(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下に、本発明の各実施の形態について、図面を参照し、説明する。なお、開示はあくまで一例にすぎない。つまり、当業者が、発明の主旨を保ち、適宜変更することによって容易に想到し得る構成は、当然に本発明の範囲に含有される構成である。図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合がある。しかし、これらはあくまで一例であって、本発明の解釈を限定するものではない。
【0012】
以下の説明において、本発明の一実施形態に係る固体撮像装置は、トランジスタ、容量素子及び抵抗素子などを含む。トランジスタ、容量素子及び抵抗素子などの構造、トランジスタ、容量素子及び抵抗素子などを形成する膜、層、及び各部分の材料は、本発明の技術分野で通常使用される公知技術を採用することができる。
【0013】
なお、本明細書等における「第1」、「第2」、「第3」などの序数は、説明を簡潔にするためだけに用いられており、限定的に解釈されるべきではない。また、本明細書等において、同一、または類似する複数の構成のそれぞれを区別して表記する際には、アルファベットの小文字を用いる。
【0014】
なお、以下の各実施形態は、技術的な矛盾を生じない限り、互いに組み合わせることができる。
【0015】
本実施形態に係るイメージセンサは、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、CCD(Charge Coupled Device)イメージセンサである。本実施形態に係る固体撮像装置は、画像を取得可能、かつ、動体を検出することが可能であり、携帯情報端末、デジタルカメラなどの電子機器に適用することができる。本実施形態において、行方向は第1の方向(D1)と呼ばれ、列方向は第2の方向(D2)と呼ばれる。本実施形態において、データは値と呼ばれ、例えば、画像データは画像値と呼ばれ、露光データは露光値と呼ばれ、増幅データは増幅値と呼ばれ、差分データは差分値と呼ばれる。また、本実施形態において、データは、電圧または電圧値、及び、電流または電流値を含んでよく、電圧または電圧値、及び、電流または電流値と呼ばれてもよい。
【0016】
1.第1実施形態
図1は本実施形態に係る固体撮像装置10の全体構成を示すブロック図である。
図2は本実施形態に係るイメージセンサ100の構成を示すブロック図である。本実施形態に係る固体撮像装置10の構成、及びイメージセンサ100の構成は、
図1及び
図2に示す構成に限定されない。
【0017】
1−1.固体撮像装置10の全体構成
図1に示すように、固体撮像装置10は、例えば、イメージセンサ100、イメージシグナルプロセッサ(Image Signal Processor、ISP)200、及び表示パネル300を有する。イメージセンサ100は、ISP200に接続される。ISP200は、表示パネル300に接続される。
【0018】
1−2.イメージセンサ100の構成
図1及び
図2に示すように、イメージセンサ100は、画素部110、行選択走査回路120、読み出し回路130、及び制御回路140を有する。
【0019】
1−2−1.画素部110の構成
図1に示すように、画素部110は、複数の画素150を有する。各画素は光電変換素子42を有する。複数の画素150は、行(ロウ)方向と列(カラム)方向(Y行X列)のマトリクス状に配置される。Y及びXはそれぞれ独立に設定される正の自然数である。
【0020】
なお、複数の画素150は、例えば、赤色カラーフィルタを有するR画素、緑色カラーフィルタを有するGR画素、青色カラーフィルタを有するB画素及び緑色カラーフィルタを有するGB画素に分類されてもよい。例えば、奇数行目は、R画素とGR画素を交互に繰り返し、偶数行目はGB画素とB画素を交互に繰り返し配置されてもよい(いわゆるベイヤー配置)。
【0021】
画素部110は、図に示されていないが、定電圧線174、及びグランド線178に接続する。
【0022】
本実施形態では、定電圧VCが定電圧線174に供給され、グランドGNDがグランド線178に供給される。供給する電圧は、ここで示した電圧に限定されない。例えば、グランドGNDは、アースであってもよく、0Vなどの基準電圧であってもよい。本実施形態において、定電圧VCは第1の初期化データとも呼ばれる。
【0023】
1−2−2.制御回路140の構成
図1及び
図2に示すように、制御回路140は、行選択走査回路120、読み出し回路130、画素部110、及びISP200に接続する。制御回路140は、行選択走査回路120の行選択を制御するための信号を行選択走査回路120に送信し、読み出し回路130から送信される信号を制御するための信号を読み出し回路130に送信する。
【0024】
図2に示すように、制御回路140は、バイパス信号線164に接続する。制御回路140は、ISP200からバイパス信号線を制御するための信号を受信する。制御回路140は、受信した信号を用いて、バイパス信号線164にバイパス信号BPを供給する。
【0025】
1−2−3.行選択走査回路120の構成
図1または
図2に示すように、行選択走査回路120は、例えば、画素部110に対して行方向に隣接する位置に配置される。行選択走査回路120は、複数の水平信号線に接続する。複数の水平信号線は、例えば、初期化信号線162、データ転送信号線166、及びデータ読み出し信号線172a、172b、172c、172d、・・・を含む。本実施形態では、複数の水平信号線は、列方向に互いに隣接する。水平信号線は、同じ行に設けられた複数の画素に接続される。例えば、第1の水平信号線は画素150の画素回路PXaに接続され、第1の水平信号線の列方向に隣接する第2の水平信号線は第1の水平信号線とは異なる画素150の画素回路PXaに接続される。本実施形態では、行選択走査回路120は、選択回路と呼ばれる。
【0026】
図2に示すように、行選択走査回路120は、初期化信号線162、データ転送信号線166、及び複数のデータ読み出し信号線172に接続する。
【0027】
行選択走査回路120は、制御回路140から、行選択走査回路120の行選択を制御するための信号を受信する。行選択走査回路120は、受信した信号を用いて、初期化信号線162に初期化信号DCを供給し、データ転送信号線166にデータ転送信号GSを供給し、データ読み出し信号線172にデータ読み出し信号RE(z)を供給する。本実施形態では、数値zは行の番号を示す整数である。本実施形態では、例えば、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(z)が、各画素を制御する制御信号である。数値zは1からYの整数である。
【0028】
すなわち、行選択走査回路120は、当該制御信号を用いて、読み出し対象となる画素を行単位で選択する。当該制御信号は、例えば、1行目、2行目、3行目、・・・、Y行目のように、行毎に順次入力され、各行に接続された複数の画素を、行毎に順次選択する。例えば、1行目に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(1)を供給され、2行目に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(2)を供給され、3行目に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(3)を供給され、4行目に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(4)を供給され、z行目に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(z)を供給され、最終行(Y行目)に接続された複数の画素は、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(Y)を供給される。
【0029】
当該制御信号は、行毎にランダムに入力されてよく、複数の行に同時に入力されてもよい。
【0030】
行選択走査回路120が、所望の行を選択すると、選択した行に接続された各画素は、選択した行に接続された各画素に対応した露光信号を用いて、垂直信号を生成する。選択した行に接続された各画素は、垂直信号を、各画素から各画素に接続された垂直信号線に送信する。
【0031】
1−2−4.読み出し回路130の構成
図1または
図2に示すように、読み出し回路130は、例えば、画素部110に対して列方向に隣接する位置に配置される。読み出し回路130は、例えば、複数のAD変換回路132a、132b、132c及び132dを有する。
【0032】
読み出し回路130は、複数の垂直信号線182(
図2)、及びISP200に接続する。垂直信号線182は、同じ列に設けられた複数の画素に接続される。例えば、第1の垂直信号線はG画素211、R画素209及びAD変換回路132aに接続され、第1の垂直信号線の行方向に隣接する第2の垂直信号線はB画素212、G画素213及びAD変換回路132bに接続される。AD変換回路132は、アナログデータをデジタルデータに変換する機能を有する。
【0033】
読み出し回路130は、各画素から、複数の垂直信号線のそれぞれに送信された垂直信号を受信する。複数のAD変換回路132が、複数の垂直信号をデジタル信号に変換する。デジタル信号はデジタルデータを含む。デジタルデータは、例えば、画像データを、コンピューターで処理可能な0と1の2進法で書き換えたデータである。読み出し回路130は、デジタル信号をISP200に送信する。デジタル信号はイメージセンサ100から送信される信号(出力データ)である。詳細は後述するが、垂直信号は、第3の増幅データ(
図10)を含む。
【0034】
1−2−5.画素の回路構成
図3は本実施形態に係る画素回路PXaの構成を示す回路図である。本実施形態に係る画素回路PXaの構成は、
図2に示す構成に限定されない。
図1及び
図2と同一、又は類似する構成の説明は、省略されることがある。
【0035】
図3に示すように、本実施形態に係る画素回路PXaは、光電圧変換回路350、スイッチ302(第1のスイッチ)、スイッチ304(第4のスイッチ)、スイッチ306(第3のスイッチ)、スイッチ312(第2のスイッチ)、第1の容量素子322、第2の容量素子324、及び増幅回路330を有する。
【0036】
光電圧変換回路350は、露光した光の強度に応じた電圧に変換する回路である。光電圧変換回路350は、少なくとも、露光した光の強度を検出する素子(回路)と、当該素子によって生成された電流、電圧などを増幅し電圧を生成する素子(回路)から構成される。本実施形態では、光電圧変換回路350は、露光した光によって電流が発生する光電変換素子42、及び、電流を電圧に変換する電流電圧変換回路301から構成される。本実施形態に係る光電圧変換回路350の構成は一例であって、光電圧変換回路350の構成はこの構成に限定されない。光電圧変換回路350において、露光した光の強度を検出する素子は、例えば、光によって電気伝導度が変化する素子が用いられてもよく、露光した光の特性(例えば、光の波長)を電気的な信号に変換するタイプの素子が用いられてもよく、電流を生成する素子でもよく、電圧を生成する素子でもよい。また、当該素子によって生成された電流、電圧などを増幅し電圧を生成する素子(回路)は、例えば、電圧を電圧に変換する増幅回路であってよく、電流を電圧に変換する増幅回路であってもよい。
【0037】
光電変換素子42はグランド線178と電流電圧変換回路301との間に設けられる。光電変換素子42の第1の端子はグランド線178に電気的に接続され、光電変換素子42の第2の端子は電流電圧変換回路301と電気的に接続される。電流電圧変換回路301は光電変換素子42とノードA(nodeA)との間に設けられ、光電変換素子42とノードAに電気的に接続される。第1の容量素子322はノードAとノードB(nodeB)との間に設けられる。第1の容量素子322の第1の端子はノードAに電気的に接続され、第1の容量素子322の第2の端子はノードBに電気的に接続される。スイッチ302はノードBと定電圧線174との間に設けられる。スイッチ302の第1の端子はノードBに電気的に接続され、スイッチ302の第2の端子は定電圧線174に電気的に接続される。スイッチ304はノードAとノードBとの間に設けられる。スイッチ304の第1の端子はノードAに電気的に接続され、スイッチ304の第2の端子はノードBに電気的に接続される。スイッチ306はノードBとノードCとの間に設けられる。スイッチ306の第1の端子はノードBに電気的に接続され、スイッチ306の第2の端子はノードC(nodeC)に電気的に接続される。第2の容量素子324はノードCとグランド線178との間に設けられる。第2の容量素子324の第1の端子はグランド線178に電気的に接続され、第2の容量素子324の第2の端子はノードCに電気的に接続される。増幅回路330はノードCとノードE(nodeE)との間に設けられ、ノードCとノードE(nodeE)に電気的に接続される。スイッチ312はノードEと垂直信号線182との間に設けられる。スイッチ312の第1の端子はノードEに電気的に接続され、スイッチ312の第2の端子は垂直信号線182に電気的に接続される。
【0038】
光電変換素子42は、露光された光の強度に基づき生成した電力に対応した露光信号を生成する。光の強度は明るさと呼んでもよい。露光した光の強度は、露光強度と呼んでもよい。本実施形態では、光電変換素子42はフォトダイオード(Photo Diode)である。本実施形態において、露光信号は露光された被写体に対応した画像データを含むアナログデータであり、画像データは、露光データと呼ばれる。また、本実施形態では、電圧、電流、露光信号、データは、情報と呼ばれる場合がある。
【0039】
詳細は後述するが、電流電圧変換回路301は、露光信号を増幅し、露光信号を増幅した第1の増幅信号を生成する。電流電圧変換回路301の増幅特性(入出力特性)は、例えば、対数特性である。本実施形態において、第1の増幅信号は第1の増幅データを含む。
【0040】
スイッチ302は、初期化信号線162に電気的に接続され、初期化信号DCによって制御される。スイッチ302は、ノードBを初期化する機能を有する。例えば、初期化信号DCがローレベル(Low Level、Lレベル)のとき、スイッチ302はノードBと定電圧線174とを非導通とさせる。初期化信号DCがハイレベル(High Level、Hレベル)のとき、スイッチ302はノードBと定電圧線174とを導通する。本実施形態では、スイッチ302がノードBと定電圧線174とを非導通とさせる状態を、スイッチ302は非導通状態であるものとし、スイッチ302がノードBと定電圧線174とを導通させる状態を、スイッチ302は導通状態であるものとする。
【0041】
なお、本実施形態では、導通状態とは、スイッチがオン(ON)の状態を示すものとし、非導通状態とは、スイッチがオフ(OFF)の状態を示すものとする。
【0042】
第1の容量素子322は、第1の増幅信号に応じて定電圧VCから変化した差分信号を保持する。本実施形態において、差分信号は差分データを含む。
【0043】
スイッチ304は、バイパス信号線164に電気的に接続され、バイパス信号BPによって制御される。例えば、バイパス信号BPがローレベル(Low Level、Lレベル)のとき、スイッチ304はノードAとノードBとを非導通とさせる。バイパス信号BPがハイレベル(High Level、Hレベル)のとき、スイッチ304はノードAとノードBとを導通させる。本実施形態では、スイッチ304がノードAとノードBとを非導通とさせる状態を、スイッチ304は非導通状態であるものとし、スイッチ304がノードAとノードBとを導通させる状態を、スイッチ304は導通状態であるものとする。
【0044】
スイッチ306は、データ転送信号線166に電気的に接続され、データ転送信号GSによって制御される。例えば、データ転送信号GSがローレベル(Low Level、Lレベル)のとき、スイッチ306はノードBとノードCとを非導通とさせる。データ転送信号GSがハイレベル(High Level、Hレベル)のとき、スイッチ306はノードBとノードCとを導通させる。本実施形態では、スイッチ306がノードBとノードCとを非導通とさせる状態を、スイッチ306は非導通状態であるものとし、スイッチ306がノードBとノードCとを導通させる状態を、スイッチ306は導通状態であるものとする。
【0045】
第2の容量素子324は、第1の増幅信号に応じて定電圧VCから変化した差分信号を保持する。
【0046】
詳細は後述するが、増幅回路330は、差分信号を増幅し、第3の増幅信号を生成する。本実施形態において、第3の増幅信号は第3の増幅データを含み、第3の増幅信号は垂直信号である。
【0047】
スイッチ312は、読み出し信号線172に電気的に接続され、読み出し信号RE(z)によって制御される。例えば、読み出し信号RE(z)がローレベル(Low Level、Lレベル)のとき、スイッチ312はノードEと垂直信号線182とを非導通とさせる。読み出し信号RE(z)がハイレベル(High Level、Hレベル)のとき、スイッチ312はノードEと垂直信号線182とを導通させる。本実施形態では、スイッチ312がノードEと垂直信号線182とを非導通とさせる状態を、スイッチ312は非導通状態であるものとし、スイッチ312がノードEと垂直信号線182とを導通させる状態を、スイッチ312は導通状態であるものとする。
【0048】
保持回路340は、第1の保持部342及び第2の保持部344を有する。第1の保持部342は、電流電圧変換回路301によって送信される第1の増幅信号を保持する機能を有する。本実施形態では、第1の保持部342は、例えば、第1の容量素子322、スイッチ304、及びスイッチ302を有する。第1の保持部342は、少なくとも第1の容量素子322を有していればよい。第2の保持部344は、差分値を保持する機能を有する。本実施形態では、第2の保持部344は、例えば、第2の容量素子324及びスイッチ306を有する。第2の保持部344は、少なくとも第2の容量素子324を有していればよい。
【0049】
なお、画素回路PXaは、スイッチ304に係る構成及び機能を備えていなくてよい(省略されてよい)。スイッチ304に係る構成及び機能を省略することで、画素回路PXaは、少ない素子数で構成され、スイッチ304に係る構成及び機能によって消費される電力を削減することができる。また、画素回路PXaは、増幅回路330を備えていなくてよく(省略されてよく)、第2の保持部344及び増幅回路330を備えていなくもよい(省略されてもよい)。増幅回路330に係る構成及び機能を省略することで、第2の保持部344に保持した差分値を直接、スイッチ312に送信することができる。その結果、画素回路PXaは、少ない素子数で構成され、増幅回路330に係る構成及び機能によって消費される電力を削減することができる。
【0050】
1−3.ISP200の構成
ISP200は、イメージセンサ100(読み出し回路130)から、複数の読み出し信号をデジタル化した複数のデジタル信号を受信し、表示パネル300に含まれる各画素の表示するデータに対応する複数の画像データを生成する。
【0051】
1−4.表示パネル300の構成
表示パネル300は、例えば、複数の画像データ受信し、撮像した被写体の画像を表示する。
【0052】
光電変換素子42は、露光した光の強度に基づく露光データ(露光電流)を生成する。電流電圧変換回路301(
図3)は、当該露光電流を増幅する。行選択走査回路120が、スイッチ306をオフし、スイッチ302をオンすることで、ノードBに定電圧線174を接続し、ノードBに定電圧VCが供給される。次に、行選択走査回路120が、スイッチ306、及びスイッチ302をオフした後、当該露光電圧の変化量に応じた電圧が、定電圧VCを基準とした差分値としてノードBに発生する。さらに、行選択走査回路120が、スイッチ302をオフし、スイッチ306をオンすることで、当該差分値がノードBから第2の容量素子324に転送される。行選択走査回路120は、当該差分値の転送終了後、スイッチ306をオフする。また、増幅回路330は、当該差分値を増幅し、ノードBに供給する。さらに、行選択走査回路120は、スイッチ312をオンすることで、当該差分値に応じて増幅された電圧を読み出し回路130に送信する。換言すると、増幅回路330は、当該差分値に応じた電圧を増幅した増幅電圧を生成し、増幅電圧を読み出し回路130に送信する。本実施形態では、露光電圧の変化量に応じた電圧は、増幅された前記露光電圧の変化量であり、差分値に応じた電圧は、増幅回路330を用いて、当該差分値に応じた電圧を増幅した増幅電圧である。実施形態に係る固体撮像装置10は、第1のフレームの露光と、第1のフレームに続く第2のフレームにおける露光とを続けて実行する。
【0053】
その結果、本実施形態に係る固体撮像装置10は、大容量の記憶装置を備えることなく、フレーム間の画像データの差分を生成し、動体を検出することができる。また、本実施形態に係る固体撮像装置10は、大容量の記憶装置を備えないため、固体撮像装置10に実装する部材の数が少なく、固体撮像装置10の製造工程及び製造コストは抑制される。
【0054】
また、監視カメラのようにカメラが固定されていると、各フレーム間の画像データの差分データは、ほとんどが0近辺の値であるため、フレーム毎の画像データの容量より、データの度数分布に偏りが生じる。その結果、例えば、本実施形態に係る固体撮像装置10を用いることで得られる差分データを圧縮することによって、差分データの容量を少なくし、転送するデータの容量を抑制することができる。
【0055】
1−5.固体撮像装置10の第1の駆動方法
図4は、本実施形態に係る固体撮像装置10の第1の駆動方法を示すタイミングチャートであり、
図5(A)は本実施形態に係る1行1列目の画素の電流電圧変換回路301の出力特性を示すタイミングチャートであり、
図5(B)は本実施形態に係る1行1列目の画素の駆動方法を説明するためのタイミングチャートであり、
図6は本実施形態に係る固体撮像装置10の第1の駆動方法を説明するためのフローチャート図であり、
図7〜
図10は本実施形態に係る画素の第1の駆動方法を説明するための回路図である。本実施形態に係る固体撮像装置10の第1の駆動方法は
図4〜
図10に示す構成に限定されない。
図1〜
図3と同一、又は類似する構成の説明は、省略されることがある。
【0056】
図1〜
図3を用いて説明したように、例えば、各信号は、制御回路140、行選択走査回路120から供給される。
図4及び
図5(B)に示すように、初期化信号DCがローレベル(Low Level、Lレベル)からハイレベル(High Level、Hレベル)に変化し、再度、LレベルからHレベルに変化する間の期間が1フレーム期間(Tf)である。本実施形態では、例えば、1フレーム期間(Tf)は所定期間と呼ばれる。
図4は、一例として、1行目〜Y行目の各画素を駆動するためのタイミングチャートを示し、
図5(A)、
図5(B)は1フレームから6フレームの動作状態を示す。ここでは、1行目の水平走査線に接続される1行1列目の画素の第1の駆動方法を説明する。1行目の水平走査線に接続されるその他の複数の画素の第1の駆動方法は1列目の画素の第1の駆動方法と同様であり、2行目の水平走査線〜最終行(Y行目)の走査信号線に接続される複数の画素の第1の駆動方法は、各行を順に走査する以外は、1行目の水平走査線に接続される複数の画素の第1の駆動方法と同様であるから、ここでの詳細な説明は省略する。
【0057】
図6に示すように、固体撮像装置10が駆動を開始すると、固体撮像装置10はステップ31(S31)を実行する。ステップ31(S31)では、
図4に示す第1のフレームの差分値初期化期間T1
F1において、固体撮像装置10が第1のフレーム期間中にノードBを初期化する。本実施形態では、各フレームの期間を示す場合は、期間及びフレーム番号を併記し、各フレームの各行の期間を示す場合は、期間、フレーム番号及び行番号を併記する。例えば、第1のフレームの差分値初期化期間は、第1のフレームの差分値初期化期間T1
F1と記載され、第1のフレームの第1行目の差分値初期化期間は、期間T1
F1(1)と記載される。後述される期間T2、期間T3、期間T4及び期間T5も、期間T1と同様に記載される。
【0058】
図4に示すように、期間T1
F1では、初期化信号DCは、LレベルからHレベルに変化し、バイパス信号BP、データ転送信号GS、データ読み出し信号RE(1)、データ読み出し信号RE(2)、データ読み出し信号RE(Y−1)及びデータ読み出し信号RE(Y)はLレベルが維持される。
【0059】
図7に示すように、期間T1では、スイッチ302は導通状態であり、スイッチ304、スイッチ306、及びスイッチ312は非導通状態である。期間T1では、スイッチ302が導通状態となり、定電圧VC(第1の初期化データ)が定電圧線174からノードB、第1の容量素子322の第2の端子、スイッチ306の第1の端子、及びスイッチ304の第2の端子に供給される。固体撮像装置10がステップ31(S31)を実行する前は、ノードBは一つ前のフレームの差分データを保持している。固体撮像装置10がステップ31(S31)を実行すると、ノードBに保持されるデータは、一つ前のフレームの差分データから定電圧VCに変化し、第1の容量素子322の第2の端子、スイッチ306の第1の端子、及びスイッチ304の第2の端子が定電圧VCに初期化される。
【0060】
次に、
図6に示すように、固体撮像装置10はステップ33(S33)を実行する。ステップ33(S33)では、
図4に示す第1のフレームの露光期間T2
F1(期間T2)において、固体撮像装置10が、被写体を露光し、第1のフレーム期間の露光データ及び第1のフレームの増幅データ(
図5(A))を取得する。
【0061】
図4に示すように、期間T2
F1では、初期化信号DCは、HレベルからLレベルに変化し、バイパス信号BP、データ転送信号GS、データ読み出し信号RE(1)、データ読み出し信号RE(2)、データ読み出し信号RE(Y−1)及びデータ読み出し信号RE(Y)はLレベルが維持される。
【0062】
図8に示すように、期間T2では、スイッチ302、スイッチ304、スイッチ306、及びスイッチ312は非導通状態である。その結果、ノードBが初期化された後の期間T2では、スイッチ302が非導通状態となり、光電変換素子42が露光データを含む露光信号を生成し、露光信号を電流電圧変換回路301に送信する。続いて、電流電圧変換回路301は、露光信号を増幅し、第1のフレーム期間の増幅データを含む第1の増幅信号(
図5(A))を、ノードAに出力する。その結果、ノードAには増幅した第1の増幅データを含む第1の増幅信号(
図5(A))が供給され、ノードBには第1の増幅信号に応じて定電圧VCから変化した第1のフレーム期間の差分データを含む第1のフレーム期間の差分信号(
図5(B))が供給される。
【0063】
次に、
図6に示すように、固体撮像装置10はステップ35(S35)を実行する。ステップ35(S35)では、
図4に示す第1のフレームの差分データ転送期間T3
F1(期間T3)において、固体撮像装置10が、第1のフレームの差分データVfb1を含む差分信号を第2の容量素子324に転送する。第1のフレームの差分データVfb1は、一つ前のフレームにおける増幅データVfa0(
図5(A))と第1のフレームの増幅データVfa1との変化量に応じて定電圧VCから変化した差分データである。第1のフレームの差分データVfb1は、1フレーム期間(所定期間)において取得されるデータである。
【0064】
図4に示すように、期間T3
F1では、データ転送信号GSは、LレベルからHレベルに変化し、バイパス信号BP、初期化信号DC、データ読み出し信号RE(1)、データ読み出し信号RE(2)、データ読み出し信号RE(Y−1)及びデータ読み出し信号RE(Y)はLレベルが維持される。
【0065】
図9に示すように、期間T3では、スイッチ306は導通状態であり、スイッチ302、スイッチ304、及びスイッチ312は非導通状態である。その結果、スイッチ306が導通状態となり、第1のフレームの差分データVfb1を含む第1のフレームの差分信号がノードBからノードCに転送され、第1のフレームの差分データVfb1を含む第1のフレームの差分信号が第2の容量素子324に保存される。
【0066】
次に、
図6に示すように、固体撮像装置10はステップ37(S37)を実行する。ステップ37(S37)では、
図4に示す第2のフレームの差分値初期化期間T1
F2(期間T1)において、固体撮像装置10が当該フレームのノードBを初期化する。ステップ37(S37)の駆動方法はステップ31(S31)の駆動方法と比較すると、第2の容量素子324(ノードC)が定電圧VCから変化した第1のフレームの差分データVfb1を含む第1のフレームの差分信号を保存している点において異なる。ステップ37(S37)の駆動方法において、上記以外は、ステップ31(S31)の駆動方法と同様であるから、ここでの詳細な説明は省略する。
【0067】
次に、
図6に示すように、固体撮像装置10はステップ39(S39)を実行する。ステップ39(S39)では、
図4に示す第2のフレームの露光期間T2
F2(期間T2)において、固体撮像装置10が、被写体を露光し、第2のフレームの露光データ及び第2のフレームの第1の増幅データを取得する。
【0068】
また、ステップ33(S33)と同様に、ステップ39(S39)において、ノードBが初期化された後の第2のフレームの露光期間T2
F2では、スイッチ302の第1の端子と第2の端子とが非導通状態となり、光電変換素子42が第2のフレーム期間の露光データを含む露光信号を生成し、第2のフレーム期間の露光データを含む露光信号を電流電圧変換回路301に送信する。続いて、電流電圧変換回路301は、第2のフレーム期間の露光データを含む露光信号を増幅し、第2のフレーム期間の第1の増幅データを含む第2のフレーム期間の第1の増幅信号(
図5(A))を、ノードAに送信する。その結果、ノードAには増幅した第2のフレーム期間の第1の増幅データを含む第2のフレーム期間の第1の増幅信号(
図5(A))が供給され、ノードBには増幅した第2のフレーム期間の増幅データを含む第1の増幅信号(
図5(A))に応じて定電圧VCから変化した第2のフレーム期間の差分データを含む第2のフレーム期間の差分信号(
図5(B))が供給される。
【0069】
図6に示すように、固体撮像装置10は、ステップ37とステップ39と並行してステップ41(S41)を実行する。ステップ41(S41)では、
図4に示す第1のフレームのデータ転送期間T5
F1(期間T5)において、固体撮像装置10が、第1のフレームの差分データを含む第1のフレームの差分信号を増幅し、垂直信号線182に転送する。
【0070】
図4に示すように、期間T4
F1(1)では、データ読み出し信号RE(1)はLレベルからHレベルに変化し、バイパス信号BP、初期化信号DC、データ転送信号GS、及びデータ読み出し信号RE(2)からデータ読み出し信号RE(Y)はLレベルが維持される。
【0071】
図10に示すように、期間T4
F1(1)では、スイッチ312は導通状態であり、スイッチ304、及びスイッチ306は非導通状態である。その結果、増幅回路330は第1のフレームの差分データを含む第1のフレームの差分信号を増幅した第3の増幅データを含む第3の増幅信号をノードE、垂直信号線182に供給(送信、転送)する。
【0072】
続いて、
図4に示すように、データ読み出し信号RE(1)はHレベルからLレベルに変化し、バイパス信号BP、データ転送信号GS及びデータ読み出し信号RE(2)からデータ読み出し信号RE(Y)はLレベルが維持される。
【0073】
本実施形態に係る固体撮像装置10は、
図4に示すように、データ転送期間T5
F1では、1行目の水平走査線に接続されるその他の複数の画素の駆動に続き、2行目の水平走査線に接続される複数の画素の駆動、3行目の水平走査線に接続される複数の画素の駆動、・・・、Y行目の水平走査線に接続される複数の画素の駆動を順に実行する。第1のフレームの2行目以降のデータ転送期間T4
F1(2)〜T4
F1(Y)における駆動方法は期間T4
F1(1)における駆動方法と同様であるから、ここでの詳細な説明は省略する。
【0074】
次に、
図6に示すように、固体撮像装置10はステップ45(S45)を実行する。ステップ45(S45)において、
図4に示す第2のフレームの差分データ転送期間T3
F2(期間T3)は、固体撮像装置10が、定電圧VCから変化した第2のフレームの差分データVfb2を含む第2のフレームの差分信号を第2の容量素子324に保存する期間である。第2のフレームの差分データVfb2は、一つ前のフレームにおける第1の増幅データVfa1(
図5(A))と第2のフレームの第1の増幅データVfa2(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第2のフレームの差分データVfb2は、1フレーム期間(所定期間)において取得されるデータである。ステップ45(S45)の駆動方法は、ステップ35(S35)の駆動方法における期間T3
F1を期間T3
F2に置き換え、第1のフレームの露光データを第2のフレームの露光データに置き換え、第1のフレームの第1の増幅データを第2のフレームの第1の増幅データに置き換え、第1のフレームの第1の増幅信号を第2のフレームの第1の増幅信号に置き換え、第1のフレームの差分データVfb1を第2のフレームの差分データVfb2に置き換えた駆動方法である。ステップ45(S45)の駆動方法において、上記以外の駆動方法はステップ35(S35)の駆動方法と同様であるから、ここでの説明は省略する。
【0075】
次に、
図6に示すように、固体撮像装置10はステップ47(S47)を実行する。ステップ47(S47)において、
図4に示す期間T1
F3(期間T1)は、固体撮像装置10が当該フレームのノードBを初期化する期間である。ステップ47(S47)の駆動方法はステップ31(S31)の駆動方法と比較すると、期間T1
F1を期間T1
F3に置き換え、第2の容量素子324(ノードC)が定電圧VCから変化した第2フレームの差分データVfb2を含む第2のフレームの差分信号を保存している点において異なる。ステップ47(S47)の駆動方法において、上記以外の駆動方法は、ステップ31(S31)の駆動方法と同様であるから、ここでの詳細な説明は省略する。
【0076】
次に、
図6に示すように、固体撮像装置10はステップ49(S49)を実行する。
図4に示すように、ステップ49(S49)において、第3のフレームの露光期間T2
F3(期間T2)は、固体撮像装置10が、被写体を露光し、第3のフレームの露光データを取得する期間である。ステップ49(S49)の駆動方法は、ステップ39(S39)の駆動方法における期間T2
F2を期間T2
F3に置き換え、第2のフレーム期間の露光データを第3のフレーム期間の露光データに置き換え、第2のフレーム期間の増幅データを第3のフレーム期間の増幅データに置き換え、第2のフレーム期間の第1の増幅信号を第3のフレーム期間の第1の増幅信号に置き換え、第2のフレーム期間の差分データを第3のフレーム期間の差分データ(
図5(B))に置き換え、第2のフレームの差分信号を第3のフレームの差分信号に置き換えた駆動方法である。ステップ49(S49)の駆動方法において、上記以外の駆動方法はステップ39(S39)の駆動方法と同様であるから、ここでの説明は省略する。第3のフレームの差分データVfb3(
図5(B))は、第2のフレームの増幅データVfa2(
図5(A))と第3のフレームの増幅データVfa3(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第3のフレームの差分データVfb3は、1フレーム期間(所定期間)において取得されるデータである。
【0077】
次に、
図6に示すように、固体撮像装置10は、ステップ47(S47)、ステップ49(S49)と並行してステップ51(S51)を実行する。ステップ51(S51)において、
図4に示す第2のフレームの1行目のデータ転送期間T4
F2(1)(期間T4)は、固体撮像装置10が、第2のフレームの差分データVfb2を含む第2のフレームの差分信号を転送し、第2のフレームの差分データVfb2を含む第2のフレームの差分信号を増幅する期間である。ステップ51(S51)の駆動方法は、ステップ41(S41)の駆動方法における期間T4
F1(z)を期間T4
F2(z)に置き換え、第1のフレームの差分データVfb1を第2のフレームの差分データVfb2に置き換え、第1のフレームの差分信号を第2のフレームの差分信号に置き換え、第1のフレームの第3の増幅データを第2のフレームの第3の増幅データに置き換え、第1のフレームの第3の増幅信号を第2のフレームの第3の増幅信号に置き換えた駆動方法である。ステップ51(S51)の駆動方法において、上記以外の駆動方法はステップ41(S41)の駆動方法と同様であるから、ここでの説明は省略する。
【0078】
読み出し回路130は、例えば、ステップ41(S41)の読み出し信号RE(z)がHの時に、差分信号を増幅した第3の増幅信号をデジタル化したデジタル信号を生成する。読み出し回路130は、固体撮像装置10に含まれる複数の画素に対して生成した複数の差分信号を増幅した第3の増幅信号をデジタル化した複数のデジタル信号を生成し、生成した複数のデジタル信号をISP200に送信する。ISP200は、イメージセンサ100(読み出し回路130)から、当該複数のデジタル信号を受信し、表示パネル300に含まれる各画素の表示するデータに対応する複数の差分データを生成し、複数の画像データを表示パネル300に送信する。表示パネル300は、例えば、複数の差分データ受信し、差分データに基づく画像を表示する。
【0079】
また、例えば、
図5(A)及び
図5(B)に示すように、第4のフレーム期間においては、ステップ33(S33)における第1のフレームの露光期間T2
F1(期間T2)、及び、ステップ39(S39)における第2のフレームの露光期間T2
F2(期間T2)と同様に、電流電圧変換回路301は、第4のフレーム期間の露光データを含む露光信号を増幅し、第4のフレーム期間の増幅データを含む第1の増幅信号(
図5(A))を、ノードAに送信する。その結果、ノードAには第4のフレーム期間の第1の増幅データを含む第1の増幅信号(
図5(A))が供給され、ノードBには第4のフレーム期間の第1の増幅データを含む第1の増幅信号(
図5(A))に応じて定電圧VCから変化した第4のフレーム期間の差分データを含む第4のフレーム期間の差分信号(
図5(B))が供給される。さらに、期間T2
F1及びT2
F2と同様に第4のフレームの露光期間に続く第5のフレームの露光期間においては、電流電圧変換回路301は、第5のフレーム期間の露光データを含む露光信号を増幅し、第5のフレーム期間の第1の増幅データを含む第1の増幅信号(
図5(A))を、ノードAに送信する。その結果、ノードAには第5のフレーム期間の第1の増幅データを含む第1の増幅信号(
図5(A))が供給され、ノードBには第5のフレーム期間の第1の増幅データを含む第1の増幅信号(
図5(A))に応じて定電圧VCから変化した第5のフレーム期間の差分データを含む第5のフレームの差分信号(
図5(B))が供給される。さらに、期間T2
F1及びT2
F2と同様に第5のフレームの露光期間に続く第6のフレームの露光期間においては、電流電圧変換回路301は、第6のフレームの露光データを含む露光信号を増幅し、第6のフレームの第1の増幅データ含む第1位の増幅信号(
図5(A))を、ノードAに送信する。その結果、ノードAには第6のフレームの第1の増幅データ含む増幅信号(
図5(A))が供給され、ノードBには増幅した第6のフレームの第1の増幅データを含む第1の増幅信号(
図5(A))に応じて定電圧VCから変化した第6のフレームの差分データを含む第6のフレームの差分信号(
図5(B))が供給される。
【0080】
また、
図5(A)及び
図5(B)に示すように、第3のフレーム期間においては、ステップ35(S35)における第1のフレームの差分データ転送期間T3
F1(期間T3)、及び、ステップ45(S45)における第2のフレームの差分データ転送期間T3
F2と同様に、固体撮像装置10が、第3のフレームの差分データVfb3を含む差分信号を第2の容量素子324に保存する。さらに、期間T3
F1及びT3
F2と同様に第3のフレームの露光期間に続く第4のフレーム期間においては、固体撮像装置10は、第4のフレームの差分データVfb4を含む差分信号を第2の容量素子324に保存する。さらに、期間T3
F1及びT3
F2と同様に第4のフレームの露光期間に続く第5のフレーム期間においては、固体撮像装置10は、第5のフレームの差分データVfb5を含む差分信号を第2の容量素子324に保存する。さらに、期間T3
F1及びT3
F2と同様に第5のフレームの露光期間に続く第6のフレーム期間においては、固体撮像装置10は、第6のフレームの差分データVfb6を含む差分信号を第2の容量素子324に保存する。第3の差分データVfb3は、第3の増幅データVfb3(
図5(A))と第4の増幅データVfa4(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第4の差分データVfb4は、第3の増幅データVfb3(
図5(A))と第4の増幅データVfa4(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第5の差分データVfb5は、第4の増幅データVfb4(
図5(A))と第5の増幅データVfa5(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第6の差分データVfb6は、第5の増幅データVfb5(
図5(A))と第6の増幅データVfa6(
図5(A))との変化量に応じて定電圧VCから変化した差分データである。第1の差分データVfb1、第2の差分データVfb2、及び第3の差分データVfb3と同様に、第4の差分データVfb4、第5の差分データVfb5、及び第6の差分データVfb6はそれぞれが1フレーム期間(所定期間)において取得されるデータである。
【0081】
1−6.固体撮像装置10の第2の駆動方法
図11は、本実施形態に係る固体撮像装置10の第2の駆動方法を示すタイミングチャートであり、
図12は本実施形態に係る画素の第2の駆動方法を説明するための回路図である。本実施形態に係る固体撮像装置10の第2の駆動方法は、フレーム毎の画像データを取得する駆動方法である。本実施形態に係る固体撮像装置10の第2の駆動方法は
図11〜
図12に示す構成に限定されない。
図1〜
図10と同一、又は類似する構成の説明は、省略されることがある。
【0082】
図11に示すように、本実施形態に係る固体撮像装置10の第2の駆動方法は、
図4〜
図10に示した第1の駆動方法と比較して、バイパス信号BPはHレベルを維持し、バイパス信号線164にHレベルを供給し、初期化信号DCはLレベルを維持し、初期化信号線162にLレベルを供給し、露光データを初期化する期間である期間T1を有していない。
図12に示すように、本実施形態に係る固体撮像装置10の第2の駆動方法では、スイッチ302は非導通状態であり、スイッチ304は導通状態であり、電流電圧変換回路301は、露光データを含む露光信号を増幅し、第1の増幅データを含む第1の増幅信号(
図5(A))を、ノードBに送信(供給)する。
【0083】
次に、
図11に示すように、本本実施形態に係る固体撮像装置10の第2の駆動方法における期間T3
F1の駆動方法では、
図4、
図6及び
図9に示した第1の駆動方法における期間T3
F1の駆動方法と比較して、バイパス信号BPはHレベルを維持し、初期化信号DCはLレベルを維持し、スイッチ302は非導通状態であり、スイッチ304は導通状態であり、固体撮像装置10は、第1のフレームの第1の増幅信号を第2の容量素子324に保存する。本実施形態に係る固体撮像装置10の第2の駆動方法における期間T3
F1の駆動方法では、上記以外の駆動方法は、
図4、
図6及び
図9に示した第1の駆動方法における期間T3
F1の駆動方法と同様であるから、ここでの説明は省略する。
【0084】
図11に示すように、本実施形態に係る固体撮像装置10の第2の駆動方法における期間T5
F1の駆動方法では、第2の駆動方法における期間T3
F1と同様に、バイパス信号BPはHレベルを維持し、初期化信号DCはLレベルを維持し、スイッチ302は非導通状態であり、スイッチ304は導通状態であり、固体撮像装置10は、転送された第1のフレームの第1の増幅データを含む第1のフレームの第1の増幅信号を増幅した第1の増幅データを含む第3の増幅信号をノードE、垂直信号線182に供給(送信)する。第2の駆動方法における期間T5
F1においても、第1の駆動方法における期間T5
F1と同様に、固体撮像装置10は第1の駆動方法における期間T4
F1(z)を実行する。本実施形態に係る固体撮像装置10の第2の駆動方法における期間T5
F1及びT4
F1(z)の駆動方法では、
図4、
図10に示した第1の駆動方法における期間T5
F1及びT4
F1(z)の駆動方法と同様であるから、ここでの説明は省略する。
【0085】
次に、読み出し回路130は、各増幅信号をデジタル化したデジタル信号を生成することを、固体撮像装置10に含まれる複数の画素に対して実行し、生成した複数の増幅信号をデジタル化した複数のデジタル信号をISP200に送信する。ISP200は、イメージセンサ100(読み出し回路130)から、当該複数のデジタル信号を受信し、表示パネル300に含まれる各画素の表示するデータに対応する複数の画像データを生成し、複数の画像データを表示パネル300に送信する。表示パネル300は、例えば、複数の画像データ受信し、撮像した被写体の画像を表示する。
【0086】
以上説明したように、本実施形態に係る固体撮像装置10の第2の駆動方法では、バイパス信号BPはHレベルを維持し、初期化信号DCはLレベルを維持し、スイッチ302は非導通状態であり、スイッチ304は導通状態であり、固体撮像装置10は、フレーム毎の画像データを取得し、撮像した被写体の画像を表示することができる。
【0087】
2.第2実施形態
図13は本実施形態に係るイメージセンサ100Bの構成を示すブロック図である。
図14は本実施形態に係る画素回路PXbの構成を示す回路図である。本実施形態に係る固体撮像装置10は、
図1に示すイメージセンサ100の代わりに、
図13に示すイメージセンサ100Bを用いることができる。イメージセンサ100Bの構成は、
図13に示す構成に限定されない。本実施形態に係る固体撮像装置10は
図13及び
図14に示す構成に限定されない。
図1〜
図12と同一、又は類似する構成の説明は、省略されることがある。
【0088】
2−1.イメージセンサ100Bの構成
図13に示すように、イメージセンサ100Bの構成は、イメージセンサ100の構成に対して、画素回路PXaと画素回路PXbとが交互に配置されている構成を有する。イメージセンサ100Bの構成において、それ以外の構成は、イメージセンサ100の構成と同様であるから、ここでの説明は省略する。
【0089】
図14に示すように、本実施形態に係る画素回路PXbは、画素回路PXaに対して、スイッチ304及び第1の容量素子322を有しておらず、電流電圧変換回路301の出力端子が、ノードBに接続される。それ以外の構成は、画素回路PXaと同様であるから、ここでの説明は省略する。
【0090】
2−2.イメージセンサ100Bの駆動方法
イメージセンサ100Bの駆動方法について説明する。イメージセンサ100Bの駆動方法は、例えば、
図4、
図7〜
図10を用いて説明した固体撮像装置10の第1の駆動方法に対して、バイパス信号BPがなく、電流電圧変換回路301の出力端子がノードBに接続され、光電変換素子42は露光データを含む露光信号を生成し、生成した露光信号を増幅した第1の増幅信号がノードBに送信(供給)され、第1の増幅信号がノードCに送信(供給または転送)され、増幅回路330を用いて増幅される駆動方法である。イメージセンサ100bの駆動方法は、ノードBに生成した第1の増幅データを送信した後は、
図4、
図7〜
図10を用いて説明した固体撮像装置10の第1の駆動方法と同様の駆動方法を用いることができる。よって、ここでの詳細な説明は省略する。
【0091】
画素回路PXbはフレーム毎の画像データを取得し、固体撮像装置10は撮像した被写体の画像を表示することができる。一方、画素回路PXaはフレーム間の画像データの差分を生成し、固体撮像装置10は動体を検出することができる。したがって、固体撮像装置10は、撮像した被写体の画像を表示する機能と動体を検出する機能とを同一フレームで実行することができる。また、固体撮像装置10の第2の駆動方法で説明した通り、画素回路PXaでは、バイパス信号BPはHレベルを維持し、初期化信号DCはLレベルを維持することによって、固体撮像装置10は被写体の画像データも取得することができる。その結果、画素回路PXa及び画素回路PXbを備える固体撮像装置10は、すべての画素で撮像した被写体の画像を表示することができる。
【0092】
本実施形態に係る固体撮像装置10は、例えば、フレーム間の画像データの差分のみを取得したい場合、本実施形態に係る固体撮像装置10は、画素回路PXaを駆動し、画素回路PXbを駆動しないように、各画素を制御することができる。また、例えば、低消費電力で動体を検出せずに被写体を撮像したい場合、本実施形態に係る固体撮像装置10は、画素回路PXbを駆動し、画素回路PXaを駆動しないように、各画素を制御することができる。
【0093】
3.第3実施形態
図15は本実施形態に係るイメージセンサ100Cの構成を示すブロック図であり、
図16は本実施形態に係る画素回路PXcの構成を示す回路図であり、
図17は本実施形態に係る固体撮像装置10の第3の駆動方法を示すタイミングチャートであり、
図18は本実施形態に係る固体撮像装置10の第4の駆動方法を示すタイミングチャートである。本実施形態に係る固体撮像装置10は、
図1に示すイメージセンサ100の代わりに、
図15に示すイメージセンサ100Cを用いることができる。イメージセンサ100Cの構成は
図15に示す構成に限定されず、固体撮像装置10の画素回路の構成の構成は
図16に示す構成に限定されず、固体撮像装置10の駆動方法は
図17及び
図18に示す駆動方法に限定されない。
図1〜
図14と同一、又は類似する構成の説明は、省略されることがある。
【0094】
3−1.イメージセンサ100Cの構成
図15に示すように、イメージセンサ100Cの構成は、イメージセンサ100の構成に対して、画素回路PXaが画素回路PXcに置き換わり、データ転送信号GSがない構成を有する。イメージセンサ100は画素回路PXaを用いることで、初期化信号線162を各行で共有し、初期化信号DC(z)を各行に共通に供給するのに対し、イメージセンサ100Cは画素回路PXcを用いることで、データ転送信号GSを用いることなく、初期化信号線162を行ごとに電気的に接続し、初期化信号DC(z)を行ごとに供給する。イメージセンサ100Cの構成において、それ以外の構成は、イメージセンサ100の構成と同様であるから、ここでの説明は省略する。
【0095】
図15に示すように、具体的には、イメージセンサ100Cでは、初期化信号線162aが第1行目の複数の画素回路PXcに電気的に接続され、初期化信号DC(1)が第1行目の複数の画素回路PXcに供給され、初期化信号線162bが第2行目の複数の画素回路PXcに電気的に接続され、初期化信号DC(2)が第2行目の複数の画素回路PXcに供給される。第1行目の複数の画素回路PXc及び第2行目の複数の画素回路PXcと同様の構成が、第3行目の複数の画素回路PXcから最終行目(第Y行目)の複数の画素回路PXcまで繰り返される。
【0096】
図16に示すように、本実施形態に係る画素回路PXcは、画素回路PXaに対して、スイッチ306及び第2の容量素子324に係る構成及び機能を有しておらず、増幅回路330がノードB(nodeB)とノードE(nodeE)との間に電気的に接続される。すなわち、増幅回路330は、第1の容量素子322の第2の端子及びスイッチ304の第2の端子と、スイッチ312の第1の端子との間に電気的に接続される。それ以外の構成は、画素回路PXaと同様であるから、ここでの説明は省略する。
【0097】
3−2.固体撮像装置10の第3の駆動方法
図17を用いて、イメージセンサ100Cを有する固体撮像装置10の第3の駆動方法について説明する。イメージセンサ100Cの駆動方法では、例えば、
図4、
図7〜
図10を用いて説明した固体撮像装置10の第1の駆動方法に対して、データ転送信号GSがなく、初期化信号DC(z)が各行の初めに行ごとに送信(供給)され、ノードBに各フレーム期間の差分信号(
図5(B))が供給されると、増幅回路330がノードBに供給された差分信号を、容量またはスイッチなどの素子を介さずに増幅する方法である。イメージセンサ100Cの駆動方法は、増幅回路330に差分信号を送信した後は、
図4〜
図10を用いて説明した固体撮像装置10の第1の駆動方法と同様の駆動方法を用いることができる。第3の駆動方法の説明では、第1の駆動方法と同様の駆動方法の説明は、必要に応じて追加する。
【0098】
図17に示すように、第3の駆動方法における第1のフレームの差分値初期化期間T1
F1(期間T1)では、
図4に示す第1の駆動方法における第1のフレームの差分値初期化期間T1
F1と同様に、ノードBが初期化される期間である。また、
図17に示すように、第3の駆動方法における第1のフレームの露光期間T2
F1(期間T2)では、
図4に示す第1の駆動方法における第1のフレームの露光期間T2
F1(期間T2)と同様に、固体撮像装置10が、被写体を露光し、第1のフレーム期間の露光データ及び第1のフレームの増幅データ(
図5(A))が取得される期間である。よって、ここでの詳細な説明は省略する。
【0099】
図17に示すように、第3の駆動方法では、第1のフレームの1行目の露光期間T2
F1(1)の後に、第1のフレームの1行目のデータ転送期間T4
F1(1)が実行される。第3の駆動方法における期間T4
F1(1)の駆動方法では、固体撮像装置10の第1の駆動方法における期間T4
F1(1)と同様の駆動方法を用いることができる。よって、ここでの詳細な説明は省略する。2行目以降の駆動方法も、1行目の駆動方法と同様であり、ここでの詳細な説明は省略する。
【0100】
3−3.固体撮像装置10の第4の駆動方法
図18を用いて、イメージセンサ100Cを有する固体撮像装置10の第4の駆動方法について説明する。イメージセンサ100Cの駆動方法では、例えば、
図11〜
図12を用いて説明した固体撮像装置10の第2の駆動方法に対して、データ転送信号GSがなく、初期化信号DCにLレベルが送信(供給)され、ノードBに各フレーム期間の差分信号(
図5(B))が供給されると、増幅回路330がノードBに供給された差分信号を、容量またはスイッチなどの素子を介さずに増幅する方法である。イメージセンサ100Cの第4の駆動方法において、それ以外の構成は、固体撮像装置10の第2の駆動方法と同様であるから、ここでの説明は省略する。
【0101】
以上説明したように、本実施形態に係るイメージセンサ100Cを有する固体撮像装置10では、イメージセンサ100を有する固体撮像装置10に対して、スイッチ306及び第2の容量素子324に係る構成及び機能を省略し、増幅回路330がノードBに供給された差分信号を、容量またはスイッチなどの素子を介さずに直接増幅することができる。したがって、少ない素子数で構成された画素回路を用いて、差分データを供給することができる。
【0102】
以上、本発明について図面を参照しながら説明したが、本発明は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、各実施形態の固体撮像装置を基にして、当業者が適宜構成要素の追加、削除または設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。さらに、上述した各実施形態は、相互に矛盾がない限り適宜組み合わせが可能であり、各実施形態に共通する技術事項については、明示の記載がなくても各実施形態に含まれる。
【0103】
また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
【解決手段】固体撮像装置は、露光した光の強度に応じた電圧に変換する光電圧変換回路と、前記光電圧変換回路に接続された第1の端子及び第2の端子を有する第1の容量素子と、第2の端子と定電圧線との間に配置された第1のスイッチと、前記露光した光の強度に応じた情報を読み出す読み出し回路と、第2の端子と前記読み出し回路との間に配置された第2のスイッチと、を有する。