(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1のX線検査装置では、照射部から照射されるX線のX線量は時間が経過するとともに小さくなる。照射部が劣化する、例えば、照射部に含まれるX線管のフィラメントが劣化することによって電子の発生量が減少する、またはX線管のターゲットが劣化することによってX線の発生量が減少するからである。つまり、照射部は時間の経過とともに劣化する。
【0005】
また、上記X線検査装置では、撮像部から撮像される画像の輝度は時間が経過するとともに小さくなる。撮像部(X線検出器)の劣化、例えば、撮像部に含まれるフォトダイオード、またはシンチレータの劣化によって、撮像部の受光感度が低くなるからである。つまり、撮像部は時間の経過とともに劣化する。
【0006】
照射部及び撮像部が時間の経過とともに劣化することで、撮像部が撮像した画像データの明るさも時間の経過とともに変化する。このため、上記X線検査装置では、画像データの明るさを基準に検査が行われた場合、検査の精度が低下するという問題がある。
【0007】
また、特許文献1には、照射部及び撮像部の劣化度合いを算出し、照射部及び撮像部の寿命を予測することに関しては、開示されていない。
【0008】
本発明の一態様は、X線を照射する照射部及び撮像部の劣化度合いを算出し、照射部及び撮像部の寿命を予測することを目的とする。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、本発明の一態様に係るX線検査装置は、照射部から被検査物にX線を照射して得られるX線透過画像を用いて前記被検査物を検査するX線検査装置であって、前記照射部のX線量を測定するセンサと、前記センサによって測定されるX線量に基づいて前記照射部の劣化度合いを算出する劣化度合い算出部とを備える。
【0010】
上記構成によれば、劣化度合い算出部が、センサによって測定されるX線量に基づいて照射部の劣化度合いを算出することで、X線を照射する照射部の劣化を検知することができる。
【0011】
前記X線検査装置は、前記センサの位置は、前記X線検査装置の内部において変更可能となっており、前記X線透過画像を撮像する撮像部と、前記撮像部が配置される位置において前記センサによって測定されるX線量に基づいて、前記撮像部が撮像する前記X線透過画像の輝度をキャリブレーションするキャリブレーション部とをさらに備えてもよい。
【0012】
上記構成によれば、キャリブレーション部は、撮像部が配置される位置においてセンサによって測定されるX線量に基づいて、撮像部が撮像するX線透過画像の輝度をキャリブレーションする。これにより、撮像部の位置が変更された場合でも、X線透過画像を正確に認識し易くなる。よって、上記X線検査装置は、撮像部の位置が変更された場合でも、X線透過画像を正確に認識することで検査を正確に行うことができる。
【0013】
上記の課題を解決するために、本発明の一態様に係るX線検査方法は、照射部から被検査物にX線を照射して得られるX線透過画像を用いて前記被検査物を検査するX線検査装置におけるX線検査方法であって、前記照射部のX線量を測定する測定工程と、前記測定工程にて測定されるX線量に基づいて前記照射部の劣化度合いを算出する劣化度合い算出工程とを含む。
【0014】
上記構成によれば、劣化度合い算出工程により、センサによって測定されるX線量に基づいて照射部の劣化度合いが算出されることで、X線を照射する照射部の劣化を検知することができる。
【0015】
前記X線検査方法は、前記照射部のX線量が第1閾値に到達した時を前記照射部の寿命の終点とし、前記照射部の使用開始時におけるX線量から現時点において前記測定工程にて測定されるX線量を差し引いた差分、前記照射部の使用開始時からの累計使用時間、及び前記第1閾値に基づいて、前記照射部の寿命を算出する照射部寿命算出工程をさらに含んでもよい。
【0016】
上記構成によれば、例えば、現時点において照射部に供給される電圧が供給された場合におけるX線量を特定する。照射部の使用開始時における電圧とX線量との対応関係は予め測定されており、この対応関係を用いて上記のX線量の特定を行えばよい。特定したX線量から、現時点において測定工程にて測定されるX線量を差し引いた差分を算出する。そして、照射部寿命算出工程により、照射部の寿命が算出される。
【0017】
これにより、照射部の寿命を予測することができるため、照射部のおおよその交換時期を把握することができる。
【0018】
前記X線検査方法は、前記X線透過画像の輝度が第2閾値に到達した時を、X線透過画像を撮像する撮像部の寿命の終点とし、前記X線透過画像を撮像する撮像工程と、前記撮像部の使用開始時におけるX線透過画像の輝度から現時点において前記撮像工程にて撮像されるX線透過画像の輝度を差し引いた差分、前記撮像部の使用開始時からの累計使用時間、及び前記第2閾値に基づいて、前記撮像部の寿命を算出する撮像部寿命算出工程をさらに含んでもよい。
【0019】
上記構成によれば、例えば、現時点において照射部が照射するX線のX線量に対応する、撮像部の使用開始時におけるX線透過画像の輝度を特定する。撮像部の使用開始時におけるX線量と輝度との対応関係は予め測定されており、この対応関係を用いて上記の輝度の特定を行えばよい。特定した輝度から、現時点において撮像工程にて撮像されるX線透過画像の輝度を差し引いた差分を算出する。そして、撮像部寿命算出工程により、撮像部の寿命を算出する。これにより、撮像部の寿命を予測することができるため、撮像部のおおよその交換時期を把握することができる。
【0020】
前記X線検査方法は、前記照射部のX線量を測定するセンサの位置は、前記X線検査装置の内部において変更可能となっており、前記撮像部が配置される位置において前記測定工程にて測定されるX線量に基づいて、前記撮像工程にて撮像される前記X線透過画像の輝度をキャリブレーションするキャリブレーション工程をさらに含んでもよい。
【0021】
上記構成によれば、キャリブレーション工程により、撮像部が配置される位置においてセンサによって測定されるX線量に基づいて、撮像部が撮像するX線透過画像の輝度がキャリブレーションされる。これにより、撮像部の位置が変更された場合でも、X線透過画像を正確に認識し易くなる。よって、上記X線検査方法では、撮像部の位置が変更された場合でも、X線透過画像を正確に認識することで検査を正確に行うことができる。
【発明の効果】
【0022】
本発明の一態様によれば、X線を照射する照射部の劣化度合いを算出することができるという効果を奏する。
【発明を実施するための形態】
【0024】
〔実施形態1〕
以下、本発明の実施形態について、
図1から
図5に基づいて詳細に説明する。
図1は、本発明の実施形態1に係るX線検査装置1の概略構成を示すブロック図である。
図2は、照射部310、撮像部320、及びセンサ330の配置構成を示す模式図である。
図3は、X線検査装置1の構造を示す斜視図である。X線検査装置1は、
図3に示すように、本体部10及び着脱部20を備えている。着脱部20は、本体部10に着脱する。
【0025】
(本体部10の構成)
本体部10の構成について、
図3に基づいて説明する。本体部10は、
図3に示すように、警報器110、タッチパネル120(表示部)、右側凸部130、左側凸部140、検査室150、本体部キャスター160、及び本体部支持脚170を備えている。なお、X線検査装置1の説明では、検査室150から着脱部20に向かう方向を前方と称し、着脱部20から検査室150に向かう方向を後方と称する。
【0026】
警報器110は、音によって警報等を通知するスピーカ等の音出力装置であってもよい。また、警報器110は、光によって警報等を通知するパトライト(登録商標)やLED等の発光装置であってもよい。このように、警報器110は、警報等をユーザに通知することができるものであればよく、公知の構成を適用することができる。
【0027】
タッチパネル120は、本体部10の上部前面に設けられている。タッチパネル120は、フルドット表示の液晶ディスプレイで構成され、そこに表示される設定画面を操作することにより、X線検査装置1の起動、停止、必要な運転条件の設定、及び検査条件の設定等ができるようになっている。運転開始前の初期画面では、例えば、照射部310(後述する)のX線の強度を設定することができる。運転開始後の画面では、例えば、X線透過画像を処理するときの検出感度を設定することができるようになっている。タッチパネル120は、必要に応じて、欠品検査、異物検査、及び割れ欠け検査等の検査項目とその検査条件とを設定することができる。また、タッチパネル120には、被検査物A1にX線を照射したときのX線透過画像が表示されるようになっている。
【0028】
右側凸部130は、本体部10の右側側面から突出して設けられており、本体部10の右側側面の中央に設けられている。なお、右側凸部130は、本体部10の右側側面であれば、どこに設けられていてもよい。右側凸部130の先端面131には、切り欠き部132が形成されている。また、右側凸部130の形状は、右側凸部130の前面側の中央部分は空間になっている。着脱部20の右側板部220は右側凸部130に取り付けられている。右側板部220が右側凸部130から取り外されると、右側凸部130の前面側の中央部分は、空間になる。
【0029】
左側凸部140、先端面141、及び切り欠き部142の形状及び位置はそれぞれ、右側凸部130、先端面131、及び切り欠き部132の形状及び位置と左右対称になっている。左右対称とは、X線検査装置1の前面側から見て、左右対称という意味である。
【0030】
本体部10に右側凸部130及び左側凸部140が設けられていることにより、照射部310(後述する)から照射されるX線が検査室150の外部に漏洩し難くすることができる。具体的には、照射部310と切り欠き部132との間、及び照射部310と切り欠き部142との間の距離が大きくなるため、X線が検査室150の外部に漏洩し難くなる。本体部10の前面側から見て、右側凸部130は右側に、左側凸部140は左側に、さらに長いものであってもよい。これにより、照射部310と切り欠き部132との間、及び照射部310と切り欠き部142との間の距離がさらに大きくなるため、X線が検査室150の外部に、より漏洩し難くすることができる。
【0031】
また、切り欠き部132の上部及び切り欠き部142の上部に含鉛カーテン(図示せず)を取り付けることにより、X線が検査室150の外部に漏洩することを防ぐことができる。なお、検査室150の外部にX線が漏洩することを防ぐことができれば、含鉛カーテンの設置場所は、特に限定されない。
【0032】
検査室150は、入口と出口とを有する。X線検査装置1に被検査物A1が右側から入り、左側から出ていくものとすると、検査室150の入口は右側板部220と切り欠き部132との間に形成され、検査室150の出口は左側板部230と切り欠き部142との間に形成される。切り欠き部132と切り欠き部142とは互いに対向しており、それらの開口面は互いに平行である。また、検査室150は、本体部10の、凹んだ形状の部分に該当する。検査室150の下側には、X線を照射する照射部310が設置されている。検査室150の上側には、照射部310から照射されたX線を受光する撮像部320が設置されている。撮像部320の例として、フラットパネルディテクタ、X線イメージインテンシファイア、X線CMOS(Complementary Metal Oxide Semiconductor)カメラ、アモルファスシリコンカメラ、アモルファスセレンカメラ、CdTex線カメラ、X線蛍光カメラ、X線フィルム、イメージングプレート、X線ラインセンサ、及びX線TDI(Time Delay Integration)カメラなどが挙げられる。また、照射部310には、これら以外のものを用いてもよい。
【0033】
また、X線が撮像部320に照射されることで、X線は撮像部320により画像信号に変換される。撮像部320により変換された画像信号は、X線検査装置1に内蔵のコンピュータ(図示せず)に入力されてX線透過画像に成形され、そのX線透過画像に基づいて種々の検査が行われる。なお、撮像部320は、X軸、Y軸、Z軸といった駆動軸に沿って駆動される。照射部310は、Y軸、Z軸、及びθ軸といった駆動軸に沿って駆動される。X軸は、地面に対して平行であり、かつ、X線検査装置1の正面から見て左右方向の軸である。Y軸は、地面に対して平行であり、かつ、X線検査装置1の正面から見て前後方向の軸である。Z軸は、地面に対して垂直であり、かつ、X線検査装置1の上下方向の軸である。θ軸は、Z軸からY軸に向かう方向に45度回転する回転軸である。照射部310及び撮像部320において、それらの配置や駆動軸の構成は、X線検査装置1が被検査物A1を検査することが可能であれば、特に限定されない。上記のように、照射部310及び撮像部320を駆動させることにより、照射部310は、被検査物A1に対して、ずれることなく正確にX線を照射することができる。
【0034】
本体部キャスター160は、本体部10の底面に取り付けられている。本体部キャスター160は、本体部10が移動することができるように、車輪を備えている。また、本体部10の底面には、本体部10を支持する本体部支持脚170が取り付けられている。本体部支持脚170は、本体部支持脚170の高さの調整が可能な構造になっており、その高さを大きくすることで、本体部キャスター160を地面から浮かせる。これにより、本体部10は地面に対して移動することがなくなる。
【0035】
(着脱部20の構成)
着脱部20の構成について、
図3に基づいて説明する。着脱部20は、
図3に示すように、開閉扉210、窓部211、第1取っ手部212、第2取っ手部221・222、第3取っ手部231・232、上側板部240、下側板部250、第1支持部260、着脱部キャスター270、及び第2支持部280(図示せず)を備えている。また、着脱部20は、本体部10の前面下部に取り付けられている。
【0036】
開閉扉210は、
図3に示すように、第1取っ手部212を有し、左側を中心として回転することにより開閉することが可能である。開閉扉210は検査室150側とは反対側に開く。着脱部20が本体部10に取り付けられている、かつ、開閉扉210が閉まっている場合、開閉扉210は、本体部10の検査室150に対向する。また、開閉扉210は、前面の中央に窓部211を有する。
【0037】
第1取っ手部212は、開閉扉210の前面の右側中央に取り付けられており、ユーザが開閉扉210の開閉を行う場合、ユーザは第1取っ手部212を掴みながら開閉扉210の開閉を行う。
【0038】
右側板部220は、開閉扉210と隣接する位置、かつ、前面が前方を向くように開閉扉210の右側に取り付けられている。右側板部220の前面は、開閉扉210の前面と平行である。また、右側板部220の背面と、右側凸部130とが合わさるように、右側板部220は、右側凸部130に取り付けられる。右側板部220は、第2取っ手部221・222を備えている。第2取っ手部221・222は、右側板部220の前面に取り付けられている。ユーザが右側板部220を取り外す場合、ユーザは第2取っ手部221・222のどちらかを掴みながら、右側板部220を取り外す。
図3では、第2取っ手部221・222が取り付けられているが、第2取っ手部の個数については特に限定されない。
【0039】
左側板部230及び第3取っ手部231・232は、右側板部220及び第2取っ手部221・222と左右対称になっている。左右対称とは、X線検査装置1の前面側から見て、左右対称という意味である。
【0040】
上側板部240は、開閉扉210と隣接する位置、かつ、前面が前方を向くように開閉扉210の上側に取り付けられている。上側板部240の前面は、開閉扉210の前面と平行である。下側板部250は、開閉扉210と隣接する位置、かつ、前面が前方を向くように開閉扉210の下側に取り付けられている。下側板部250の前面は、開閉扉210の前面と平行である。
【0041】
第1支持部260は、着脱部20が単独で直立することができるようにするための部材である。第1支持部260は、長方形の枠の形状を有する。第1支持部260は、地面に対して平行である。
【0042】
着脱部キャスター270は、第1支持部260の底面に取り付けられている。着脱部キャスター270は、着脱部20が移動することができるように、車輪を備えている。また、着脱部20の底面には、着脱部支持脚290(図示せず)が取り付けられている。着脱部支持脚290は、着脱部支持脚290の高さの調整が可能な構造になっており、その高さを大きくすることで、着脱部支持脚290は地面に接する。これにより、着脱部20は地面に対して移動することがなくなる。
【0043】
(X線検査装置1の構成)
次に、X線検査装置1の構成、及びX線検査方法について、
図1に基づいて説明する。X線検査装置1は、
図1に示すように、照射部310、撮像部320、センサ330、及び算出装置300を備えている。X線検査装置1は、照射部310から被検査物にX線を照射して得られるX線透過画像を用いて被検査物を検査する。
【0044】
照射部310は、被検査物A1に対してX線を照射する。照射部310には、X線を発生させるX線源(例えば、X線管)を用いる。撮像部320は、照射部310から照射して得られる、被検査物A1のX線透過画像を撮像する(撮像工程)。撮像部320には、例えば、X線を検出するフォトダイオード及びシンチレータを含むX線検出器を用いてもよい。撮像部320は、撮像したX線透過画像の輝度をデータ記憶部340に供給する。
【0045】
照射部310、撮像部320、及びセンサ330の位置関係について、
図2に基づいて説明する。
図2に示すように、照射部310側と、撮像部320及びセンサ330側との間を、コンベア50(後述する)が通過する。コンベア50の上には被検査物A1が通る。被検査物A1は、照射部310によりX線が照射され、被検査物A1を透過したX線は、撮像部320に到達する。また、センサ330の位置は、照射部310から照射されるX線のX線量を測定することができるように、撮像部320の近傍に配置されることが望ましい。ここでは、センサ330は、撮像部320に固定されている。センサ330を撮像部320の近傍に配置することによって、照射部310からセンサ330に直接X線が照射されることになるからである。ただし、照射部310から照射されるX線のX線量を測定することができる位置にあればよく、撮像部320の近傍に配置されることに限られるものではない。
【0046】
センサ330は、照射部310から照射されたX線のX線量を測定する(測定工程)。被検査物A1が照射部310の上方を通るとき、センサ330が測定するX線量は変化する。これは、センサ330に入射するX線が被検査物A1を透過すると、X線量が減少するためである。センサ330は、被検査物A1を透過していない(被検査物A1がない空間を通過した)X線のX線量をデータ記憶部340に供給する。この場合、例えば、センサ330は、X線検査装置1の起動時または1日ごとに、照射部310から照射されたX線のX線量を測定し、測定したX線量をデータ記憶部340に供給する。このとき、照射部310の上方に被検査物A1がない状態で、照射部310にX線を照射させる。
【0047】
また、被検査物A1が照射部310の上方を通るとき、センサ330は、照射部310から照射されたX線のX線量を測定し、被検査物A1の検査開始時から被検査物A1の検査終了時までの間で最も大きいX線量をデータ記憶部340に供給してもよい。このように、被検査物A1のX線透過画像の撮像時においてX線量を測定しておくと、そのX線量を画像処理のパラメータとして用いたり、被検査物A1の合否判定に用いたり、検査結果が異常であるときに用いたりすることができる。
【0048】
算出装置300は、データ記憶部340、輝度差分算出部350、第1劣化度合い算出部355、第1時間算出部360、撮像部寿命算出部370、減少量算出部380、第2劣化度合い算出部385(劣化度合い算出部)、第2時間算出部390、及び照射部寿命算出部400を備えている。
【0049】
データ記憶部340は、撮像部320によって撮像されたX線透過画像の輝度、センサ330によって測定されたX線量、及び照射部310に供給される電圧を記憶する。このとき、データ記憶部340は、それらを記憶した日付も記憶する。X線透過画像の輝度、X線量、及び電圧と、X線透過画像の輝度、X線量、及び電圧を記憶した日付とは関連付けられている。X線透過画像の輝度は、X線量と同時にデータ記憶部340に記憶される。ここで、照射部310に供給される電圧とは、例えば、照射部310(X線管)の管電圧である。なお、照射部310の劣化度合いの算出に、X線管の管電圧を用いるのではなく、X線管の管電流を用いてもよい。
【0050】
照射部310が劣化していない状態において、照射部310に供給される電圧が一定であれば、照射部310のX線量も一定である。そこで、照射部310が劣化していない状態における、照射部310に供給される電圧と照射部310のX線量との関係を予め測定しておく。データ記憶部340には、この関係(以下、関係1と称する。)を予め記憶しておく。
【0051】
撮像部320が劣化していない状態において、照射部310のX線量が一定であれば、X線透過画像の輝度も一定である。そこで、撮像部320が劣化していない状態における、照射部310のX線量とX線透過画像の輝度との関係を予め測定しておく。データ記憶部340には、この関係(以下、関係2と称する。)を予め記憶しておく。
【0052】
輝度差分算出部350は、データ記憶部340から、直近に記憶されたX線透過画像の輝度、及び直近に記憶されたX線量を参照する。また、輝度差分算出部350は、データ記憶部340から、関係2を参照する。
【0053】
輝度差分算出部350は、直近に記憶されたX線量に対応する、撮像部320が劣化していない状態におけるX線透過画像の輝度(撮像部320の使用開始時において撮像部320が撮像するX線透過画像の輝度)を特定する。輝度差分算出部350は、特定した、撮像部320が劣化していない状態におけるX線透過画像の輝度から、直近に記憶されたX線透過画像の輝度(現時点のX線透過画像の輝度)を差し引いた差分を算出する。輝度差分算出部350は、算出した差分を、第1劣化度合い算出部355及び撮像部寿命算出部370に供給する。
【0054】
第1劣化度合い算出部355は、輝度差分算出部350によって算出された差分に基づいて、撮像部320の劣化度合いを算出する。例えば、撮像部320の劣化度合いは1から10に区分されているものとする。劣化度合いが10であると、撮像部320の劣化は進んでいることを示し、劣化度合いが1であると、撮像部320の劣化は進んでいないことを示す。第1劣化度合い算出部355は、輝度差分算出部350によって算出された差分に基づいて、撮像部320の劣化度合いを1から10に振り分ける。なお、同一のX線量が照射される場合における撮像部320が撮像するX線透過画像の輝度の減少度合いを撮像部320の劣化度合いとして扱う。
【0055】
第1時間算出部360は、データ記憶部340から、記憶されたX線透過画像の輝度に関連する日付を参照する。第1時間算出部360は、その日付から、撮像部320の使用開始時からの累計使用時間を算出してもよい。また、第1時間算出部360は、算出装置300が備える内部タイマーによってデータ記憶部340に記憶された使用履歴(ログ)を用いて、撮像部320の使用開始時からの累計使用時間を算出してもよい。具体的には、内部タイマーとは、X線検査装置1を起動させたとき、データ記憶部340に使用履歴を記憶させるものである。また、内部タイマーは、X線検査装置1が起動している間、時間をカウントし、データ記憶部340にカウントした時間を記憶させる。第1時間算出部360は、内部タイマーによってカウントされた時間から、撮像部320の使用開始時からの累計使用時間を算出する。第1時間算出部360は、算出した累計使用時間を撮像部寿命算出部370に供給する。
【0056】
なお、第1時間算出部360は、X線検査装置1が購入されてからデータ記憶部340に、X線透過画像の輝度が最初に記憶された日付から、X線透過画像の輝度が直近に記憶された日付までの時間の累計を算出してもよい。また、第1時間算出部360は、その時間の累計を撮像部寿命算出部370に供給してもよい。このとき、撮像部寿命算出部370は、輝度差分算出部350によって算出された差分、この時間の累計、及び第2閾値(後述する)に基づいて、撮像部320の寿命を算出してもよい。
【0057】
撮像部寿命算出部370は、X線透過画像の輝度が第2閾値に到達した時を撮像部320の寿命の終点として判断する。ここで、撮像部320の寿命の終点では、照射部310のX線量を変更したとしても、X線透過画像の輝度が第2閾値にしかならないものとする。撮像部寿命算出部370は、輝度差分算出部350によって算出された差分、第1時間算出部360によって算出された累計使用時間、及び第2閾値に基づいて、撮像部320の寿命を算出する(撮像部寿命算出工程)。
【0058】
減少量算出部380は、データ記憶部340から、関係1を参照する。減少量算出部380は、直近に記憶された電圧に対応する、照射部310が劣化していない状態におけるX線量を特定する。減少量算出部380は、特定したX線量(照射部310の使用開始時のX線量)から、直近に記憶されたX線量(現時点のX線量)を差し引いた差分を算出する。減少量算出部380は、算出した差分のデータを第2劣化度合い算出部385及び照射部寿命算出部400に供給する。
【0059】
第2劣化度合い算出部385は、減少量算出部380によって算出された差分に基づいて、照射部310の劣化度合いを算出する(劣化度合い算出工程)。例えば、照射部310の劣化度合いは1から10に区分されているものとする。劣化度合いが10であると、照射部310の劣化は進んでいることを示し、劣化度合いが1であると、照射部310の劣化は進んでいないことを示す。第2劣化度合い算出部385は、減少量算出部380によって算出された差分に基づいて、照射部310の劣化度合いを1から10に振り分ける。なお、同一の電圧を供給する場合における照射部310のX線量の減少度合いを照射部310の劣化度合いとして扱う。
【0060】
第2時間算出部390は、データ記憶部340から、記憶されたX線量に関連する日付を参照する。第2時間算出部390は、その日付から、照射部310の使用開始時からの累計使用時間を算出してもよい。また、第2時間算出部390は、前述した内部タイマーによってデータ記憶部340に記憶された使用履歴を用いて、照射部310の使用開始時からの累計使用時間を算出してもよい。具体的には、第2時間算出部390は、内部タイマーによってカウントされた時間から、照射部310の使用開始時からの累計使用時間を算出する。第2時間算出部390は、算出した累計使用時間を照射部寿命算出部400に供給する。
【0061】
なお、第2時間算出部390は、X線検査装置1が購入されてからデータ記憶部340に、X線量が最初に記憶された日付から、X線量が直近に記憶された日付までの時間の累計を算出し、その時間の累計を照射部寿命算出部400に供給してもよい。このとき、照射部寿命算出部400は、減少量算出部380によって算出された差分、この時間の累計、及び第1閾値(後述する)に基づいて、照射部310の寿命を算出してもよい。
【0062】
照射部寿命算出部400は、X線のX線量が第1閾値に到達した時を照射部310の寿命の終点として判断する。ここで、照射部310の寿命の終点では、照射部310に供給される電圧を変更したとしても、X線の線量が第1閾値にしかならないものとする。照射部寿命算出部400は、減少量算出部380によって算出された差分、第2時間算出部390によって算出された累計使用時間、及び第1閾値に基づいて、照射部310の寿命を算出する(照射部寿命算出工程)。
【0063】
以上により、X線検査装置1は、第1劣化度合い算出部355が、撮像部320によって撮像されるX線透過画像の輝度に基づいて撮像部320の劣化度合いを算出することで、X線透過画像を撮像する撮像部320の劣化を検知することができる。また、X線検査装置1は、第2劣化度合い算出部385が、センサ330によって測定されるX線量に基づいて照射部310の劣化度合いを算出することで、X線を照射する照射部310の劣化を検知することができる。
【0064】
また、X線透過画像が暗くなったとき、照射部310の劣化度合いと、撮像部320の劣化度合いとを算出し、より劣化度合いの進んだ方を交換してもよい。より劣化度合いの進んだ方が、X線透過画像が暗くなった主原因と考えられるからである。
【0065】
X線検査装置1は、照射部寿命算出部400が照射部310の寿命を算出する。これにより、照射部310の寿命を予測することができるため、照射部310のおおよその交換時期を把握することができる。照射部310のおおよその交換時期を把握することで、検査の途中で照射部310が故障し、検査が中断されることを防ぐことができる。
【0066】
X線検査装置1は、撮像部寿命算出部370が撮像部320の寿命を算出する。これにより、撮像部320の寿命を予測することができるため、撮像部320のおおよその交換時期を把握することができる。
【0067】
撮像部320には、温度以外に電磁的なノイズ、湿度、可視光、及び紫外線の影響を受けるものがある。また、撮像部320に使用される蛍光体の種類によっては、撮像部320は高温多湿の環境により劣化する。そこで撮像部320のおおよその交換時期を把握することで、検査の途中で撮像部320が故障し、検査が中断されることを防ぐことができる。
【0068】
(本体部10の内部構造)
次に、本体部10の内部構造について、
図4に基づいて説明する。
図4は、X線検査装置1において内部構造を示す、一部を切り欠いた斜視図である。本体部10は、
図4に示すように、検査室150に照射部310及び撮像部320を備えている。
【0069】
図4に示すように、検査室150の下側に照射部310を設け、検査室150の上側に撮像部320及びセンサ330を設ける。これにより、X線検査装置1は、内部に搬送されてきた被検査物A1に、下側に設けられた照射部310からX線を照射し、上側に設けられた撮像部320によって、そのX線を検出する。つまり、撮像部320は、被検査物A1を透過したX線を検出する。本体部10の内部には、算出装置300が設けられている。なお、照射部310から撮像部320に向かう方向を高さ方向としたとき、センサ330の下端は、撮像部320の下端と、高さ方向における位置が一致する。
【0070】
(X線検査装置1にコンベア50を取り付けた状態の構造)
次に、X線検査装置1にコンベア50を取り付けた状態の構造について、
図5に基づいて説明する。
図5は、コンベア50に
図1に示すX線検査装置1が取り付けられている状態を示す図である。
図5の(a)は斜視図であり、
図5の(b)は前面図である。
【0071】
コンベア50は、
図5の(a)及び(b)に示すように、右側凸部130の切り欠き部132と、左側凸部140の切り欠き部142との間に亘って設置されている。コンベア50は、検査室150の底面に設置されている。また、コンベア50は、照射部310の上方を通過するように、検査室150の底面に配置されている。この場合、コンベア50は撮像部320の下方を通過する。これにより、コンベア50により搬送される被検査物A1が撮像部320の下方及び照射部310の上方を通過するため、照射部310が被検査物A1にX線を照射し、撮像部320が被検査物A1を透過したX線を検出することができる。コンベア50には、コンベアではなく、被検査物A1を搬送することができるようなものであれば他の物であってもよい。
【0072】
なお、X線検査装置1は、必ずしもコンベア50が設けられる構成には限定されない。例えば、X線検査装置1は、コンベア50が設けられず、検査室150内に被検査物A1が配置されることで、被検査物A1を検査する構成であってもよい。
【0073】
〔実施形態2〕
本発明の他の実施形態について、
図6に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図6は、本発明の実施形態2に係るX線検査装置2を示すブロック図である。
【0074】
(X線検査装置2の構成)
X線検査装置2は、
図6に示すように、X線検査装置1と比べて、算出装置300が算出装置300aに変更されている点が異なる。算出装置300aは、算出装置300が備えている構成に加え、位置変更部410及びキャリブレーション部420を備えている点が異なる。輝度差分算出部350、第1劣化度合い算出部355、第1時間算出部360、撮像部寿命算出部370、減少量算出部380、第2劣化度合い算出部385、第2時間算出部390、及び照射部寿命算出部400については、ここでは説明しないため省略する。
【0075】
位置変更部410は、移動部430を用いて、検査室150内において、撮像部320の位置を変更する。このとき、センサ330は、撮像部320に固定されているため、撮像部320と共に位置が変更される。具体的には、位置変更部410は、撮像部320の位置を変更するように移動部430に指示する。移動部430は、位置変更部410からの指示に従い、撮像部320を移動させる。これにより、センサ330は、検査室150内の様々な位置でX線量を測定することができる。位置変更部410は、変更された、撮像部320及びセンサ330の位置の情報をデータ記憶部340に格納する。移動部430の構造は、撮像部320の位置を変更することができれば、特に限定されない。例えば、移動部430は、撮像部320の位置を変更する機構である。
【0076】
キャリブレーション部420は、撮像部320が配置される位置においてセンサ330によって測定されるX線量に基づいて、撮像部320が撮像するX線透過画像の輝度をキャリブレーションする(キャリブレーション工程)。これにより、例えば、撮像部320の位置が変更された場合であっても、位置が変更される前後において、撮像部320が撮像するX線透過画像の輝度を同一にすることができる。
【0077】
撮像部320の位置の変更する場合を考える。この場合、キャリブレーション部420は、データ記憶部340から、位置が変更される前のセンサ330が測定したX線量、及び位置が変更された後のセンサ330が測定したX線量を参照する。キャリブレーション部420は、センサ330の位置が変更される前後のX線量に基づいて、位置が変更された後の撮像部320が撮像するX線透過画像の輝度をキャリブレーションする。このとき、キャリブレーション部420は、位置が変更された後の撮像部320が撮像するX線透過画像の輝度と、位置が変更される前の撮像部320が撮像するX線透過画像の輝度とが同一となるようにする。
【0078】
キャリブレーション部420による処理が行われる理由は、X線量が照射部310からの距離の2乗に反比例するためである。つまり、X線量は照射部310からの距離が大きいほど小さくなる。また、X線量は照射部310の光軸との角度によって異なる。
【0079】
以上により、キャリブレーション部420は、撮像部320が配置される位置においてセンサ330によって測定されるX線量に基づいて、撮像部320が撮像するX線透過画像の輝度をキャリブレーションする。これにより、撮像部320の位置が変更された場合でも、X線透過画像を正確に認識し易くなる。よって、X線検査装置2は、撮像部320の位置が変更された場合でも、X線透過画像を正確に認識することで検査を正確に行うことができる。
【0080】
〔ソフトウェアによる実現例〕
算出装置300・300aの制御ブロック(特に輝度差分算出部350、第1劣化度合い算出部355、第1時間算出部360、撮像部寿命算出部370、減少量算出部380、第2劣化度合い算出部385、第2時間算出部390、照射部寿命算出部400、位置変更部410、及びキャリブレーション部420)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
【0081】
後者の場合、算出装置300・300aは、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
【0082】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。