特許第6922955号(P6922955)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

<>
  • 特許6922955-偏光顕微鏡 図000002
  • 特許6922955-偏光顕微鏡 図000003
  • 特許6922955-偏光顕微鏡 図000004
  • 特許6922955-偏光顕微鏡 図000005
  • 特許6922955-偏光顕微鏡 図000006
  • 特許6922955-偏光顕微鏡 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6922955
(24)【登録日】2021年8月2日
(45)【発行日】2021年8月18日
(54)【発明の名称】偏光顕微鏡
(51)【国際特許分類】
   G02B 21/06 20060101AFI20210805BHJP
   G02B 21/00 20060101ALI20210805BHJP
【FI】
   G02B21/06
   G02B21/00
【請求項の数】6
【全頁数】12
(21)【出願番号】特願2019-160223(P2019-160223)
(22)【出願日】2019年9月3日
【基礎とした実用新案登録】実用新案登録第3207764号
【原出願日】2016年9月16日
(65)【公開番号】特開2019-219681(P2019-219681A)
(43)【公開日】2019年12月26日
【審査請求日】2019年9月3日
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】100141852
【弁理士】
【氏名又は名称】吉本 力
(72)【発明者】
【氏名】渥美 俊介
(72)【発明者】
【氏名】馬路 健
【審査官】 殿岡 雅仁
(56)【参考文献】
【文献】 国際公開第2006/123712(WO,A1)
【文献】 特開2010−066534(JP,A)
【文献】 特開2003−188087(JP,A)
【文献】 特開平11−264935(JP,A)
【文献】 特開2012−083125(JP,A)
【文献】 特開2009−163069(JP,A)
【文献】 特開昭60−111217(JP,A)
【文献】 特開2011−048071(JP,A)
【文献】 米国特許第05706128(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 21/00 − 21/36
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
試料に向けて光を照射する光源と、
前記光源から試料までの光路上に配置され、前記光源からの光を透過させることにより、偏光面が第1の方向に沿った直線偏光を生成する偏光子と、
試料に照射された後の光の光路上に配置され、偏光面が第2の方向に沿った直線偏光を透過させる検光子と、
前記偏光子及び前記検光子のうち、前記検光子のみを回転軸線を中心にして回転移動させることにより、前記第1の方向及び前記第2の方向が直交する直交状態と、前記第1の方向及び前記第2の方向が平行に延びる平行状態と、光路上に前記検光子がない退避状態との間で遷移させることができる移動機構とを備え
前記検光子は、一部に切欠きを有する形状であり、前記切欠きが光路上に位置しているときに前記退避状態となることを特徴とする偏光顕微鏡。
【請求項2】
前記回転軸線が、前記検光子の重心を通ることを特徴とする請求項に記載の偏光顕微鏡。
【請求項3】
前記検光子は、前記回転軸線を中心として90°以上かつ360°未満の回転角で回転することにより、前記直交状態、前記平行状態及び前記退避状態の間で遷移することを特徴とする請求項又はに記載の偏光顕微鏡。
【請求項4】
前記光源は、試料に向けて可視光を照射する可視光源と、試料に向けて赤外光を照射する赤外光源とを含み、
前記偏光子及び前記検光子は、前記可視光源から照射される可視光の光路上に配置されることを特徴とする請求項のいずれか一項に記載の偏光顕微鏡。
【請求項5】
前記光源は、試料に向けて可視光を照射する可視光源と、試料に向けて赤外光を照射する赤外光源とを含み、
前記偏光子及び前記検光子は、前記赤外光源から照射される赤外光の光路上に配置されることを特徴とする請求項のいずれか一項に記載の偏光顕微鏡。
【請求項6】
試料に向けて光を照射する光源と、
前記光源から試料までの光路上に配置され、前記光源からの光を透過させることにより、偏光面が第1の方向に沿った直線偏光を生成する偏光子と、
試料に照射された後の光の光路上に配置され、偏光面が第2の方向に沿った直線偏光を透過させる検光子と、
前記偏光子及び前記検光子を相対的に移動させることにより、前記第1の方向及び前記第2の方向が直交する直交状態と、前記第1の方向及び前記第2の方向が平行に延びる平行状態と、光路上に前記偏光子又は前記検光子がない退避状態との間で遷移させることができる移動機構とを備え、
前記偏光子又は前記検光子は、円板の一部に切欠きを有する形状であり、前記切欠きが光路上に位置しているときに前記退避状態となることを特徴とする偏光顕微鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏光子及び検光子を備えた偏光顕微鏡に関するものである。
【背景技術】
【0002】
試料表面を観察するための光学顕微鏡の中には、偏光子及び検光子が設けられることにより偏光顕微鏡として機能するものがある(例えば、下記特許文献1参照)。偏光顕微鏡では、可視光源から照射される可視光が偏光子に入射し、偏光子を透過することにより直線偏光が生成される。そして、偏光子を透過した直線偏光が試料に照射され、試料からの光(透過光又は反射光)が検光子を透過してカメラに入射する。
【0003】
偏光顕微鏡は、検光子を回転させる回転機構と、検光子及び回転機構をスライドさせるスライド機構とを備えている。検光子は、回転機構により回転されることで、偏光子に対する相対的な角度が変化する。これにより、試料からの光のうち検光子を透過してカメラに入射する光が変化するため、その変化をカメラで撮影することにより偏光像を観察することができる。
【0004】
一方、スライド機構により検光子及び回転機構をスライドさせ、検光子を光路上から退避させた場合には、試料からの光が検光子を透過せずにカメラに直接入射する。この場合、試料からの可視光をカメラで撮影することにより光学像を観察することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012−211771号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記のような従来の偏光顕微鏡では、回転機構及びスライド機構の両方を設ける必要がある。したがって、電動の場合には、回転機構及びスライド機構のそれぞれにモータなどの動力源を設けなければならず、手動の場合には、作業者が把持して動作させるための把持部を複数設けなければならない。そのため、構造が複雑になるという問題があった。
【0007】
本発明は、上記実情に鑑みてなされたものであり、構造が簡略化された偏光顕微鏡を提供することを目的とする。
【課題を解決するための手段】
【0008】
(1)本発明に係る偏光顕微鏡は、光源と、偏光子と、検光子と、移動機構とを備える。前記光源は、試料に向けて光を照射する。前記偏光子は、前記光源から試料までの光路上に配置され、前記光源からの光を透過させることにより、偏光面が第1の方向に沿った直線偏光を生成する。前記検光子は、試料に照射された後の光の光路上に配置され、偏光面が第2の方向に沿った直線偏光を透過させる。前記移動機構は、前記偏光子及び前記検光子を相対的に移動させることにより、前記第1の方向及び前記第2の方向が直交する直交状態と、前記第1の方向及び前記第2の方向が平行に延びる平行状態と、光路上に前記偏光子又は前記検光子がない退避状態との間で遷移させることができる。
【0009】
このような構成によれば、偏光子及び検光子を相対的に移動させる1つの移動機構を用いて、直交状態、平行状態及び退避状態の間で遷移させることができる。したがって、直交状態及び平行状態の間で遷移させるための機構と、退避状態に遷移させるための機構とを別々に設ける必要がないため、構造が簡略化された偏光顕微鏡を提供することができる。
【0010】
(2)前記移動機構は、回転軸線を中心にして前記偏光子又は前記検光子を回転移動させてもよい。
【0011】
このような構成によれば、偏光子又は検光子の回転角を調整するだけの簡単な機構で、直交状態、平行状態及び退避状態の間で遷移させることができる。
【0012】
(3)前記回転軸線が、前記偏光子又は前記検光子の重心を通っていてもよい。
【0013】
このような構成によれば、回転移動される偏光子又は検光子の回転軸線が偏心していないため、偏光子又は検光子が重力で回転することを防止できる。したがって、偏光子又は検光子が重力で回転することを阻止するためのストッパ又はブレーキなどを設ける必要がないため、さらに構造を簡略化することができる。
【0014】
(4)前記偏光子又は前記検光子は、前記回転軸線を中心として90°以上かつ360°未満の回転角で回転することにより、前記直交状態、前記平行状態及び前記退避状態の間で遷移してもよい。
【0015】
このような構成によれば、回転軸線を中心として90°以上かつ360°未満の範囲で偏光子又は検光子の回転角を調整するだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。直交状態と平行状態との間は90°の回転角で遷移させることができるため、それ以上の回転角まで偏光子又は検光子を回転させることにより、退避状態まで遷移させることができる。
【0016】
(5)前記偏光子又は前記検光子は、円板の一部に切欠きを有する形状であり、前記切欠きが光路上に位置しているときに前記退避状態となってもよい。
【0017】
このような構成によれば、円板の一部に切欠きを有する形状で偏光子又は検光子を形成するだけの簡単な構成により、その切欠きの部分を用いて退避状態に遷移させることができる。
【0018】
(6)前記光源は、試料に向けて可視光を照射する可視光源と、試料に向けて赤外光を照射する赤外光源とを含んでいてもよい。この場合、前記偏光子及び前記検光子は、前記可視光源から照射される可視光の光路上に配置されてもよい。
【0019】
このような構成によれば、赤外顕微鏡における可視光を用いた観察時に、移動機構を用いて偏光子及び検光子を相対的に移動させるだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。
【0020】
(7)前記偏光子及び前記検光子は、前記赤外光源から照射される赤外光の光路上に配置されてもよい。
【0021】
このような構成によれば、赤外顕微鏡における赤外光を用いた観察時に、移動機構を用いて偏光子及び検光子を相対的に移動させるだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。
【発明の効果】
【0022】
本発明によれば、直交状態及び平行状態の間で遷移させるための機構と、退避状態に遷移させるための機構とを別々に設ける必要がないため、構造が簡略化された偏光顕微鏡を提供することができる。
【図面の簡単な説明】
【0023】
図1】本発明の一実施形態に係る偏光顕微鏡として機能する赤外顕微鏡の構成例を示した概略図である。
図2A】検光子を回転させたときの直線偏光の方向の変化について説明するための概略図である。
図2B】検光子を回転させたときの直線偏光の方向の変化について説明するための概略図である。
図2C】検光子を回転させたときの直線偏光の方向の変化について説明するための概略図である。
図3A】検光子の具体的構成の一例を示した図である。
図3B】検光子の具体的構成の他の例を示した図である。
【発明を実施するための形態】
【0024】
1.赤外顕微鏡の構成
図1は、本発明の一実施形態に係る偏光顕微鏡として機能する赤外顕微鏡100の構成例を示した概略図である。この赤外顕微鏡100は、試料に対して赤外光及び可視光を照射することができる。赤外顕微鏡100には、試料ステージ1、赤外光源2、可視光源3、検出器4、カメラ5、ビームスプリッタ6及びカセグレン鏡200などが備えられている。
【0025】
試料ステージ1には、分析対象となる試料が載置される。試料ステージ1は、例えば水平方向(XY方向)及び鉛直方向(Z方向)に移動可能な構成となっている。本実施形態では、試料ステージ1を挟んで上方及び下方に1対のカセグレン鏡200が設置されている。
【0026】
試料ステージ1に対して上方に設置されたカセグレン鏡200(上カセグレン鏡200A)、及び、試料ステージ1に対して下方に設置されたカセグレン鏡200(下カセグレン鏡200B)は、それぞれ同一の構成を有しているが、設置される向きが異なっている。上カセグレン鏡200A及び下カセグレン鏡200Bは、それぞれの軸線が鉛直方向に延びるように同軸上に配置される。
【0027】
赤外光源2は、FTIR(フーリエ変換赤外分光光度計)により構成されており、図示しない固定鏡及び移動鏡を用いて、赤外光の干渉波を発生させることができる。赤外光源2から出射した赤外光は、カセグレン鏡200を介して試料ステージ1上に照射される。反射測定を行う際には、赤外光源2から出射した赤外光が、反射ミラー21,22,23,24,25,26,27で順次反射した後、上カセグレン鏡200A内に上方から導入される。
【0028】
反射ミラー25は、例えば反射面が放物面からなる放物面鏡により構成されており、平行光として反射ミラー25に入射した赤外光は、当該反射ミラー25で反射することにより集光される。反射ミラー25は、図1に破線で示すように、回転することにより反射面の角度を変更することができる。透過測定を行う際には、反射ミラー25の角度が変更されることにより、赤外光源2から出射した赤外光が、反射ミラー21,22,23,24で順次反射した後、反射ミラー25,28,29で順次反射し、下カセグレン鏡200B内に下方から導入される。
【0029】
可視光源3は、試料観察用の可視光(例えば白色)を出射し、カセグレン鏡200を介して試料ステージ1上に照射される。可視光源3から出射する可視光は、赤外光の光路と大部分が共通する光路を通ってカセグレン鏡200に導かれる。上記反射ミラー24は、例えばビームスプリッタにより構成されており、可視光源3から出射した可視光は、当該反射ミラー24を透過して、赤外光と共通する光路上に導かれる。反射ミラー24を透過した可視光は、赤外光源2から出射する赤外光と同様に、反射ミラー25,26,27を介して上カセグレン鏡200A内に上方から導入することもできるし、反射ミラー25,28,29を介して下カセグレン鏡200B内に下方から導入することもできる。
【0030】
カセグレン鏡200には、例えば主鏡201及び副鏡202が備えられている。主鏡201は、球面状の凹面からなる反射面を有している。一方、副鏡202は、球面状の凸面からなる反射面を有している。副鏡202の反射面は、主鏡201の反射面よりも小径である。主鏡201及び副鏡202は、それぞれの反射面の中心が同一の軸線上に位置するように取り付けられている。より具体的には、主鏡201の反射面に対して、副鏡202の反射面が間隔を隔てて対向している。
【0031】
赤外光及び可視光は、副鏡202の反射面で反射した後、主鏡201の反射面で反射する。このとき、主鏡201の反射面で反射した光は、その一部が副鏡202により遮蔽されることとなるが、他の光は副鏡202の側方から出射し、測定位置Pに集光される。
【0032】
反射測定が行われる際には、上カセグレン鏡200A内に導入された赤外光及び可視光が、副鏡202及び主鏡201で順次反射した後、試料ステージ1上の測定位置Pに上方から集光される。測定位置Pに載置された試料からの反射光は、上カセグレン鏡200A内に再び入射し、主鏡201及び副鏡202で順次反射した後、上カセグレン鏡200Aから上方に出射する。
【0033】
一方、透過測定が行われる際には、下カセグレン鏡200B内に導入された赤外光及び可視光が、副鏡202及び主鏡201で順次反射した後、試料ステージ1上の測定位置Pに下方から集光される。そして、測定位置Pに載置された試料からの透過光が、上カセグレン鏡200A内に入射する。上カセグレン鏡200A内に入射した光は、主鏡201及び副鏡202で順次反射した後、上カセグレン鏡200Aから上方に出射する。
【0034】
上カセグレン鏡200Aから上方に出射した試料からの光(反射光又は透過光)は、ビームスプリッタ6に導かれる。このビームスプリッタ6は、可視光又は赤外光の一方を透過し、他方を反射させる。本実施形態では、ビームスプリッタ6が可視光を透過し、赤外光を反射させるような構成について説明するが、ビームスプリッタ6が赤外光を透過し、可視光を反射させるような構成であってもよい。
【0035】
試料に照射され、試料で反射又は透過した赤外光は、ビームスプリッタ6で反射した後、反射ミラー30で反射して検出器4に入射する。これにより、検出器4から検出信号が出力され、当該検出信号に基づいて試料の反射測定又は透過測定を行うことができる。一方、試料に照射され、試料で反射又は透過した可視光は、ビームスプリッタ6を透過した後、反射ミラー31で反射してカメラ5に入射する。これにより、可視光によって照明された画像をカメラ5で撮像し、その画像を確認することができる。
【0036】
本実施形態では、可視光源3から照射される可視光の光路上に、偏光子7及び検光子8が配置されている。偏光子7は、可視光源3から試料までの光路上に配置されており、検光子8は、試料に照射された後の可視光の光路上に配置されている。偏光子7及び検光子8は、いずれも可視光のみの光路上に配置されており、赤外光の光路上には位置しないように配置されている。
【0037】
偏光子7は、可視光源3からの可視光を透過させることにより、偏光面が第1の方向に沿った直線偏光を生成する。すなわち、偏光子7に入射する可視光のうち、第1の方向に沿って振動する光のみが偏光子7を透過し、直線偏光として試料に照射される。偏光子7は、可視光源3からの可視光の光軸に対して直交するように配置されている。試料に照射された直線偏光は、試料で反射又は透過することにより振動方向が不規則となり、その後に検光子8に入射する。
【0038】
検光子8は、偏光面が第2の方向に沿った直線偏光を透過させる。すなわち、試料からの反射光又は透過光のうち、第2の方向に沿って振動する光のみが検光子8を透過し、直線偏光としてカメラ5に入射する。検光子8は、試料からの反射光又は透過光の光軸に対して直交するように配置されている。
【0039】
本実施形態では、検光子8が、当該検光子8に対して直交する回転軸線Aを中心に回転可能に保持されている。回転軸線Aは、検光子8に入射する試料からの反射光又は透過光の光軸に対して平行に延びている。検光子8は、例えばモータなどの駆動源を含む回転機構(移動機構)9により、回転軸線Aを中心に回転駆動される。
【0040】
回転機構9を用いて回転軸線Aを中心に検光子8を回転させることにより、偏光子7に対する検光子8の相対的な回転角を変化させ、カメラ5に入射する試料からの反射光又は透過光を変化させることができる。このようにしてカメラ5で撮像される画像を変化させることにより、試料の偏光特性を観察することができる。
【0041】
2.検光子の回転移動
図2A図2Cは、検光子8を回転させたときの直線偏光の方向の変化について説明するための概略図である。本実施形態では、検光子8は、円板81の一部に切欠き82を有する形状で形成されている。検光子8の回転軸線Aは、例えば円板81の中心に位置しており、当該回転軸線Aを中心とする一定の角度範囲θの部分に切欠き82が形成されている。
【0042】
この例では、上記角度範囲θが90°となっているが、これに限られるものではない。上記角度範囲θは、180°未満であることが好ましく、90°以上かつ180°未満であればより好ましい。すなわち、切欠き82を除く検光子8の部分は、回転軸線Aを中心として180°以上かつ360°未満であることが好ましく、180°以上かつ270°未満であればより好ましい。
【0043】
測定位置Pに試料が載置されていない状態では、検光子8に入射する光Lは、第1の方向D1に沿った直線偏光となる。光Lの通過位置は、回転軸線Aを中心に回転する検光子8(円板81)の軌道上に位置するとともに、切欠き82の軌道上にも位置している。したがって、回転軸線Aを中心に検光子8を回転させることにより、検光子8を透過する光の振動方向である第2の方向D2を第1の方向D1に対して相対的に変化させることができるとともに、光Lが切欠き82を通過する状態とすることもできる。
【0044】
図2Aの状態は、第1の方向D1と第2の方向D2とが直交する直交状態である。この状態はクロスニコルと呼ばれており、第1の方向D1に沿った直線偏光である光Lは、検光子8を透過することができない。一方、図2Bの状態は、第1の方向D1と第2の方向D2とが平行に延びる平行状態である。この状態では、第1の方向D1に沿った直線偏光である光Lは、そのまま検光子8を透過することができる。
【0045】
図2Cの状態は、光Lの光路上に検光子8がない退避状態である。この状態はオープンニコルと呼ばれており、光Lの光路上に切欠き82が位置している。したがって、第1の方向D1に沿った直線偏光である光Lは、検光子8を透過することなく切欠き82を通過することとなる。
【0046】
このように、本実施形態では、回転軸線Aを中心にして検光子8を回転移動させることにより、直交状態、平行状態及び退避状態の間で遷移させることができる。この例では、図2Aの直交状態から検光子8を時計回りに90°回転させることにより、第1の方向D1と第2の方向D2との角度を連続的に変化させ、図2Bの平行状態に遷移させることができる。また、図2Bの状態から検光子8を時計回りにさらに180°回転させることにより、図2Cの退避状態に遷移させることができる。
【0047】
すなわち、本実施形態では、回転軸線Lを中心として270°の回転角で検光子8を回転させることにより、直交状態、平行状態及び退避状態の間で遷移させることができる。ただし、上記回転角は270°に限られるものではなく、直交状態、平行状態及び退避状態の間で遷移させることができるような任意の回転角とすることができる。この場合、上記回転角は、90°以上かつ360°未満であることが好ましく、180°以上かつ270°以下であることがより好ましい。
【0048】
3.検光子の具体的構成例
図3Aは、検光子8の具体的構成の一例を示した図である。この例では、円板81に対して90°の角度範囲で切欠き82が形成されることにより検光子8が構成されている。検光子8は、第2の方向D2に沿った直線偏光を透過させる本体83と、本体83の外周を保持する保持部84と備えている。
【0049】
保持部84は、中空の円形状に形成された外枠841と、切欠き82に沿って形成されたリブ842とが一体的に形成された構成を有している。保持部84は、例えば樹脂又は金属などにより形成されている。保持部84は、フィルム状の本体83よりも厚みが大きい部材であり、単位面積当たりの重さが本体83よりも重い。そのため、検光子8の重心は円板81の中心からずれており、本実施形態では、回転軸線Aが検光子8の重心を通るように配置されている。
【0050】
図3Bは、検光子8の具体的構成の他の例を示した図である。この例では、円板81に対して180°の角度範囲で切欠き82が形成されることにより半円板状の検光子8が構成されている。検光子8は、第2の方向D2に沿った直線偏光を透過させる本体85と、本体85の外周を保持する保持部86と備えている。
【0051】
保持部86は、中空の半円形状に形成されている。保持部86は、例えば樹脂又は金属などにより形成されている。保持部86は、フィルム状の本体85よりも厚みが大きい部材であり、単位面積当たりの重さが本体85よりも重い。そのため、検光子8の重心は円板81の中心からずれており、本実施形態では、回転軸線Aが検光子8の重心を通るように配置されている。
【0052】
4.作用効果
(1)本実施形態では、偏光子7及び検光子8を相対的に移動させる1つの移動機構(回転機構9)を用いて、図2A図2Cに示すように、直交状態、平行状態及び退避状態の間で遷移させることができる。したがって、直交状態及び平行状態の間で遷移させるための機構と、退避状態に遷移させるための機構とを別々に設ける必要がないため、構造が簡略化された赤外顕微鏡100を提供することができる。
【0053】
(2)特に、移動機構が、回転軸線Aを中心にして検光子8を回転移動させる回転機構9により構成されているため、検光子8の回転角を調整するだけの簡単な機構で、直交状態、平行状態及び退避状態の間で遷移させることができる。
【0054】
(3)また、図3A又は図3Bに例示されるように、回転軸線Aが検光子8の重心を通っているような構成であれば、回転移動される検光子8の回転軸線Aが偏心していないため、検光子8が重力で回転することを防止できる。したがって、検光子8が重力で回転することを阻止するためのストッパ又はブレーキなどを設ける必要がないため、さらに構造を簡略化することができる。このような効果は、回転軸線Aが鉛直方向に対して交差する方向(例えば水平方向)に延びている場合に特に顕著となる。
【0055】
(4)また、本実施形態では、回転軸線Aを中心として90°以上かつ360°未満の範囲(例えば270°)で検光子8の回転角を調整するだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。直交状態と平行状態との間は90°の回転角で遷移させることができるため、それ以上の回転角まで検光子8を回転させることにより、退避状態まで遷移させることができる。
【0056】
(5)さらに、本実施形態では、図3A又は図3Bに例示されるように、円板81の一部に切欠き82を有する形状で検光子8を形成するだけの簡単な構成により、その切欠き82の部分を用いて退避状態に遷移させることができる。
【0057】
5.変形例
(1)上記実施形態では、検光子8が可視光源3から照射される可視光の光路上に配置された構成について説明した。この場合、赤外顕微鏡100における可視光を用いた観察時に、移動機構(回転機構9)を用いて偏光子7及び検光子8を相対的に移動させるだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。
【0058】
しかし、このような構成に限らず、検光子8が赤外光源2から照射される赤外光の光路上に配置された構成であってもよい。この場合、赤外顕微鏡100における赤外光を用いた観察時に、移動機構を用いて偏光子及び検光子を相対的に移動させるだけで、直交状態、平行状態及び退避状態の間で遷移させることができる。
【0059】
(2)上記実施形態では、回転軸線Aを中心にして検光子8を回転移動させるような構成について説明した。しかし、このような構成に限らず、偏光子7に直交する回転軸線を中心にして、偏光子7を回転移動させるような構成であってもよい。また、偏光子7及び検光子8を相対的に移動させるような構成であれば、偏光子7及び検光子8の両方を回転移動させるような構成であってもよいし、偏光子7及び検光子8の少なくとも一方をスライドなどの回転以外の態様で移動させるような構成であってもよい。
【0060】
(3)偏光子7又は検光子8を直交状態、平行状態及び退避状態の間で遷移させる移動機構は、回転機構9のようにモータなどの駆動源を含む構成に限らず、手動式のものであってもよい。この場合、作業者が把持して偏光子7又は検光子8を移動させるためのレバーが移動機構に設けられていてもよい。
【0061】
(4)以上の実施形態では、本発明が赤外顕微鏡100に適用される場合について説明した。しかし、本発明は、赤外顕微鏡100に限らず、赤外光源2を備えていない偏光顕微鏡にも適用可能である。
【符号の説明】
【0062】
1 試料ステージ
2 赤外光源
3 可視光源
4 検出器
5 カメラ
6 ビームスプリッタ
7 偏光子
8 検光子
9 回転機構
81 円板
82 切欠き
83 本体
84 保持部
85 本体
86 保持部
100 赤外顕微鏡
図1
図2A
図2B
図2C
図3A
図3B