【実施例】
【0026】
本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。
【0027】
(実施例1)
Irを第1相、Ptを第2相とする金属成分に対しPt(第2相)の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末とメジアン径1.0μmのアルミナ粉末とを種々の比率で混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)の含有率(vol%)が異なる、直径1.6mm長さ20mmの円柱状のサンプル1〜8を得た。サンプル中のアルミナ(酸化物)のメジアン径も1.0μmであった。
【0028】
ニッケル基合金製の電極母材に、直径1.6mm長さ0.4mmのチップが接合された第2電極を準備した。第2電極のチップは、Ptを第1相、Niを第2相とする金属成分に対しNi(第2相)を10wt%含有する合金とした。第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、各サンプルと第2電極との間に電圧を印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。
【0029】
図2は各サンプルと第2電極との間に印加した電圧波形および電流波形の模式図である。実施例1では、各サンプルと第2電極との間に放電を生じさせる主電圧21の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を2MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を3A、パルス22の持続時間Dを500μsとした。パルス22が重畳した主電圧21を繰り返し10時間印加した。
【0030】
試験後、各サンプルの消耗量(mm
3)を測定した。消耗量が0.15mm
3未満のサンプルは「特に優れている(A)」、消耗量が0.15mm
3以上0.16mm
3未満のサンプルは「優れている(B)」、消耗量が0.16mm
3以上0.175mm
3未満のサンプルは「良い(C)」、消耗量が0.175mm
3以上のサンプルは「劣る(D)」と判定した。結果を表1に示した。なお、この判定の基礎となる消耗量は、放電が生じ難くなり、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。
【0031】
【表1】
表1に示すように、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.5〜9.5vol%のサンプル2〜7は、判定をC以上にできることが確認された。サンプル8は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が10.0vol%なので、Ir等の金属に比べて熱伝導性が低いアルミナを多く含むことになり、チップの熱引き特性(熱伝導性)が低くなり、チップの消耗量が増えたと推察される。サンプル1は、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が0.3vol%なので、酸化物による消耗の抑制効果が乏しくなったと推察される。
【0032】
特に、チップ(サンプル)の体積に対してアルミナ(酸化物)の含有率が3.5〜8.5vol%のサンプル4〜6は、判定をAにできることが確認された。チップの熱引き特性と酸化物による消耗の抑制効果とを両立できたと推察される。
【0033】
(実施例2)
Irを第1相とする金属成分に対し酸化物(アルミナ又はジルコニア)の含有率が7vol%となるように調製された原料粉末を準備した。プレス成形によって成形体を得た後、この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、第2相の種類や比率(wt%)及び酸化物の種類が異なる、直径1.6mm長さ20mmの円柱状のサンプル9〜28を得た。なお、サンプル中の酸化物のメジアン径は1.0μmであった。
【0034】
実施例1と同様にして、各サンプルと第2電極との間に、パルス(高周波電流)を重畳させた電圧(
図2参照)を印加した。試験後、各サンプルの消耗量(mm
3)を測定した。判定基準は、実施例1の判定基準と同じにした。結果を表2に示した。
【0035】
【表2】
表2に示すように、第1相(Ir)及び第2相からなる金属成分に対し第1相(Ir)の含有率が80wt%以上のサンプル9〜12,14〜16,18,19,21,23〜25,27は、判定をC以上にできることが確認された。
【0036】
(実施例3)
Irを第1相、Ptを第2相とする金属成分に対し第2相の含有率が5wt%となるように調製された原料粉末を準備した。この原料粉末と種々のアルミナ粉末とを、アルミナの含有率が7vol%となるように混合した後、プレス成形によって成形体を得た。この成形体を1軸加圧しながらAr雰囲気中1400〜1600℃で焼成して、焼結体を得た。焼結体を切断して、アルミナ(酸化物)のメジアン径が異なる、直径1.6mm長さ20mmの円柱状のサンプル29〜37を得た。
【0037】
実施例1と同じ第2電極のチップと各サンプルとを0.8mmの間隔をあけて対向させた後、窒素雰囲気中、高周波電流を重畳させた電圧を各サンプルと第2電極との間に10時間印加し、第2電極と各サンプルとの間に放電を繰り返し生じさせた。実施例3では、各サンプルと第2電極との間に放電を生じさせる主電圧21(
図2参照)の周波数を30Hz、主電圧21に重畳したパルス22(高周波電流)の周波数を13MHz、主電圧21の印加からパルス22を印加し始めるまでの待ち時間Wを100μs、パルス22の電流を8A、パルス22の持続時間Dを1000μsとした。
【0038】
試験後、各サンプルの消耗量(mm
3)を測定した。消耗量が0.12mm
3未満のサンプルは「特に優れている(A)」、消耗量が0.12mm
3以上0.15mm
3未満のサンプルは「優れている(B)」、消耗量が0.15mm
3以上0.16mm
3未満のサンプルは「良い(C)」、消耗量が0.16mm
3以上のサンプルは「劣る(D)」と判定した。結果を表3に示した。なお、この判定の基礎となる消耗量も、第1実施の形態と同様に、内燃機関(図示せず)の始動が困難になったり作動が不安定になったりするチップ20の消耗量から推定して定めた。
【0039】
【表3】
表3に示すように、アルミナ(酸化物)のメジアン径が0.3〜20μmのサンプル30〜36は、判定をC以上にできることが確認された。サンプル29は、アルミナのメジアン径が0.2μmなので、第1相の粒界に存在する多くのアルミナの粒子が、焼成時の第1相の粒成長を妨げ、サンプルの単位体積あたりの第1相の粒界の面積が過大になったものと推察される。その結果、第1相(Ir)の粒界の酸化消耗に起因するサンプルの消耗量が増加したと考えられる。サンプル37は、アルミナのメジアン径が50μmなので、放電時の熱衝撃でアルミナの粒子の一部が欠け、消耗が促進されたと推察される。
【0040】
なお、アルミナ(酸化物)のメジアン径が0.5〜5μmのサンプル31〜35は、判定をB以上にできることが確認された。放電時の熱衝撃によるアルミナの欠損に起因するサンプルの消耗を抑制し、また、サンプルの単位体積あたりの第1相の粒界の面積が過大になることを防ぎ、第1相(Ir)の粒界からの酸化消耗に起因するサンプルの消耗を抑制できたと推察される。さらに、アルミナ(酸化物)のメジアン径が0.5〜5μmと小さいので、放電時に生じる熱でアルミナの粒子が溶融し、サンプルの表面を覆い、消耗の抑制に寄与したと推察される。特に、アルミナ(酸化物)のメジアン径が0.7〜2μmのサンプル32〜34は、この効果を向上させることができ、判定をAにできることが確認された。
【0041】
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
【0042】
実施の形態では、接地電極18のチップ20が、Irを主成分としアルミナやジルコニアを含有するものとしたが、必ずしもこれに限られるものではない。中心電極13のチップ15を、チップ20と同様の組成にすることは当然可能である。チップ15,20の両方を、Irを主成分としアルミナやジルコニアを含有することは当然可能である。しかし、これに限られるものではなく、チップ15,20のいずれか一方が、Irを主成分としアルミナやジルコニアを含有するものであれば良い。
【0043】
実施の形態では、アルミナ又はジルコニア(いずれか一方)が含まれるチップ20について説明したが、必ずしもこれに限られるものではない。アルミナ及びジルコニアの両方をチップ20が含有することは当然可能である。アルミナとジルコニアとの比率は適宜設定できる。この場合、アルミナ及びジルコニアを合わせた酸化物の含有率が、チップ20の体積に対して0.5〜9.5vol%とされる。
【0044】
実施の形態では説明を省略したが、チップ20の形状は適宜設定できる。チップ20の形状は、例えば、円柱状、円錐台状、楕円柱状、三角柱や四角柱等の多角柱状などが挙げられる。
【0045】
実施の形態では、チップ20が電極母材19に接合される場合について説明したが、必ずしもこれに限られるものではない。チップ20と電極母材19との間に中間材を設けることは当然可能である。チップ20と電極母材19との間に中間材を介在させることにより、電極が火炎核のエネルギーを奪う消炎作用を抑制できる。
【0046】
実施の形態では、主体金具17に接合された電極母材19を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した電極母材19を用いる代わりに、直線状の電極母材を用いることは当然可能である。この場合には、主体金具17の先端側を軸線O方向に延ばし、直線状の電極母材を主体金具17に接合して、電極母材を中心電極13と対向させる。
【0047】
実施の形態では、中心電極13の軸線Oとチップ20の中心軸とを一致させ、チップ20が中心電極13と軸線O方向に対向するように接地電極18を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極18と中心電極13との位置関係は適宜設定できる。接地電極18と中心電極13との他の位置関係としては、例えば、中心電極13の側面と接地電極18とが火花ギャップを介して対向するように、接地電極18を配置すること等が挙げられる。この場合、火花ギャップを臨む位置にチップ20が接合される。