特許第6916074号(P6916074)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浜松ホトニクス株式会社の特許一覧

特許6916074電子放出管、電子照射装置及び電子放出管の製造方法
<>
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000002
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000003
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000004
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000005
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000006
  • 特許6916074-電子放出管、電子照射装置及び電子放出管の製造方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6916074
(24)【登録日】2021年7月19日
(45)【発行日】2021年8月11日
(54)【発明の名称】電子放出管、電子照射装置及び電子放出管の製造方法
(51)【国際特許分類】
   H01J 37/18 20060101AFI20210729BHJP
   H01J 37/073 20060101ALI20210729BHJP
   G21K 5/04 20060101ALI20210729BHJP
   G21K 5/00 20060101ALI20210729BHJP
【FI】
   H01J37/18
   H01J37/073
   G21K5/04 E
   G21K5/00 W
【請求項の数】15
【全頁数】17
(21)【出願番号】特願2017-180270(P2017-180270)
(22)【出願日】2017年9月20日
(65)【公開番号】特開2019-57387(P2019-57387A)
(43)【公開日】2019年4月11日
【審査請求日】2020年4月30日
(73)【特許権者】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100171583
【弁理士】
【氏名又は名称】梅景 篤
(72)【発明者】
【氏名】須山 本比呂
(72)【発明者】
【氏名】永田 貴章
【審査官】 関口 英樹
(56)【参考文献】
【文献】 特開平05−144716(JP,A)
【文献】 特開2011−014244(JP,A)
【文献】 特開2004−361096(JP,A)
【文献】 特開2014−053073(JP,A)
【文献】 特開2003−045368(JP,A)
【文献】 特表2008−519423(JP,A)
【文献】 国際公開第2017/112937(WO,A1)
【文献】 国際公開第2011/001611(WO,A1)
【文献】 特開2006−294481(JP,A)
【文献】 米国特許出願公開第2003/0030014(US,A1)
【文献】 米国特許出願公開第2018/0374669(US,A1)
【文献】 米国特許出願公開第2016/0035449(US,A1)
【文献】 特開2010−272381(JP,A)
【文献】 米国特許出願公開第2012/0138791(US,A1)
【文献】 特開2012−099273(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21K1/00−3/00
5/00−7/00
H01J27/00−27/26
37/00−37/18
37/21
37/24−37/295
(57)【特許請求の範囲】
【請求項1】
内部空間が設けられ、前記内部空間を真空に保持する筐体と、
前記筐体の一方向における一端側に配置され、電子を生成する電子源と、
前記筐体の前記一方向における他端側に配置され、前記他端側を開放状態又は遮蔽状態に切り替え可能なゲートバルブと、
前記電子源と前記ゲートバルブとの間に位置し、前記内部空間を、前記電子源を含む第1領域と前記ゲートバルブを含む第2領域とに隔てる仕切り部と、を備え、
前記仕切り部は、前記電子を透過する電子透過膜を有し、前記第1領域の気密を保つように前記第1領域と前記第2領域とを隔てる
電子放出管。
【請求項2】
前記電子透過膜の電位はグラウンド電位である、
請求項1に記載の電子放出管。
【請求項3】
前記内部空間に配置され、前記電子源の電位よりも高電位の電圧が印加された加速電極をさらに備える、
請求項1又は請求項2に記載の電子放出管。
【請求項4】
前記電子透過膜は、単層物質からなる膜である、
請求項1から請求項3のいずれか一項に記載の電子放出管。
【請求項5】
前記電子透過膜は、単層又は多層のグラフェンからなる膜である、
請求項1から請求項3のいずれか一項に記載の電子放出管。
【請求項6】
前記電子透過膜は、窒化シリコン膜である、
請求項1から請求項3のいずれか一項に記載の電子放出管。
【請求項7】
前記単層物質は、二硫化タングステン又は二硫化モリブデンで構成される、
請求項4に記載の電子放出管。
【請求項8】
前記仕切り部は、前記一方向と交差する第1面と、前記一方向と交差し、前記第1面と反対側に設けられた第2面と、を含む基板を有し、
前記基板には、前記一方向に前記基板を貫通する孔が設けられ、
前記電子透過膜は、前記第1面に設けられ、前記孔を覆う、
請求項1から請求項7のいずれか一項に記載の電子放出管。
【請求項9】
前記仕切り部は、開口部を有する保持部材を有し、
前記基板は、前記保持部材に、ろう付け又はメタルシールによって固定され、
前記開口部と前記孔とは、互いに重なるように配置される、
請求項8に記載の電子放出管。
【請求項10】
前記電子源は、光が照射されることによって前記電子を生成する光電面を有する、
請求項1から請求項9のいずれか一項に記載の電子放出管。
【請求項11】
前記光電面は、アルカリ光電面である、
請求項10に記載の電子放出管。
【請求項12】
前記電子源は、熱電子源又は電界放出電子源である、
請求項1から請求項9のいずれか一項に記載の電子放出管。
【請求項13】
被照射体に電子を照射する電子照射装置であって、
請求項1から請求項12のいずれか一項に記載の電子放出管と、
前記電子放出管が取り外し可能な状態で取り付けられ、前記被照射体を収容する収容室と、を備える、
電子照射装置。
【請求項14】
前記収容室に配置され、前記被照射体に電子が照射されることで生じる反応信号を検出する検出器をさらに備える、
請求項13に記載の電子照射装置。
【請求項15】
請求項1から請求項12のいずれか一項に記載の電子放出管の製造方法であって、
排気装置によって、前記第1領域と前記第2領域とを真空排気する排気工程を備え、
前記排気装置は、真空ポンプと、前記真空ポンプから延びる共通管と、前記共通管から延び前記第1領域に接続される第1枝管と、前記共通管から延び前記第2領域に接続される第2枝管と、を有する、
電子放出管の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子放出管、電子照射装置及び電子放出管の製造方法に関する。
【背景技術】
【0002】
走査電子顕微鏡(SEM;Scanning Electron Microscope)、半導体露光装置、及び半導体検査装置等に使用され、電子を供給するための電子放出管が知られている。特許文献1には、胴部とヘッド部との連通部を開閉自在なゲート板で遮断して胴部内を気密状態とするゲートバルブを備える電子ビーム放出管(電子放出管)が記載されている。特許文献2には、荷電粒子ビーム源(電子源)と被照射物が配置される反応器との隔壁を可動とし、ビーム上流側にゲート弁を設けた荷電粒子ビーム照射装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−361096号公報
【特許文献2】特開2001−84948号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
電子放出管には、電子を発生させる電子源を収容する筐体内部を高真空状態に保つために、電子源で発生した電子を筐体外に放出させる位置に、電子透過膜が設けられることがある。電子透過膜は、筐体内部を高真空状態に保つことに寄与するが、一方で、電子が電子透過膜を通過する際にエネルギー損失を起こしてしまう。電子のエネルギー損失を抑えるためには、電子透過膜の膜厚を薄くすることが望ましい。しかしながら、電子透過膜の膜厚を薄くすると、電子源を収容する電子放出管の製造、輸送、及びメンテナンス等の際に、筐体内部と筐体外部との気圧差によって電子透過膜が破れてしまうおそれがある。
【0005】
本発明は、電子透過膜の膜厚を薄くすることが可能な、電子放出管、電子照射装置及び電子放出管の製造方法を提供する。
【課題を解決するための手段】
【0006】
本発明の一側面に係る電子放出管は、内部空間が設けられ、内部空間を真空に保持する筐体と、筐体の一方向における一端側に配置され、電子を生成する電子源と、筐体の一方向における他端側に配置され、他端側を開放状態又は遮蔽状態に切り替え可能なゲートバルブと、電子源とゲートバルブとの間に位置し、内部空間を、電子源を含む第1領域とゲートバルブを含む第2領域とに隔てる仕切り部と、を備える。仕切り部は、電子を透過する電子透過膜を有する。
【0007】
この電子放出管では、筐体の一方向における一端側に電子源が配置され、筐体の一方向における他端側に、筐体の他端側を開放状態又は遮断状態に切り替え可能なゲートバルブが配置されている。筐体に設けられた内部空間は、電子を透過する電子透過膜を有する仕切り部によって、電子源を含む第1領域とゲートバルブを含む第2領域とに隔てられている。電子放出管の製造時等において、ゲートバルブによって筐体の一方向における他端側を遮蔽することで、第1領域とともに第2領域を真空状態に保つことができる。そのため、第1領域と第2領域との気圧差が小さくなり、第1領域及び第2領域の間に配置された電子透過膜に加わる、気圧差に起因する力が軽減される。その結果、電子透過膜の膜厚を薄くすることが可能となる。
【0008】
電子透過膜の電位はグラウンド電位であってもよい。この場合、電子透過膜に電圧が印加されないので、電圧印加に起因する電子透過膜の物理的な変形が抑制される。その結果、電子透過膜を通過する電子への影響を低減することが可能となる。
【0009】
内部空間に配置され、電子源の電位よりも高電位の電圧が印加された加速電極をさらに備えてもよい。この場合、電子源で生成された電子を、電子源よりも電位が高い加速電極によって発生する電界により加速させることが可能となる。
【0010】
電子透過膜は、単層物質からなる膜であってもよい。この場合、単層物質は原子約1個分の厚さを有するので、電子透過膜の膜厚を薄くすることができる。その結果、電子透過膜を通過する電子への影響を低減することが可能となる。
【0011】
電子透過膜は、単層又は多層のグラフェンからなる膜であってもよい。この場合、グラフェンは炭素原子1個分の厚さを有するので、電子透過膜の膜厚を薄くすることができる。その結果、電子透過膜を通過する電子への影響を低減することが可能となる。
【0012】
電子透過膜は、窒化シリコン膜であってもよい。この場合、窒化シリコン膜では、製作過程で発生する内部応力が小さいので、電子透過膜の膜厚を薄くすることができる。その結果、電子透過膜を通過する電子への影響を低減することが可能となる。
【0013】
単層物質は、二硫化タングステン又は二硫化モリブデンで構成されていてもよい。この場合、単層物質は二硫化タングステン又は二硫化モリブデンに含まれるいずれかの原子約1個分の厚さを有するので、電子透過膜の膜厚を薄くすることができる。その結果、電子透過膜を通過する電子への影響を低減することが可能となる。
【0014】
仕切り部は、一方向と交差する第1面と、一方向と交差し、第1面と反対側に設けられた第2面と、を含む基板を有してもよく、基板には、一方向に基板を貫通する孔が設けられてもよく、電子透過膜は、第1面に設けられ、孔を覆ってもよい。この場合、電子透過膜は基板の第1面に設けられるので、電子透過膜を安定して保持することが可能となる。
【0015】
仕切り部は、開口部を有する保持部材を有してもよく、基板は、保持部材に、ろう付け又はメタルシールによって固定されてもよく、開口部と孔とは、互いに重なるように配置されてもよい。この場合、電子透過膜が設けられた基板を、ろう付け又はメタルシールにより保持部材に固定することによって、第1領域の真空状態を保つことができる。そのため、電子透過膜が設けられた基板の製造後に、基板を保持部材に取り付けることができるので、電子透過膜の製造が容易となる。
【0016】
電子源は、光が照射されることによって電子を生成する光電面を有してもよい。この場合、光電面に対して光が照射されることで、筐体内に電子が生成され、電子放出管から電子を放出することが可能となる。
【0017】
光電面は、アルカリ光電面であってもよい。この場合、可視光領域の光がアルカリ光電面に照射されることで、筐体内に電子が生成され、電子放出管から電子を放出することが可能となる。
【0018】
電子源は、熱電子源又は電界放出電子源であってもよい。この場合、電子源に対して熱又は電界を加えることによって、筐体内に電子が生成され、電子放出管から電子を放出することが可能となる。
【0019】
本発明の別の側面に係る電子照射装置は、被照射体に電子を照射する電子照射装置であって、上述の電子放出管と、電子放出管が取り付けられ、被照射体を収容する収容室と、を備える。この電子照射装置は、上述の電子放出管を備えるので、電子透過膜の膜厚を薄くすることが可能となる。
【0020】
電子照射装置は、収容室に配置され、被照射体に電子が照射されることで生じる反応信号を検出する検出器をさらに備えてもよい。この場合、被照射体の観察又は検査を行うことが可能となる。
【0021】
本発明のさらに別の側面に係る電子放出管の製造方法は、排気装置によって、第1領域と第2領域とを真空排気する排気工程を備える。排気装置は、真空ポンプと、真空ポンプから延びる共通管と、共通管から延び第1領域に接続される第1枝管と、共通管から延び第2領域に接続される第2枝管と、を有する。
【0022】
この電子放出管の製造方法では、第1領域に接続された第1枝管と、第2領域に接続された第2枝管とが、共通管を介して真空ポンプに接続されているので、排気装置によって第1領域及び第2領域が同時に真空排気される。そのため、第1領域と第2領域との気圧差が小さくなるので、電子放出管の製造段階において、第1領域及び第2領域の間に配置された電子透過膜に加わる、気圧差に起因する力が軽減される。その結果、電子透過膜の膜厚を薄くすることが可能となる。
【発明の効果】
【0023】
本発明によれば、電子透過膜の膜厚を薄くすることが可能となる。
【図面の簡単な説明】
【0024】
図1図1は、一実施形態に係る電子放出管の内部を示す断面図である。
図2図2の(a)から図2の(f)は、準備工程の一例を示す図である。
図3図3は、排気工程及び封止工程の一例を説明するための図である。
図4図4は、排気工程及び封止工程の他の例を説明するための図である。
図5図5は、図1の電子放出管の適用例を示す図である。
図6図6は、電子源の他の例を示す図である。
【発明を実施するための形態】
【0025】
以下、図面を参照しながら、一実施形態に係る電子放出管、電子照射装置及び電子放出管の製造方法を説明する。各図において同一又は相当の部分には同一の符号を付し、重複する説明を省略する。
【0026】
図1は、一実施形態に係る電子放出管の内部を示す断面図である。図1には、後述する被取付部12に取り付けられた状態の電子放出管1が示されている。電子放出管1は、電子を供給する真空管である。電子放出管1は、筐体2、電子源3、仕切り部4、ゲートバルブ5、加速電極6、及び調整部材7を備える。
【0027】
筐体2は、一方向(X軸方向)に延びる内部空間Sを規定する容器である。筐体2は、例えば、略円筒形状である。筐体2は、内部空間Sを真空に保持する。例えば、筐体2は、内部空間Sを超高真空の状態に保持する。筐体2は、側壁部21、入力面板22、フランジ23、フランジ24、フランジ25、及びフランジ26を有する。
【0028】
側壁部21は、X軸方向に沿って延びる中空の円筒形状を有し、X軸方向における両端(端部21a,21b)に開口を有する。側壁部21の材質は、例えば、ホウケイ酸ガラスである。入力面板22は、光を透過可能なガラス製の基板である。入力面板22は、側壁部21の端部21aに設けられ、端部21aの開口を閉塞するように設けられる。
【0029】
フランジ23は、例えば金属製の環状部材である。フランジ23は、側壁部21の端部21aから外側に突出しており、端部21aに沿って設けられている。フランジ23は、融着等によって端部21aに固定される。フランジ24は、例えば金属製の環状部材である。フランジ24は、側壁部21の端部21bから外側に突出しており、端部21bに沿って設けられている。フランジ24は、融着等によって端部21bに固定される。
【0030】
フランジ25は、例えば金属製の環状部材である。フランジ25は、入力面板22の周縁から外側に突出しており、入力面板22の周縁に沿って環状に設けられている。フランジ23とフランジ25とが互いに溶接等によって結合されることで、内部空間Sの気密を保つようにして、端部21aに入力面板22が固定される。
【0031】
フランジ26は、X軸方向に延び、両端が開放された中空円筒形状の胴部26aと、被取付部12に電子放出管1を取り付けるための取付部26bと、を有する。胴部26aと仕切り部4とは、例えば、銅製のガスケット及びボルトによって、互いに固定される。取付部26bは、胴部26aのX軸方向における仕切り部4とは反対側の端部から外側に突出しており、当該端部に沿って設けられている。取付部26bと被取付部12とは、例えば、銅製のガスケット及びボルトによって、互いに固定される。
【0032】
電子源3は、電子を生成し、生成した電子を内部空間Sに放出する。電子源3は、筐体2のX軸方向における一端側に配置される。具体的には、電子源3は、入力面板22の内部空間S側の面に設けられる。電子源3は、光電面31及び電極32を有する。
【0033】
光電面31は、入力面板22を介して入射した光により電子を生成し、内部空間Sに電子を放出する。光電面31は、入力面板22の内部空間S側の面に沿って設けられる。光電面31の外周には電極32が接続される。電極32の材質は、例えばCr(クロム)である。光電面31には、電極32により、例えば−10kVの電圧が印加されている。光電面31は、例えば可視光領域での感度が高いアルカリ光電面である。アルカリ光電面として、可視光のうち青領域での感度が高いバイアルカリ光電面、又は赤領域での感度が高いマルチアルカリ光電面が用いられてもよい。バイアルカリ光電面は抵抗が高く強い光に対する応答が飽和する傾向を有するので、バイアルカリ光電面を用いる場合、光を透過する導電膜の下地が設けられてもよい。
【0034】
ゲートバルブ5は、筐体2のX軸方向における他端側に設けられている。ゲートバルブ5は、筐体2のX軸方向における他端側を開放状態又は遮蔽状態に切り替える。ゲートバルブ5は、筐体2のX軸方向における他端側を開閉可能なゲート板(不図示)を有する。ゲート板の位置を変更することで、筐体2のX軸方向における他端側が開放状態又は遮蔽状態に切り替えられる。
【0035】
仕切り部4は、電子源3を含む第1領域S1と、ゲートバルブ5を含む第2領域S2とに内部空間Sを隔てる。第1領域S1は、側壁部21、入力面板22、フランジ23、フランジ24、フランジ25、及び仕切り部4によって規定された空間である。第1領域S1を規定するそれぞれの部材間は、融着及び溶接等によって固定されているので、第1領域S1を真空状態とした後の第1領域S1の真空度は保たれる。なお、第1領域S1を真空状態にする方法については後述する。
【0036】
第2領域S2は、フランジ26、仕切り部4、及びゲートバルブ5によって規定された空間である。ゲートバルブ5によって筐体2のX軸方向における他端側が遮蔽状態に切り替えられ、その遮蔽状態が維持されることで、第2領域S2を真空状態とした後の第2領域S2の真空度は保たれる。電子放出管1が被取付部12に取り付けられた後、ゲートバルブ5によって、筐体2のX軸方向における他端側が開放状態に切り替えられることで、第2領域S2は、後述の収容室11の内部の空間と接続される。なお、第2領域S2を真空状態にする方法については後述する。
【0037】
仕切り部4は、開口部42を含む保持部材41と、基板43と、電子透過膜44と、を有する。保持部材41は、X軸方向と垂直な方向に沿って延びる板状部材である。保持部材41の外周縁部は、フランジ24及びフランジ26に挟持される。保持部材41の外周縁部は、フランジ24の外周縁部に、溶接等によって固定されるとともに、胴部26aに、銅製のガスケット及びボルト等によって固定される。保持部材41には、X軸方向から見た保持部材41の略中央の位置に、X軸方向に保持部材41を貫通する開口部42が設けられる。
【0038】
基板43は、X軸方向と交差する第1面43a及び第2面43bを含み、基板43には、X軸方向に基板43を貫通する孔45が設けられる。基板43の材質は、例えば、シリコン又はガラスである。第1面43aには、孔45を覆うように電子透過膜44が設けられる。電子透過膜44は、例えば、単層のグラフェンからなる膜である。なお、グラフェンは、単一の炭素原子層で構成され、炭素原子1個分の厚さを有するシート状の物質である。第2面43bは、孔45と開口部42とが互いに重なるように、保持部材41にメタルシールによって固定される。なお、基板43は、ろう付けによって、保持部材41と固定されてもよい。電子透過膜44には、例えば0V(グラウンド電位)の電圧が印加されている。
【0039】
加速電極6は、電子源3から放出された電子を加速するための電極である。加速電極6は内部空間Sに配置される。具体的には、加速電極6は、第1領域S1にX軸方向に沿って延びるように設けられる。加速電極6の径は、X軸方向の電子源3に近い一端からX軸方向の他端に向かって、段階的に大きくなる。加速電極6のX軸方向における他端は、フランジ24の内周縁部に、抵抗溶接等によって固定される。加速電極6には、光電面31よりも高い電位の電圧が印加されている。加速電極6には、例えば0V(グラウンド電位)の電圧が印加されている。光電面31と加速電極6とによって生じる電界により、光電面31から放出された電子は加速される。
【0040】
調整部材7は、電子の収束領域及び電子の進行方向を調整するためのコイルである。調整部材7は、側壁部21の外周を囲むように配置された収束コイル71及び偏向コイル72a,72bを有する。収束コイル71及び偏向コイル72a,72bに電流が流れることによって、第1領域S1内に磁界が発生する。収束コイル71及び偏向コイル72a,72bによって生じた磁界に基づき、電子の収束領域及び電子の進行方向が調整される。
【0041】
具体的には、収束コイル71は、光電面31から放出された複数の電子から構成される電子群の収束領域を調整する。ここで、収束領域とは、X軸方向と垂直な面における電子群が通過する領域である。収束コイル71は、電子透過膜44における電子群の収束領域が最小となるように、電子群の収束領域を調整する。電子透過膜44において、電子群の収束領域が最小となるように調整することで、電子透過膜44の最小限の有効面積は、例えば、直径0.1mmから0.5mm程度となる。一方、偏向コイル72a及び偏向コイル72bは、X軸方向に沿って、収束コイル71を挟むように設けられている。偏向コイル72a,72bは、電子群の進む向き(進行方向)を変更するような磁界を発生させる。なお、調整部材7は、第1領域S1内に電界を発生させることで、電子群の収束領域及び電子の進行方向を調整してもよい。
【0042】
以上のように構成された電子放出管1では、入力面板22を介して光電面31に入射光が入射されると、光電面31が電子を生成し、第1領域S1に電子を放出する。光電面31から第1領域S1に放出された電子は、加速電極6によりX軸方向に沿って加速される。このとき、電子は調整部材7によって電子の収束領域及び進行方向が調整され、電子透過膜44を通過する。電子透過膜44を通過した電子は、第2領域S2を通過し、ゲートバルブ5を介して電子放出管1から放出される。
【0043】
次に、図2の(a)から図2の(f)、及び図3を用いて、電子放出管1の製造方法を説明する。図2の(a)から図2の(f)は、準備工程の一例を示す図である。図3は、排気工程及び封止工程の一例を説明するための図である。電子放出管1の製造方法は、準備工程、排気工程、光電面作製工程、及び封止工程を備える。
【0044】
準備工程では、単層のグラフェンからなる膜(電子透過膜44)が基板43に形成される。具体的には、まず、熱CVD(Chemical Vapor Deposition;化学気相成長法)により、図2の(a)に示されるように、銅箔46の両面(面46a,46b)に単層のグラフェン44a,44bが成膜される。例えば、カーボン源としてCH(メタン)が用いられ、CHの供給時間を450秒とし、成膜温度を1020℃とすることで、単層のグラフェン44a,44bが銅箔46に成膜される。単層のグラフェン44aが面46aに成膜され、単層のグラフェン44bが面46bに成膜される。銅箔46としては、例えば、純度が約99.9%であり、厚さは30μm程度の銅箔が用いられる。
【0045】
続いて、RIE(Reactive Ion Etching;反応性イオンエッチング)により、図2の(b)に示されるように、銅箔の面46bに形成された単層のグラフェン44bが除去される。続いて、スピンコーター等により、図2の(c)に示されるように、単層のグラフェン44aにPMMA(Polymethyl methacrylate;ポリメタクリル酸メチル樹脂)47が塗布され、第1中間物48が形成される。例えば、スピンコーターの回転速度を3000rpm(rotation per minute;回毎分)として、単層のグラフェン44aに4wt%(質量パーセント濃度)程度のPMMA47が塗布される。
【0046】
続いて、第1中間物48を1wt%程度の過硫酸アンモニウムに浮かせることで、図2の(d)に示されるように、銅箔46が除去され、第2中間物49が製造される。続いて、第2中間物49を純水に浮かせた後、所望のサイズの孔45が設けられた基板43を用いて、第2中間物49がすくい取られる。そして、基板43と単層のグラフェン44aとの間を乾燥させることで、図2の(e)に示されるように、基板43の第1面43aに単層のグラフェン44aが転写され、第3中間物50が製造される。最後に、第3中間物50が、水素雰囲気及び真空状態にて約450℃で加熱(水素雰囲気下で真空ベーク)されることで、図2の(f)に示されるように、PMMA47が除去される。これによって、単層のグラフェン44aからなる膜が設けられた基板43が製造される。
【0047】
次に、準備工程では、単層のグラフェン44aからなる膜(電子透過膜44)が設けられた基板43が図1に示される保持部材41に、アルミ接合(メタルシール)によって固定される。具体的には、基板43の第2面43bと、ゲートバルブ5と対向する保持部材41の一方の面との間にアルミリングが配置され、配置されたアルミリングを加熱及び加圧することで、基板43と保持部材41とが、第1領域S1の気密を保つように固定される。
【0048】
排気工程では、図3に示される排気装置8によって、第1領域S1と第2領域S2とが真空排気される。具体的には、排気装置8によって、第1領域S1及び第2領域S2の空気が排出されることで、第1領域S1及び第2領域が真空状態となる。
【0049】
排気装置8は、真空ポンプ81、共通管82、枝管(第1枝管)83、及び枝管(第2枝管)84を有する。真空ポンプ81は、第1領域S1及び第2領域S2を所望の真空度に真空排気することが可能なポンプであればよい。共通管82、枝管83、及び枝管84は、例えば銅製であり、中空円筒状のパイプである。共通管82の一端は、真空ポンプ81に接続される。共通管82の他端は、枝管83の一端及び枝管84の一端と接続される。枝管83の他端は、側壁部21に設けられた細管21cにろう付け等によって固定されることで、第1領域S1に接続される。枝管84の他端は、フランジ26に設けられた細管26cにろう付け等によって固定されることで、第2領域S2に接続される。このように、真空ポンプ81から延びる共通管82と、共通管82から延びる枝管83及び枝管84とによって、真空ポンプ81に第1領域S1及び第2領域S2の双方が接続される。この状態で、真空ポンプ81を作動させることによって、第1領域S1及び第2領域S2が同時に真空排気される。
【0050】
光電面作製工程では、真空状態にてアンチモン下地にアルカリ金属を反応させることでアルカリ光電面(光電面31)が作製される。具体的には、第1領域S1が真空排気された後、例えば、300℃にて数時間、電子放出管1を加熱するベーキングを行うことにより、第1領域S1の脱ガス(不純物の除去)が行われる。その後、第1領域S1内に、例えば、カリウム、ナトリウム及びセシウム等のアルカリ金属が不図示の細管から導入され、第1領域S1に予め設けられたアンチモン下地にアルカリ金属を反応させることで、アルカリ光電面が作製される。
【0051】
封止工程では、真空排気された第1領域S1及び第2領域S2それぞれが、真空状態に維持されるように封止される。具体的には、枝管83の他端側及び枝管84の他端側がそれぞれ封止される。より具体的には、枝管83の他端側を、図3に示される破線C1の位置でピンチシール法によって封止することで、第1領域S1は真空状態が維持されるように封止される。ピンチシール法では、例えば、枝管83の図3に示される破線C1の位置において、外側から枝管83を押圧して潰すことで、枝管83が閉塞される。同様に、枝管84の他端側を、図3に示される破線C2の位置でピンチシール法によって封止することで、第2領域S2は真空状態が維持されるように封止される。なお、これらの排気工程、光電面作製工程及び封止工程において、筐体2のX軸方向における他端側は、ゲートバルブ5によって遮蔽状態に維持されている。第1領域S1及び第2領域S2が封止された後、筐体2等によって第1領域S1及び第2領域S2は、真空状態に保持される。以上のようにして、電子放出管1が製造される。なお、電子放出管1の製造後において、電子放出管1は、細管21c、細管26c、枝管83の一部、及び枝管84の一部を有するが、図1において、それらの図示は省略されている。
【0052】
次に、排気工程及び封止工程の他の例を説明する。図4は、排気工程及び封止工程の他の例を説明するための図である。図4に示された例は、図3に示された例と比較して、枝管84と第2領域S2との接続形態において相違する。具体的に説明すると、排気装置8は、排気チャンバー85をさらに有する。排気チャンバー85は、内部に空間85aを有する略直方体状の箱体であり、排気チャンバー85には、枝管84が接続される。排気チャンバー85のX軸方向における一端には、例えば、ゲートバルブ5のX軸方向と垂直な面と略同一面積を有する開口85bが設けられている。排気チャンバー85のX軸方向における一端は、フランジ26の取付部26bに、例えば、銅製のガスケット及びボルトによって固定される。
【0053】
排気工程では、まず、ゲートバルブ5によって筐体2のX軸方向における他端側が開放状態とされる。筐体2の他端側が開放状態となることで、第2領域S2と空間85aとが連続した空間領域となり、枝管84が第2領域S2に排気チャンバー85を介して接続される。この状態で、真空ポンプ81を作動させることによって、第1領域S1及び第2領域S2が同時に真空排気される。封止工程では、ゲートバルブ5によって筐体2のX軸方向における他端側を遮蔽状態とした後に、排気チャンバー85がフランジ26の取付部26bから取り外されることで、第2領域S2が真空状態に維持されるように封止される。この例では、排気チャンバー85を介して第2領域S2が真空排気され、ゲートバルブ5によって第2領域S2が封止されるので、枝管84をピンチシール法によって封止する工程を省略することができる。
【0054】
次に、図5を用いて、本実施形態に係る電子放出管の適用例を説明する。図5は、図1の電子放出管1の適用例を示す図である。図5には、適用例として、電子放出管1を備えた電子照射装置10が示されている。電子照射装置10は、被照射体15に電子を照射する装置である。電子照射装置10は、電子放出管1及び収容室11を備える。収容室11は、被照射体15を収容し、被照射体15に電子を照射するための箱体である。収容室11は、真空チャンバーとも称される。収容室11は、鏡体13及び試料室14を有する。電子放出管1は、収容室11のX軸方向における端部に取り付けられる。具体的には、電子放出管1の取付部26bが、銅製のガスケット及びボルトによって、鏡体13の一方の端部13aに設けられた被取付部12に固定される。なお、被取付部12は、X軸方向と垂直な方向に沿って延びる板状部材である。
【0055】
鏡体13は、X軸方向に沿って延び、両端(端部13a,13b)に開口を含む中空円筒形状である。鏡体13の外側には、磁場収束レンズ13c及び磁場対物レンズ13dが配置される。鏡体13のX軸方向における被照射体15に近い端部13bにおいて、鏡体13の径は、被照射体15に近づくに従い徐々に小さくなる。端部13bの開口面積は、被取付部12が設けられる端部13aの開口面積よりも小さい。電子放出管1から供給された電子は、鏡体13の外側に配置された磁場収束レンズ13c及び磁場対物レンズ13dにより発生する磁界によって、収束領域が細く絞り込まれ、鏡体13の端部13bから発射される。
【0056】
試料室14は、被照射体15を収容する。被照射体15には、鏡体13から発射された電子が照射される。収容室11には、検出器16が配置される。具体的には、検出器16は、試料室14に設けられ、電子が照射された被照射体15から生じる二次電子を反応信号として検出する。試料室14には、真空ポンプ17が接続可能であり、被照射体15に電子を照射する際には、真空ポンプ17により、鏡体13及び試料室14の内部の空間が真空排気される。鏡体13及び試料室14の内部の空間を真空排気した後に、ゲートバルブ5によって電子放出管1のX軸方向における他端側が開放状態とされる。
【0057】
電子照射装置10では、例えば1μm以下に収束したレーザ光(入射光)が、光電面31に照射される。レーザ光が照射された光電面31から放出された電子は、加速電極6により加速され、収束コイル71によって発生した磁界により、電子の収束領域が1/10程度に縮小されて、電子透過膜44を通過する。電子透過膜44を通過した電子は、電子放出管1から放出され、収容室11に供給される。収容室11に供給された電子は、鏡体13の外側に配置された磁場収束レンズ13c及び磁場対物レンズ13dにより発生する磁界によって、電子の収束領域がさらに1/100程度に縮小されて、被照射体15に照射される。電子が照射された被照射体15から発せられる二次電子の変化量を検出器16により計測することによって、例えば、空間分解能1nmの顕微鏡画像を取得することができる。
【0058】
電子放出管1は、収容室11とは別に製造され、電子放出管1の製造後に収容室11に取り付けられる。また、電子放出管1を交換又はメンテナンスする場合には、電子放出管1が収容室11から取り外され、新しい電子放出管1又はメンテナンスした電子放出管1が収容室11に取り付けられる。電子放出管1が収容室11に取り付けられていない状態では、ゲートバルブ5によって電子放出管1の筐体2のX軸方向における他端側は遮蔽した状態に維持される。電子放出管1が収容室11に取り付けられた後、電子を供給する際には、ゲートバルブ5によって電子放出管1の筐体2のX軸方向における他端側は開放される。
【0059】
電子照射装置10としては、例えば、走査電子顕微鏡、半導体露光装置、及び半導体検査装置が挙げられる。その他に電子照射装置10としては、微小な点から放出するX線を必要とするマイクロフォーカスX線管(X線非破壊検査装置)が挙げられる。さらに、電子照射装置10としては、多数のレーザービームを光電面31に入射することで発生するマルチ電子ビーム、又はパターン光を光電面31に入射することで形成されるパターン電子ビームを必要とする電子ビーム露光装置が挙げられる。
【0060】
以上説明した電子放出管1では、筐体2の一方向(X軸方向)における一端側に電子源3が配置され、筐体2の一方向(X軸方向)における他端側に、筐体2の他端側を開放状態又は遮断状態に切り替え可能なゲートバルブ5が配置されている。筐体2に設けられた内部空間Sは、電子を透過する電子透過膜44を有する仕切り部4によって、電子源3を含む第1領域S1とゲートバルブ5を含む第2領域S2とに隔てられている。電子放出管1の製造、輸送、及びメンテナンス等においては、電子放出管1は、被取付部12から取り外されている。この場合に、ゲートバルブ5によって筐体2の一方向における他端側を遮蔽することで、第1領域S1とともに第2領域S2を真空状態に保つことができる。そのため、第1領域S1と第2領域S2との気圧差が小さくなり、第1領域S1及び第2領域S2の間に配置された電子透過膜44に加わる、気圧差に起因する力が軽減される。その結果、電子透過膜44の膜厚を薄くすることが可能となる。
【0061】
電子透過膜44の電位はグラウンド電位である。電子透過膜44に電圧が印加されていないので、電圧印加に起因する電子透過膜44の物理的な変形を抑制することができる。その結果、電子透過膜44を通過する電子への影響を低減することが可能となる。
【0062】
電子放出管1は、内部空間Sに配置され、電子源3の電位よりも高電位の電圧が印加された加速電極6を備えている。電子源3で生成された電子を、電子源3よりも電位が高い加速電極6により発生する電界によって加速させることが可能となる。
【0063】
電子透過膜44は、単層のグラフェン44aからなる膜である。単層のグラフェン44aからなる膜は自立できるので、電子透過膜44の膜厚を薄くできる。単層のグラフェン44aからなる膜の厚さは炭素原子1個分となるので、電子透過膜44を通過する電子への影響を低減することが可能となる。単層のグラフェン44aからなる膜の膜厚は、0.35nm程度であり、第1領域S1の真空状態を維持できるとともに、電子が電子透過膜44を透過する際のエネルギー損失を抑えることが可能となる。グラフェンは原子番号が小さい炭素原子で構成されるので、電子が電子透過膜44と相互作用する確率が低くなり、電子放出管1から放出される電子の量を増加させても、電子透過膜44の発熱を抑えることが可能となる。また、単層のグラフェン44aからなる膜の膜厚は薄いので、光電面31が本来有する電子のエネルギー分布及び角度分布の損失を抑制することが可能となる。そのため、収容室11で有効に利用できる電子の減少を抑制することが可能となる。
【0064】
仕切り部4は、一方向(X軸方向)と交差する第1面43aと、一方向(X軸方向)と交差し、第1面43aと反対側に設けられた第2面43bと、を含む基板43を有する。基板43には、一方向(X軸方向)に基板43を貫通する孔45が設けられ、電子透過膜44は、第1面43aに設けられ、孔45を覆う。電子透過膜44は基板43の第1面43aに設けられるので、基板43が電子透過膜44を保持することが可能となる。また、電子透過膜44における電子が通過する領域を、基板43に設けられる孔45のサイズによって、規定することが可能となる。
【0065】
仕切り部4は、開口部42を有する保持部材41を有し、基板43は、保持部材41に、ろう付け又はメタルシールによって固定され、開口部42と孔45とは、互いに重なるように配置される。電子透過膜44が設けられた基板43を、ろう付け又はメタルシールにより保持部材41に固定することによって、第1領域S1の真空状態を保つことができる。そのため、電子透過膜44が設けられた基板43の製造後に、基板43を保持部材41に取り付けることができるので、電子透過膜44の製造が容易となる。
【0066】
電子源3は、光(入射光)が照射されることによって電子を生成する光電面31を有する。光電面31に光が照射されることで、筐体2内の第1領域S1に電子が生成され、電子放出管1から電子を放出することが可能となる。2次元平面でパターン化された光が光電面31に照射されることで、パターン化された光に応じた2次元分布を有した電子が光電面31から放出される。そのため、所望の2次元分布を有した電子が放出されるように、光電面31に照射する光をパターン化すればよいので、所望の2次元分布を有した電子を電子放出管1から放出することが容易となる。これによって、電子照射装置10の被照射体15に対して、所望の2次元分布を有した電子を照射することが容易となる。また、光電面31に照射される入射光をパルス波とし、光電面31が電子を生成するタイミングを制御することで、電子放出管1から放出される電子の放出のタイミングを制御することができる。これによって、電子照射装置10の被照射体15に電子を照射するタイミングを制御することが容易となる。例えば、収容室11内に設置された被照射体15の動作に同期させて、被照射体15に電子を照射することで、被照射体15の動作を検査することが可能となる。
【0067】
光電面31がアルカリ光電面である場合、可視光領域の光がアルカリ光電面に照射されることで、筐体2内に電子を生成することができる。アルカリ光電面は、例えば、光の波長が400nm程度の可視光領域において高い感度を有する。可視光領域において、レーザ光を2次元平面でパターン化することは他の光の波長領域に比べて易しい。そのため、所望の2次元分布を有した電子を電子放出管1から放出することがより容易となる。
【0068】
光電面31の仕事関数よりやや大きなエネルギーを有する入射光が光電面31に入射される場合、光電面31から放出される電子は、比較的低いエネルギー分布となる。例えば、光電面31がバイアルカリ光電面である場合に、波長が532nmの入射光をバイアルカリ光電面に照射することによって、バイアルカリ光電面から放出される電子は、タングステン電子銃に比べて1/10程度の約0.1eVのエネルギー分布となる。そのため、光電面31から放出される電子を小さなスポットに収束することが容易となる。
【0069】
例えば、電子放出管1が電子透過膜44を備えていないとすると、ゲートバルブ5及び筐体2によって、光電面31が設けられた第1領域S1を含む内部空間Sを真空状態に保持する必要がある。この場合、ガスケット又はゲートバルブ5からの微小なリークにより、光電面31の感度を長期間及び安定的に維持できるような真空度に内部空間Sを保持することができないおそれがある。なお、本実施形態で説明した電子放出管1において、ガスケット又はゲートバルブ5からの微小なリークにより、第2領域S2の真空度は、第1領域S1の真空度と完全に同一にならないおそれがある。しかしながら、第1領域S1及び第2領域S2の真空度に微小な差が生じたとしても、電子透過膜44が破れてしまう程度の気圧差を生じさせる可能性は低い。
【0070】
また、電子照射装置10は、電子放出管1と、電子放出管1が取り付けられ、被照射体15を収容する収容室11と、を備える。電子照射装置10によれば、電子放出管1から放出された電子を、収容室11内の被照射体15に照射することが可能となる。収容室11内の空間を真空排気した後では、第1領域S1、第2領域S2、及び収容室11の内部の空間はいずれも真空状態である。そのため、ゲートバルブ5によって電子放出管1のX軸方向における他端側を開放状態としても、第1領域S1と、第2領域S2及び収容室11の内部の空間が接続された空間との気圧差は小さいので、電子透過膜44に加わる気圧差に起因する力は軽減される。その結果、電子透過膜44の膜厚を薄くすることが可能となる。
【0071】
電子照射装置10は、収容室11に配置され、被照射体15に電子が照射されることで生じる反応信号を検出する検出器16を備えるので、被照射体15の観察又は検査を行うことが可能となる。
【0072】
電子放出管1を収容室11に取り付け後に電子照射装置10を使用する際、第2領域S2は真空排気された収容室11の内部の空間に接続される。そのため、第2領域S2は、第1領域S1に比べてやや悪い真空度となるおそれがある。しかしながら、第2領域S2の真空度が劣化し、第1領域S1の真空度と微小な差が生じたとしても、電子透過膜44が破れてしまう程度の気圧差を生じさせる可能性は低い。また、光電面31は、水又は酸素に暴露すると劣化するおそれがある。第2領域S2が収容室11の内部の空間に接続されることにより、水又は酸素が電子放出管1に入り込むおそれがある。しかしながら、光電面31を含む第1領域S1と第2領域S2との間に電子透過膜44が設けられているので、光電面31が水又は酸素に暴露する可能性は低減される。
【0073】
光電面31を備えた電子放出管1を、収容室11に取り付けているので、電子照射装置10全体の製造とは別に、電子放出管1を製造することが可能となる。そのため、再現性よく高感度な光電面31を作製することが可能となる。
【0074】
電子照射装置10が備える電子放出管1は、偏向コイル72a及び偏向コイル72bを有している。偏向コイル72a及び偏向コイル72bによって、電子が電子透過膜44を通過する位置が調整される。2個の偏向コイル72a,72bを有することで、光電面31のどの位置から放出された電子でも、電子透過膜44における同じ位置を、電子透過膜44に対して垂直に通過するように調整することが可能となる。
【0075】
光電面31がアルカリ光電面である場合、アルカリ光電面に光が入射する部分の感度は徐々に劣化するおそれがある。そこで、アルカリ光電面に光が入射する位置をずらすことにより、元の感度が得られる場合がある。しかしながら、アルカリ光電面に光が入射される位置をずらすと、電子の軌道がずれて、電子は、電子透過膜44における電子放出管1のX軸方向に沿う中心軸を中心とした領域を、中心軸に沿って適切に通過しない場合がある。このような場合、偏向コイル72aにより、アルカリ光電面から放出された電子を、中心軸に向かうように進行方向を調整し、さらに、偏向コイル72bにより中心軸に沿った方向に向くように電子の進行方向を調整することが可能となる。そのため、アルカリ光電面の一部が劣化し、光が入射する位置を変更したとしても、アルカリ光電面から放出された電子を、電子透過膜44における中心軸を中心とした領域を、中心軸に沿って通過させることが可能となる。その結果、収容室11ではレンズ等を調整することなく、被照射体15に適切に電子を照射することが可能となる。
【0076】
電子放出管1の製造方法では、第1領域S1に接続された枝管83と、第2領域S2に接続された枝管84とが、共通管82を介して真空ポンプ81に接続されているので、排気装置8によって第1領域S1及び第2領域S2が同時に真空排気される。そのため、第1領域S1と第2領域S2との気圧差が小さくなるので、電子放出管1の製造段階において、第1領域S1及び第2領域S2の間に配置された電子透過膜44に加わる、気圧差に起因する力が軽減される。その結果、電子透過膜44の膜厚を薄くすることが可能となる。
【0077】
なお、本発明に係る電子放出管、電子照射装置及び電子放出管の製造方法は上記実施形態に限定されない。
【0078】
上記実施形態では、電子放出管1は、光電面31を有する電子源3を備えていたが、これに限られない。電子源3は、陰極(カソード)を加熱することによって内部空間Sに電子を放出する熱電子源であってもよい。熱電子源に用いられる陰極の材質としては、タングステン、LaB(六ほう化ランタン)及び酸化物等が挙げられる。電子源3に熱が加えられることによって、内部空間Sに電子を放出することが可能となる。
【0079】
このような熱電子源を備えた電子放出管1の製造方法は、上記実施形態で説明した排気工程及び封止工程を備える。具体的には、熱電子源を含む第1領域S1の脱ガス及びベーキングが行われた後に、第1領域S1は、真空状態が維持されるように封止される。電子放出管1の製造後、筐体2及び電子透過膜44等によって、第1領域S1の真空状態は保持される。その結果、熱電子源の安定性及び製品寿命を向上させることが可能となる。
【0080】
電子源3は、陰極と陽極との間に電圧を印加することで、陰極から内部空間Sに電子を発する電界放出電子源であってもよい。電界放出電子源として、熱及び電界を利用するTFE(Thermal Field Emitter)と、電界のみを利用するCFE(Cold Field Emitter)及びFEA(Field Emitter Array;フィールド・エミッタ・アレイ)と、が挙げられる。なお、TFEは熱電界放出電子源と称されることもある。
【0081】
図6は、電子源の他の例を示す図である。図6には、電子源としてのFEA9(電界放出電子源)が示されている。FEA9は、例えばシリコン基板を微細加工することによって作製される。FEA9は、基板91、エミッタ92、ゲート電極93、ゲート電極94、メタルステム95、ピン96、及びピン97を備える。基板91には、複数のエミッタ92、複数のゲート電極93、及び複数のゲート電極94が設けられる。基板91は、メタルステム95上に設けられる。複数のエミッタ92には、メタルステム95を介して負電位の電圧が印加される。複数のゲート電極93それぞれには、ピン96を介して正電位の電圧が印加される。なお、図6には、1つのゲート電極93に電圧を印加するピン96だけが示されている。複数のゲート電極94それぞれには、ピン97を介して正電位の電圧が印加される。なお、図6には、1つのゲート電極94に電圧を印加するピン97だけが示されている。複数のエミッタ92それぞれを挟むゲート電極93に正電位の電圧が印加されることで、エミッタ92とゲート電極93との間に電界が発生し、エミッタ92の先端から電子が放出される。ゲート電極94は、エミッタ92から放出された電子を収束する。
【0082】
このようなFEA9(電界放出電子源)を備えた電子放出管1の製造方法は、上記実施形態で説明した排気工程及び封止工程を備える。具体的には、FEA9を含む第1領域S1の脱ガス及びベーキングが行われた後に、第1領域S1は、真空状態が維持されるように封止される。電子放出管1の製造後、筐体2及び電子透過膜44等によって、第1領域S1の真空状態は保持される。その結果、FEA9の安定性及び製品寿命を向上させることが可能となる。
【0083】
電子透過膜44は、上記実施形態では、単層のグラフェンからなる膜であるがこれに限られない。電子透過膜44は、二以上の層を有する多層のグラフェンからなる膜でもよい。電子透過膜44は、グラフェン以外の単層(mono layer)物質からなる膜でもよい。単層物質は、単一の原子層で構成され原子1個分の厚さを有するシート状の単原子層物質、又は原子約1個分の厚さを有するシート状の物質である。単層物質は、WS(二硫化タングステン)又はMoS(二硫化モリブデン)で構成されてもよい。電子透過膜44が単層物質で構成されることで、電子透過膜44の膜厚が薄くなり、電子透過膜44を通過する電子への影響を低減することが可能となる。
【0084】
電子透過膜44は、窒化シリコン膜でもよい。窒化シリコン膜の製作過程で発生する内部応力は小さいので、窒化シリコン膜の膜厚を薄くすることができる。例えば、窒化シリコン膜の直径を0.25mmとした場合、窒化シリコン膜の膜厚を30nm程度とすることができる。そのため、電子透過膜44を通過する電子への影響を低減することが可能となる。
【0085】
上記実施形態において、電子透過膜44を有する仕切り部4は、フランジ24及びフランジ26の間に設けられているが、これに限られない。電子透過膜44を有する仕切り部4は、電子源3とゲートバルブ5との間に位置し、内部空間Sを、電子源3を含む第1領域S1とゲートバルブ5を含む第2領域S2とに隔てるように設けられていればよい。例えば、仕切り部4は、加速電極6に固定されるように設けられてもよい。
【符号の説明】
【0086】
1…電子放出管、2…筐体、3…電子源、31…光電面、4…仕切り部、43…基板、44…電子透過膜、5…ゲートバルブ、6…加速電極、7…調整部材、8…排気装置、82…共通管、83…枝管、84…枝管、10…電子照射装置。
図1
図2
図3
図4
図5
図6