特許第6920907号(P6920907)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本特殊陶業株式会社の特許一覧

<>
  • 特許6920907-スパークプラグ 図000005
  • 特許6920907-スパークプラグ 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6920907
(24)【登録日】2021年7月29日
(45)【発行日】2021年8月18日
(54)【発明の名称】スパークプラグ
(51)【国際特許分類】
   H01T 13/39 20060101AFI20210805BHJP
   H01T 13/20 20060101ALI20210805BHJP
【FI】
   H01T13/39
   H01T13/20 B
【請求項の数】3
【全頁数】10
(21)【出願番号】特願2017-135905(P2017-135905)
(22)【出願日】2017年7月12日
(65)【公開番号】特開2019-21398(P2019-21398A)
(43)【公開日】2019年2月7日
【審査請求日】2020年5月27日
(73)【特許権者】
【識別番号】000004547
【氏名又は名称】日本特殊陶業株式会社
(74)【代理人】
【識別番号】110000534
【氏名又は名称】特許業務法人しんめいセンチュリー
(72)【発明者】
【氏名】瀬川 昌幸
【審査官】 内田 勝久
(56)【参考文献】
【文献】 特開平11−040314(JP,A)
【文献】 特開2015−159003(JP,A)
【文献】 特開平07−037677(JP,A)
【文献】 特開2008−248322(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01T 7/00 〜 23/00
(57)【特許請求の範囲】
【請求項1】
Irを主成分とするチップが接合された電極母材を備える第1電極と、
前記チップと火花ギャップを介して対向する第2電極と、を備えるスパークプラグであって、
前記チップは、Alを含む酸化物を含有し、
前記酸化物の含有率は、前記チップの体積に対して0.5〜9.5vol%であるスパークプラグ。
【請求項2】
前記酸化物の含有率は、前記チップの体積に対して3.5〜8.5vol%である請求項1記載のスパークプラグ。
【請求項3】
前記酸化物は、メジアン径が0.3〜20μmである請求項1又は2に記載のスパークプラグ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はスパークプラグに関し、特にIrを主成分とするチップを電極に設けたスパークプラグに関するものである。
【背景技術】
【0002】
放電や酸化に抗する耐消耗性を確保するため、Irを主成分とするチップを電極に設けたスパークプラグが知られている。特許文献1に開示される技術では、Irを主成分とするチップを備えるスパークプラグにおいて、SrZrO等のペロブスカイト型酸化物をチップの体積に対して1〜13vol%含有する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2015−159003号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら上記従来の技術において、チップに含まれる酸化物を特殊なペロブスカイト型酸化物ではなく一般化する要求がある。
【0005】
本発明は、上述した要求に応えるためになされたものであり、チップに含まれる酸化物を一般化しつつ耐消耗性を確保できるスパークプラグを提供することを目的としている。
【課題を解決するための手段】
【0006】
この目的を達成するために本発明のスパークプラグは、Irを主成分とするチップが接合された電極母材を備える第1電極と、第1電極のチップと火花ギャップを介して対向する第2電極と、を備えている。チップはAlを含む酸化物を含有し、酸化物の含有率はチップの体積に対して0.5〜9.5vol%である。
【発明の効果】
【0007】
請求項1記載のスパークプラグによれば、チップはAlを含む酸化物を含有するので、チップに含まれる酸化物を一般化できる。酸化物の含有率はチップの体積に対して0.5〜9.5vol%なので、耐消耗性を確保できる。
【0008】
請求項2記載のスパークプラグによれば、酸化物の含有率は、チップの体積に対して3.5〜8.5vol%なので、請求項1の効果に加え、耐消耗性をより向上できる。
【0009】
請求項3記載のスパークプラグによれば、酸化物はメジアン径が0.3〜20μmなので、請求項1又は2の効果に加え、耐消耗性をより向上できる。
【図面の簡単な説明】
【0010】
図1】本発明の一実施の形態におけるスパークプラグの片側断面図である。
図2】各サンプルと第2電極との間に印加した電圧波形および電流波形の模式図である。
【発明を実施するための形態】
【0011】
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は軸線Oを境にした本発明の一実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。スパークプラグ10は、絶縁体11、中心電極13(第2電極)及び接地電極18(第1電極)を備えている。
【0012】
絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された円筒状の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12の先端側に中心電極13が配置されている。
【0013】
中心電極13は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われた電極母材14と、電極母材14の先端に接合されたチップ15と、を備えている。電極母材14は絶縁体11に保持され、先端が軸孔12から露出する。チップ15はPt等の貴金属を含有する金属製の部材である。
【0014】
端子金具16は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具16は、先端側が軸孔12に挿入された状態で、絶縁体11の後端に固定されている。絶縁体11の外周に主体金具17が固定されている。
【0015】
主体金具17は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具17の先端に接地電極18が接合されている。接地電極18は、主体金具17に接合された棒状の金属製(例えばニッケル基合金製)の電極母材19と、電極母材19の先端部に接合されたチップ20と、を備えている。チップ20は、中心電極13(チップ15)との間に火花ギャップを形成する。
【0016】
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、予めチップ15が先端に接合された中心電極13を絶縁体11の軸孔12に挿入し、中心電極13の先端が軸孔12から外部に露出するように配置する。軸孔12に端子金具16を挿入し、端子金具16と中心電極13との導通を確保した後、予め電極母材19が接合された主体金具17を絶縁体11の外周に組み付ける。電極母材19にチップ20を接合した後、チップ20が中心電極13と対向するように電極母材19を屈曲して、スパークプラグ10を得る。
【0017】
チップ20は、Irからなる第1相と、Al(アルミナ)及びZrO(ジルコニア)のうちの少なくとも一方の酸化物と、を含有する。チップ20は、第1相および酸化物以外に、Pt,Pd,Rh,Re,Ru,Niから選ばれる少なくとも1種の金属からなる第2相、及び、不可避不純物を含有できる。チップ20が第2相を含有する場合、第1相および第2相の合計の金属成分に対する第1相(Ir)の含有率は80wt%以上である。
【0018】
酸化物の含有率は、チップ20の体積に対して0.5〜9.5vol%、好ましくは3.5〜8.5vol%である。チップ20の火花消耗性を確保するためである。酸化物の含有率(vol%)は、チップ20の断面の面積とその断面に現出する酸化物の面積との比率である。
【0019】
酸化物の含有率は、例えば以下の方法により測定され算出される。まず、チップ20の任意の断面を鏡面研磨し、その断面を電子顕微鏡で観察する。次いで、40μm×60μmの大きさの矩形状の視野の範囲内に存在する全ての酸化物の面積を合計した総面積(S)を求める。酸化物の含有率(vol%)=S(μm)/2400(μm)×100の計算式に総面積Sを代入して、酸化物の含有率が求められる。
【0020】
なお、視野の範囲内の酸化物の存在は、EPMAを用いたWDS分析により検出できる。画像解析ソフト(例えばSoft Imaging System GmbH社製Analysis Five)を用い、視野内の画像を2値化処理して、視野内の酸化物の面積を測定できる。酸化物の面積は視野ごとに多少の差が発生するので、3つの視野の平均をとる。
【0021】
チップ20は、例えば、以下のような方法によって製造される。まず、第1相および酸化物(必要に応じて第2相)の原料粉末を混合した後、成形して成形体を得る。成形体を焼成して焼結体を得た後、必要に応じて焼結体を切断してチップ20を得る。鍛造、圧延、押出し、線引き等の塑性加工や熱処理などを、必要に応じて、焼結体に施すことができる。
【0022】
焼結体の中の酸化物の粒子のメジアン径は0.3〜20μmである。酸化物の粒子のメジアン径を0.3〜20μmとすることにより、スパークプラグ10の放電時の熱衝撃で酸化物を欠け難くすることができ、酸化物の欠損に起因するチップ20の消耗を抑制できる。また、焼成時の第1相の粒成長を酸化物が妨げ難くできるので、チップ20の単位体積あたりの第1相の粒界の面積が過大にならないようにできる。その結果、第1相の粒界の酸化に起因するチップ20の消耗を抑制できる。
【0023】
メジアン径は、酸化物の粒子の累積分布50vol%のときの粒子径である。メジアン径は、鏡面研磨されたチップ20の任意の断面の電子顕微鏡による画像から、以下の方法によって測定され算出される。
【0024】
まず、電子顕微鏡による画像のうち、40μm×60μmの大きさの矩形状の視野の範囲内に存在する全ての酸化物(粒子)について、粒子の像を2本の平行線で挟んだときの平行線の間隔(フェレー径)を測定する。2本の平行線の向きは、作為をなくすため、粒子ごとに変えないで、常に同じ方向とする。粒子径分布は視野ごとに多少の差が発生するので、3つの視野に現出する全ての酸化物の粒子のフェレー径を測定する。
【0025】
次に、測定されたフェレー径の最小値から最大値までの範囲を分割し、分割した各々の粒子径区間に存在する粒子の個数(n)を集計する。次いで、各々の粒子径区間の中央値を直径とする球の体積(v)に、その粒子径区間に存在する粒子の個数(n)を乗じて、各々の粒子径区間に存在する粒子の総体積(V=v・n)を算出する。各々の粒子径区間に存在する粒子の総体積(V)の総和を100vol%として、各々の粒子径区間に存在する粒子量の比率(vol%、頻度分布)や、特定の粒子径以下の粒子量の比率(vol%、累積分布)を求めることができる。酸化物は、累積分布50vol%のときの粒子径が0.3〜20μmに設定される。
【実施例】
【0026】
本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
【0027】
(実施例1)
Irを第1相、Ptを第2相とする金属成分に対しPt(第2相)の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末とメジアン径1.0μmのアルミナ粉末とを種々の比率で混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)の含有率(vol%)が異なる、直径1.6mm長さ20mmの円柱状のサンプル1〜8を得た。サンプル中のアルミナ(酸化物)のメジアン径も1.0μmであった。
【0028】
ニッケル基合金製の電極母材に、直径1.6mm長さ0.4mmのチップが接合された第2電極を準備した。第2電極のチップは、Ptを第1相、Niを第2相とする金属成分に対しNi(第2相)を10wt%含有する合金とした。第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、各サンプルと第2電極との間に電圧を印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。
【0029】
図2は各サンプルと第2電極との間に印加した電圧波形および電流波形の模式図である。実施例1では、各サンプルと第2電極との間に放電を生じさせる主電圧21の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を2MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を3A、パルス22の持続時間Dを500μsとした。パルス22が重畳した主電圧21を繰り返し10時間印加した。
【0030】
試験後、各サンプルの消耗量(mm)を測定した。消耗量が0.15mm未満のサンプルは「特に優れている(A)」、消耗量が0.15mm以上0.16mm未満のサンプルは「優れている(B)」、消耗量が0.16mm以上0.175mm未満のサンプルは「良い(C)」、消耗量が0.175mm以上のサンプルは「劣る(D)」と判定した。結果を表1に示した。なお、この判定の基礎となる消耗量は、放電が生じ難くなり、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。
【0031】
【表1】
表1に示すように、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.5〜9.5vol%のサンプル2〜7は、判定をC以上にできることが確認された。サンプル8は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が10.0vol%なので、Ir等の金属に比べて熱伝導性が低いアルミナを多く含むことになり、チップの熱引き特性(熱伝導性)が低くなり、チップの消耗量が増えたと推察される。サンプル1は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.3vol%なので、酸化物による消耗の抑制効果が乏しくなったと推察される。
【0032】
特に、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が3.5〜8.5vol%のサンプル4〜6は、判定をAにできることが確認された。チップの熱引き特性と酸化物による消耗の抑制効果とを両立できたと推察される。
【0033】
(実施例2)
Irを第1相とする金属成分に対し酸化物(アルミナ又はジルコニア)の含有率が7vol%となるように調製された原料粉末を準備した。プレス成形によって成形体を得た後、この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、第2相の種類や比率(wt%)及び酸化物の種類が異なる、直径1.6mm長さ20mmの円柱状のサンプル9〜28を得た。なお、サンプル中の酸化物のメジアン径は1.0μmであった。
【0034】
実施例1と同様にして、各サンプルと第2電極との間に、パルス(高周波電流)を重畳させた電圧(図2参照)を印加した。試験後、各サンプルの消耗量(mm)を測定した。判定基準は、実施例1の判定基準と同じにした。結果を表2に示した。
【0035】
【表2】
表2に示すように、第1相(Ir)及び第2相からなる金属成分に対し第1相(Ir)の含有率が80wt%以上のサンプル9〜12,14〜16,18,19,21,23〜25,27は、判定をC以上にできることが確認された。
【0036】
(実施例3)
Irを第1相、Ptを第2相とする金属成分に対し第2相の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末と種々のアルミナ粉末とを、アルミナの含有率が7vol%となるように混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)のメジアン径が異なる、直径1.6mm長さ20mmの円柱状のサンプル29〜37を得た。
【0037】
実施例1と同じ第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、高周波電流を重畳させた電圧を各サンプルと第2電極との間に10時間印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。実施例3では、各サンプルと第2電極との間に放電を生じさせる主電圧21(図2参照)の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を13MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を8A、パルス22の持続時間Dを1000μsとした。
【0038】
試験後、各サンプルの消耗量(mm)を測定した。消耗量が0.12mm未満のサンプルは「特に優れている(A)」、消耗量が0.12mm以上0.15mm未満のサンプルは「優れている(B)」、消耗量が0.15mm以上0.16mm未満のサンプルは「良い(C)」、消耗量が0.16mm以上のサンプルは「劣る(D)」と判定した。結果を表3に示した。なお、この判定の基礎となる消耗量も、第1実施の形態と同様に、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。
【0039】
【表3】
表3に示すように、アルミナ(酸化物)のメジアン径が0.3〜20μmのサンプル30〜36は、判定をC以上にできることが確認された。サンプル29は、アルミナのメジアン径が0.2μmなので、第1相の粒界に存在する多くのアルミナの粒子が、焼成時の第1相の粒成長を妨げ、サンプルの単位体積あたりの第1相の粒界の面積が過大になったものと推察される。その結果、第1相(Ir)の粒界の酸化消耗に起因するサンプルの消耗量が増加したと考えられる。サンプル37は、アルミナのメジアン径が50μmなので、放電時の熱衝撃でアルミナの粒子の一部が欠け、消耗が促進されたと推察される。
【0040】
なお、アルミナ(酸化物)のメジアン径が0.5〜5μmのサンプル31〜35は、判定をB以上にできることが確認された。放電時の熱衝撃によるアルミナの欠損に起因するサンプルの消耗を抑制し、また、サンプルの単位体積あたりの第1相の粒界の面積が過大になることを防ぎ、第1相(Ir)の粒界からの酸化消耗に起因するサンプルの消耗を抑制できたと推察される。さらに、アルミナ(酸化物)のメジアン径が0.5〜5μmと小さいので、放電時に生じる熱でアルミナの粒子が溶融し、サンプルの表面を覆い、消耗の抑制に寄与したと推察される。特に、アルミナ(酸化物)のメジアン径が0.7〜2μmのサンプル32〜34は、この効果を向上させることができ、判定をAにできることが確認された。
【0041】
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
【0042】
実施の形態では、接地電極18のチップ20が、Irを主成分としアルミナやジルコニアを含有するものとしたが、必ずしもこれに限られるものではない。中心電極13のチップ15を、チップ20と同様の組成にすることは当然可能である。チップ15,20の両方を、Irを主成分としアルミナやジルコニアを含有することは当然可能である。しかし、これに限られるものではなく、チップ15,20のいずれか一方が、Irを主成分としアルミナやジルコニアを含有するものであれば良い。
【0043】
実施の形態では、アルミナ又はジルコニア(いずれか一方)が含まれるチップ20について説明したが、必ずしもこれに限られるものではない。アルミナ及びジルコニアの両方をチップ20が含有することは当然可能である。アルミナとジルコニアとの比率は適宜設定できる。この場合、アルミナ及びジルコニアを合わせた酸化物の含有率が、チップ20の体積に対して0.5〜9.5vol%とされる。
【0044】
実施の形態では説明を省略したが、チップ20の形状は適宜設定できる。チップ20の形状は、例えば、円柱状、円錐台状、楕円柱状、三角柱や四角柱等の多角柱状などが挙げられる。
【0045】
実施の形態では、チップ20が電極母材19に接合される場合について説明したが、必ずしもこれに限られるものではない。チップ20と電極母材19との間に中間材を設けることは当然可能である。チップ20と電極母材19との間に中間材を介在させることにより、電極が火炎核のエネルギーを奪う消炎作用を抑制できる。
【0046】
実施の形態では、主体金具17に接合された電極母材19を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した電極母材19を用いる代わりに、直線状の電極母材を用いることは当然可能である。この場合には、主体金具17の先端側を軸線O方向に延ばし、直線状の電極母材を主体金具17に接合して、電極母材を中心電極13と対向させる。
【0047】
実施の形態では、中心電極13の軸線Oとチップ20の中心軸とを一致させ、チップ20が中心電極13と軸線O方向に対向するように接地電極18を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極18と中心電極13との位置関係は適宜設定できる。接地電極18と中心電極13との他の位置関係としては、例えば、中心電極13の側面と接地電極18とが火花ギャップを介して対向するように、接地電極18を配置すること等が挙げられる。この場合、火花ギャップを臨む位置にチップ20が接合される。
【符号の説明】
【0048】
10 スパークプラグ
13 中心電極(第2電極)
18 接地電極(第1電極)
19 電極母材
20 チップ
図1
図2