されてよい。
【0041】
図3A図3Iは、本開示の幾つかの実施形態による、メモリセルアレイの一部分を形成することに関連する処理ステップの例の断面図を示す。図に示すように、この例においては、図3A図3Iの左側は、y方向(例えば、ワード線方向)に沿った断面図を表し、図3A図3Iの右側は、x方向(例えば、ビット線方向)に沿った断面図を表す。
【0042】
図3Aは、第1の導体材料314上に形成された誘電材料350と、基板312上に形成された第1の導体材料314とを含むアレイ構造310を示す。実施形態はこれに限らないが、基板312と第1の導体材料314は、図2A図2Gに関連して記載した基板212と導体材料214にそれぞれ類似している。
【0043】
図3Bは、幾つかの後続の処理ステップの後の図3Aのアレイ構造310を示す。例として、後続の処理ステップは、誘電材料350に(例えば、x方向に沿った)エッチングを行って幾つかの溝344を形成することと、開口部344に抵抗材料352を形成することと、抵抗材料352上に絶縁材料354を形成することとを含む。幾つかの実施形態において、絶縁材料354は、誘電材料であってよい。抵抗材料352は、例えば、抵抗材料216及び228に関連して前述した材料等、様々な材料を含み得る。
【0044】
図3Cは、幾つかの後続の処理ステップの後の図3Bのアレイ構造310を示す。例として、後続の処理ステップは、図3Cに示すように、複数の抵抗材料352及び絶縁材料354のそれぞれが互いに分離されるように、開口部344の底部上に形成された抵抗材料352及び絶縁材料354にマスク及びエッチングを行うことを含む。例として、後続の処理ステップは、複数の開口部344のそれぞれを誘電材料356で埋めることをさらに含む。誘電材料350及び356は、同じ誘電材料であってよいが、実施形態はこれに限らない。
【0045】
図3Dは、幾つかの後続の処理ステップの後の図3Cのアレイ構造310を示す。例として、その後の処理ステップは、誘電材料356、抵抗材料352、及び、絶縁材料354に対して平坦化プロセスを行って、(例えば、抵抗材料352の各例の上面を露出することによって)幾つかの「L字型の」垂直抵抗を画定することと、平坦化された表面上に第1の電極材料318、メモリ材料320、及び、第2の電極材料322を形成することとを含む。平坦化プロセスは、例えば、CMPプロセスであってよい。
【0046】
第1の電極材料318は、スタック(例えば、誘電材料350、誘電材料356、抵抗材料352、及び、絶縁材料354を含むスタック)の平坦化された表面上に形成されるが、実施形態はこれに限らない。例えば、メモリ材料320が、メモリ材料320とスタックとの間に第1の電極318を形成することなく、スタックの平坦化された表面上に形成されてよい。抵抗材料352及び絶縁材料354上にメモリ材料320を形成することは、メモリ材料320の極性をさらに誘導するように、メモリ材料320の表面上への電流集中(例えば、電流密度の不均一な分布)をさらに強化できる。
【0047】
図3Eは、開口部346を生じるエッチングを行った後の図3Dのアレイ構造310を示す。この例において、エッチングは、第2の電極材料322、メモリ材料320、第1の電極材料318、(抵抗材料352及び絶縁材料354を含む)誘電材料350、及び、第1の導体材料314を通してy方向に沿って行われる。図3Eに示すエッチングを行うことによって、y方向(例えば、ワード線方向)に延びる導電線314を画定する。
【0048】
例として、開口部346は、単一のパターンマスクエッチングプロセスを介して形成されてよい。しかしながら、実施形態はこれに限らない。例えば、ライナ材料(例えば、誘電体)が、メモリ材料がエッチングされた後に、誘電材料350及び/または導体材料314のエッチング前に、スタック上に形成されてよく、これは、誘電材料350及び/または導体材料314のエッチングに使用されるエッチャントからメモリ材料320を保護する等、(例えば、材料の交差汚染を防ぐ)利益を提供し得る。
【0049】
図3Fは、開口部346に、封止材料324、充填材料326をそれぞれ形成した後の図3Eのアレイ構造310を示す。例として、封止材料324は、図3Eに示すスタック(例えば、第2の電極材料322、メモリ材料320、第1の電極材料318、(抵抗材料352及び絶縁材料354を含む)誘電材料350、及び、第1の導体材料314を含むスタック)上に形成されてよい。封止材料324は、例えば、ALDプロセスまたはコンフォーマルCVDプロセス等のプロセスを介して形成されてよい。充填材料326は、スタック上に形成されてよく、例えば、メモリセルを分離するように働いてよい。封止材料324及び充填材料326は、封止材料224及び充填材料226に関連して前述した材料等の様々な材料を含む。
【0050】
図3Gは、幾つかの後続の処理ステップの後の図3Fのアレイ構造310を示す。後続の処理ステップは、平坦化プロセス(例えば、CMP)を行って、(例えば、封止材料324及び充填材料326の部分を取り除くことによって)電極材料322の上面を露出させることと、電極材料322の平坦化された表面上に第2の導体材料330を形成するこ
ととを含む。
【0051】
図3Hは、開口部348を生じるエッチングを行った後の図3Gのアレイ構造310を示す。この例において、エッチングは、第2の導体材料330、第2の電極材料322、メモリ材料320、及び、第1の電極材料318を通してx方向に沿って行われる。エッチングを行うことによって、x方向(例えば、ビット線方向)に延びる第2の導電線330を画定する。
【0052】
例として、開口部348は、単一パターンマスクエッチングプロセスを介して形成されてよい。しかしながら、実施形態はこれに限らない。例えば、ライナ材料(例えば、誘電体)が、メモリ材料をエッチング後、メモリ材料320のエッチング前に形成されてよく、これは、導体材料330のエッチングに使用されるエッチャントからメモリ材料320を保護する等、(例えば、材料の交差汚染を防ぐ)利益を提供し得る。
【0053】
図3Iは、開口部348に封止材料332、充填材料334をそれぞれ、形成した後の図3Hのアレイ構造310を示す。例として、封止材料332は、図3Hに示すスタック(例えば、第2の導体材料330、第2の電極材料322、メモリ材料320、及び、第1の電極材料318を含むスタック)上に形成されてよい。封止材料332は、例えば、ALDプロセスまたはコンフォーマルCVDプロセスを介して形成されてよい。充填材料334は、スタック上に形成されてよく、例えば、メモリセルを分離する働きをしてよい。封止材料332及び充填材料334は、封止材料224及び充填材料226に関して前述した材料等、様々な材料を含む。
【0054】
抵抗352は、垂直抵抗352(例えば、誘電材料352内に垂直に配置された抵抗)であってよく、また、複数のメモリセルの各メモリセルと接触してよい。垂直抵抗352は、抵抗216及び/または抵抗228の抵抗率と比較して高い抵抗率を可能にする抵抗を与え得る。例えば、電流方向の抵抗352の長さは、抵抗216及び228の長さより長くてよい。よって、垂直抵抗352は、第1の抵抗216及び/または第2の抵抗228より大きい抵抗を与え得る。
【0055】
図4は、本開示の幾つかの実施形態による、抵抗を有するメモリセルのアレイ410を含むコンピューティングシステム400の形態の装置のブロック図である。本明細書で使用される場合、メモリシステム405、コントローラ408、または、アレイ410は、別個に「装置」と見なされてもよい。メモリシステム405は、例えば、半導体ドライブ(SSD)であってよく、ホストインタフェース407、コントローラ408(例えば、シーケンサ及び/または他の制御回路)、及び、メモリ410と呼ばれてよい幾つかのメモリアレイ410を含んでよい。
【0056】
コントローラ408は、ホストインタフェース407及びメモリアレイ410に複数のチャネルを介して結合されてよく、メモリシステム405とホスト403との間のデータ転送に使用されてよい。インタフェース407は、標準インタフェースの形態であってよい。例えば、メモリシステム405が、コンピューティングシステム400のデータストレージに使用される時、インタフェース407は、他のコネクタ及びインタフェースの中で特に、シリアルアドバンストテクノロジーアタッチメント(SATA:serial advanced technology attachment)、ペリフェラルコンポーネントインターコネクトエクスプレス(PCIe:peripheral component interconnect express)、または、ユニバーサルシリアルバス(USB)であってよい。しかしながら、一般に、インタフェース407は、メモリシステム405と、インタフェース407と互換性のある受信器を有するホスト403との間で、制御、アドレス、データ、及び、他の信号を受け渡すためのインタフェース
を提供し得る。
【0057】
ホスト403は、様々な他の種類のホストの中で特に、パーソナルラップトップコンピュータ、デスクトップコンピュータ、デジタルカメラ、携帯電話、または、メモリカードリーダ等のホストシステムであってよい。ホスト403は、システムマザーボード及び/またはバックプレーンを含んでよく、幾つかの処理リソース(例えば、幾つかのプロセッサ)を含み得る。
【0058】
コントローラ408は、(ある実施形態においては、1つのダイ上の幾つかのメモリアレイであってよい)メモリアレイ410と通信して、他の動作の中で特に、データの読み取り、書き込み、及び、消去の動作を制御できる。例として、コントローラ408は、メモリアレイ410に対応するダイ(複数可)と同じダイであってもよく、異なるダイであってもよい。
【0059】
詳細には記載していないが、コントローラ408は、コントローラ408をメモリアレイ410に結合する各チャネルに対して離散的メモリチャネルコントローラを含み得る。コントローラ408は、例えば、メモリアレイ410へのアクセスを制御するための、及び/または、ホスト403とメモリアレイ410の間のデータ転送を容易にするための幾つかの構成要素を、ハードウェア及び/またはファームウェア及び/またはソフトウェアの形態で含み得る。
【0060】
メモリアレイ410は、メモリセル(例えば、不揮発性メモリセル)の幾つかのアレイを含み得る。アレイ410は、例えば、本明細書に記載の実施形態に従って形成されたセルを含むクロスポイントアレイであってよい。アレイ410は、3Dメモリアレイであってよい。例として、メモリセルは、3Dクロスポイントメモリセルであってよい。
【0061】
具体的な実施形態を本明細書に示し、記載したが、図に示した具体的な実施形態を同じ結果を達成すると予測される構成に代えることができることを当業者は理解されよう。本開示は、本開示の幾つかの実施形態の適合形または変形を含むことを意図している。上の記載は、説明のためであり、制限のためではないことを理解されたい。上記実施形態と、本明細書に具体的に記載していない他の実施形態との組み合わせは、上記記載を読むと、当業者には明らかであろう。本開示の幾つかの実施形態の範囲は、上記構造及び方法を使用する他の適用を含む。よって、本開示の幾つかの実施形態の範囲は、添付請求項と、請求項が権利を有する同等物の全ての範囲とを参照して決定されるべきである。
【0062】
上記発明を実施するための形態において、幾つかの特徴は、開示を簡素化するために1つの実施形態にまとめられる。この開示方法は、本開示の開示された実施形態は、各請求項に明示的に記載された特徴よりも多くの特徴を使用しなければならないという意図を反映するものと解釈すべきではない。むしろ、以下の請求項に示すように、発明の主題は、1つの開示の実施形態の全ての特徴よりも少ない特徴にある。従って、以下の請求項は、発明を実施するための形態に組み込まれ、各請求項は、それ独自で、別個の実施形態として成立する。
図1
図2A
図2B
図2C
図2D
図2E
図2F
図2G
図3A
図3B
図3C
図3D
図3E
図3F
図3G
図3H
図3I
図4