(58)【調査した分野】(Int.Cl.,DB名)
各前記レイヤ画像を前記オブジェクト毎に複数のセグメントに分割し、前記レイヤ画像間で同じ前記オブジェクトに対応する前記セグメントを対応付けることにより、前記セグメント情報を生成するセグメント情報生成部を
さらに備える請求項1に記載の画像処理装置。
前記画像生成部は、第1のレイヤの前記レイヤ画像において非表示にする前記オブジェクトに対応する第1のセグメントの画素の代わりに、前記第1のレイヤより下位の第2のレイヤの前記レイヤ画像の同じ位置の画素であって、前記第1のセグメントと異なる第2のセグメントの画素を用いて、前記表示画像を生成する
請求項1に記載の画像処理装置。
【発明を実施するための形態】
【0014】
以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.第1実施の形態:生成装置および表示装置(
図1乃至
図15)
2.第2実施の形態:生成装置および表示装置(
図16乃至
図30)
3.第3実施の形態:表示装置(
図31乃至
図39)
4.変形例(
図40乃至
図42)
5.応用例(
図43乃至
図45)
【0015】
<第1実施の形態>
(生成装置の構成例)
図1は、本開示を適用した画像処理装置としての生成装置の第1実施の形態の構成例を示すブロック図である。
【0016】
図1の生成装置12は、撮影装置11−1乃至11−N(Nは2以上)により取得された撮影画像とデプス画像とを用いて、撮影画像内の主要な被写体のテクスチャ画像およびデプス画像、並びに、全天球画像のテクスチャ画像およびデプス画像を生成する。
【0017】
具体的には、撮影装置11−1乃至11−Nは、主要な被写体の周囲に配置され、主要な被写体の少なくとも一部を撮影範囲に含む。撮影装置11−1乃至11−Nは、それぞれ、撮影画像カメラ21−1乃至21−Nとデプス画像カメラ22−1乃至22−Nにより構成される。撮影画像カメラ21−1乃至21−Nは、被写体を撮影してフレーム単位で撮影画像を取得し、生成装置12に供給する。デプス画像カメラ22−1乃至22−Nは、撮影画像の各画素における被写体の奥行き方向の位置をフレーム単位で取得して、その位置を表す情報を画素値とするデプス画像を生成し、生成装置12に供給する。
【0018】
なお、以下では、撮影装置11−1乃至11−Nを特に区別する必要がない場合、それらをまとめて撮影装置11という。撮影画像カメラ21−1乃至21−Nを特に区別する必要がない場合、それらをまとめて撮影画像カメラ21という。デプス画像カメラ22−1乃至22−Nを特に区別する必要がない場合、それらをまとめてデプス画像カメラ22という。
【0019】
生成装置12は、領域抽出部31、位置情報生成部32、カラー情報生成部33、ポリゴン生成部34、描画部35、全天球画像生成部36、低解像度化部37、エンコーダ38、記憶部39、および送信部40により構成される。
【0020】
生成装置12の領域抽出部31は、N個の撮影装置11から供給されるN個の撮影画像とデプス画像から、主要な被写体の領域を抽出し、位置情報生成部32に供給する。また、領域抽出部31は、N個の撮影画像とデプス画像から、主要な被写体の領域以外の領域を背景領域として抽出し、全天球画像生成部36に供給する。
【0021】
位置情報生成部32は、領域抽出部31から供給される主要な被写体の領域のN個のデプス画像を用いて、主要な被写体に対応する1以上のポリゴンの位置情報を生成する。ポリゴンの位置情報とは、主要な被写体の中心を原点とする3次元座標系である3Dモデル座標系のポリゴンの各頂点の3次元座標である。位置情報生成部32は、各ポリゴンの位置情報をカラー情報生成部33とポリゴン生成部34に供給する。また、位置情報生成部32は、主要な被写体の領域のN個の撮影画像をカラー情報生成部33に供給する。
【0022】
カラー情報生成部33は、位置情報生成部32から供給される各ポリゴンの位置情報と主要な被写体の領域のN個の撮影画像を用いて、各ポリゴンの表面と裏面のRGB値などのカラー情報を生成する。具体的には、カラー情報生成部33は、各ポリゴンに対応する撮影画像の画素値を用いて、そのポリゴンの表面のカラー情報を生成する。また、カラー情報生成部33は、各ポリゴンの表面のカラー情報を、そのポリゴンの裏面のカラー情報としても生成する。カラー情報生成部33は、各ポリゴンの表面と裏面のカラー情報をポリゴン生成部34に供給する。
【0023】
なお、ポリゴンの表面のカラー情報は、ポリゴンの各頂点の3Dモデル座標系における3次元座標を、表面の法線ベクトルを軸として時計周りで記述し、その3次元座標に対応してカラー情報を記述することにより表現される。ポリゴンの裏面のカラー情報も、表面のカラー情報と同様に表現される。
【0024】
ポリゴン生成部34は、位置情報生成部32から供給される各ポリゴンの位置情報に基づいて各ポリゴンを生成し、カラー情報生成部33から供給される各ポリゴンの表面と裏面のカラー情報に基づいて、各ポリゴンの表面および裏面に対してテクスチャを貼り付ける。ポリゴン生成部34は、表面および裏面に対してテクスチャが貼り付けられた各ポリゴンを描画部35に供給する。
【0025】
描画部35(画像生成部)は、主要な被写体の1以上のポリゴンの中心である3Dモデル座標系の原点に対して対向する予め決められた2視点のそれぞれについて、各ポリゴンの裏面を透視投影面に透視投影することにより、2視点のテクスチャ画像を生成する。具体的には、描画部35は、2視点のそれぞれについて、各ポリゴンの裏面を、各視点から原点に向かう視線方向の直線が中心を通る法線である透視投影面に透視投影することにより、2視点のテクスチャ画像を生成する。本明細書において、「対向する位置」とは、対向する位置そのものだけでなく、本開示の技術的効果を奏する範囲で、対向する位置の付近も含むものである。同様に、「法線」とは、法線そのものだけでなく、面に対する角度が垂直付近である線も含むものである。
【0026】
なお、テクスチャ画像のフォーマットは、特に限定されないが、例えばYCbCr420フォーマットを採用することができる。描画部35は、ポリゴンに基づいて、2視点のテクスチャ画像それぞれに対応するデプス画像を生成する。描画部35は、2視点のテクスチャ画像とデプス画像をエンコーダ38に供給する。
【0027】
全天球画像生成部36は、領域抽出部31から供給される背景領域のN個の撮影画像を3Dモデル座標系の原点を中心とする正八面体に透視投影することにより、水平方向の周囲360度および垂直方向の周囲180度の全天球画像のテクスチャ画像を生成する。なお、全天球画像は、水平方向の周囲360度および垂直方向の周囲180度の球体の全空間の画像ではなく、本開示の技術的効果を奏すれば部分空間の画像であってもよい。全天球画像生成部36は、領域抽出部31から供給される背景領域のN個のデプス画像を、撮影画像と同様に正八面体に透視投影することにより、全天球画像のデプス画像を生成する。全天球画像生成部36は、全天球画像のテクスチャ画像とデプス画像を低解像度化部37に供給する。
【0028】
低解像度化部37は、全天球画像生成部36から供給される全天球画像のテクスチャ画像とデプス画像を低解像度化し、エンコーダ38に供給する。
【0029】
エンコーダ38は、描画部35から供給される2視点のテクスチャ画像とデプス画像を符号化し、低解像度化部37から供給される全天球画像のテクスチャ画像とデプス画像を符号化する。これらの符号化の符号化方式としては、AVC(Advanced Video Coding)方式、HEVC方式、MVD方式等を用いることができるが、ここでは、AVC方式を用いるものとする。
【0030】
従って、エンコーダ38は、符号化により、各視点のテクスチャ画像の符号化ストリーム(以下、視点テクスチャストリームという)とデプス画像の符号化ストリーム(以下、視点デプスストリームという)を生成する。また、エンコーダ38は、符号化により、低解像度化された全天球画像のテクスチャ画像の符号化ストリーム(以下、全天球テクスチャストリームという)とデプス画像の符号化ストリーム(以下、全天球デプスストリームという)を生成する。エンコーダ38は、2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを記憶部39に供給する。
【0031】
記憶部39は、エンコーダ38から供給される2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを記憶する。
【0032】
送信部40は、記憶部39に記憶されている2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを読み出し、送信する。
【0033】
以上のように、生成装置12は、主要な被写体の3次元構造を表現するポリゴンとカラー情報を、2視点のテクスチャ画像とデプス画像に変換する。従って、生成装置12は、2視点のテクスチャ画像とデプス画像を、一般的な画像の符号化方式を用いて符号化し、データ量を削減することができる。その結果、主要な被写体の3次元構造を表現するデータの伝送帯域を削減することができる。
【0034】
なお、
図1の生成装置12は、ポリゴンとカラー情報を生成したが、CG技術において用いられる3次元構造を表現する情報であれば、ポイントクラウドなどの他の情報を生成するようにしてもよい。
【0035】
また、
図1の例では、デプス画像カメラ22が、撮影画像と同一の画素数のデプス画像を取得するが、撮影画像より少ない画素数のデプス画像を取得する場合には、領域抽出部31と位置情報生成部32の間に、デプス画像の画素値を補間するデプス画像補間部が設けられる。この場合、デプス画像補間部は、デプス画像の画素値を補間し、デプス画像の画素数を撮影画像の画素数と同一にする。
【0036】
さらに、
図1の例では、各撮影装置11がデプス画像を取得するようにしたが、デプス画像は、そのデプス画像に対応する撮影装置11と他の撮影装置11により取得された撮影画像から生成されるようにしてもよい。
【0037】
(撮影装置の配置例)
図2は、
図1の撮影装置11の配置例を示す図である。
【0039】
図2に示すように、9個の撮影装置11−1乃至11−9は、主要な被写体61の周囲に取り囲むように配置される。
【0040】
(効果の説明)
図3乃至
図5は、3Dモデル座標系の原点に対して対向する2視点のそれぞれについて、各ポリゴンの表面を透視投影面に透視投影することにより生成されるテクスチャ画像と、そのテクスチャ画像に対応するデプス画像とを説明する図である。
【0041】
図3乃至
図5の例では、主要な被写体のポリゴンが球81を形成する。この場合、
図3のAに示すように、2視点のうちの一方の視点O1に対して、球81の表面を視線方向V1の透視投影面に透視投影することにより生成されるテクスチャ画像には、各投影方向82と最初に交差する球81上の表面の領域81Aに貼られたテクスチャが描画される。投影方向とは、視点から延びる、視線方向とのなす角の絶対値が画角の半分の角度(
図3の例ではθ)の範囲内である方向である。また、このテクスチャ画像に対応するデプス画像は、視点O1に対する領域81Aの奥行き方向(視線方向V1)の位置を表す画像である。
【0042】
また、
図3のBに示すように、2視点のうちの他方の視点O2に対して、球81の表面を視線方向V2の透視投影面に透視投影することにより生成されるテクスチャ画像には、各投影方向83と最初に交差する球81上の表面の領域81Bに貼られたテクスチャが描画される。また、このテクスチャ画像に対応するデプス画像は、視点O2に対する領域81Bの奥行き方向(視線方向V2)の位置を表す画像である。
【0043】
従って、
図3のCに示すように、視点O1のテクスチャ画像およびデプス画像、並びに、視点O2のテクスチャ画像およびデプス画像により、球81の中心に対して互いに対向する2つの領域81Aと領域81Bの3次元構造を表現することができる。しかしながら、球の表面には、領域81Aと領域81B以外の領域が存在する。即ち、視点O1のテクスチャ画像およびデプス画像、並びに、視点O2のテクスチャ画像およびデプス画像では3次元構造を表現できない球81の表面の領域が存在する。
【0044】
例えば、球81の表面および裏面に世界地図がテクスチャとして貼られており、アフリカ沖大西洋上空が視点O1である場合、
図4のAの左側に示すように、視点O1のテクスチャ画像101には、領域81Aの表面にテクスチャとして貼られたアフリカ大陸と南アメリカ大陸の一部が描画される。
【0045】
また、この場合、視点O2は太平洋上空であり、
図4のBの左側に示すように、視点O2のテクスチャ画像102には、領域81Bの表面にテクスチャとして貼られたオーストラリア大陸の一部が描画される。しかしながら、南極大陸等は、テクスチャ画像101とテクスチャ画像102のいずれにも描画されない。
【0046】
また、
図4のAの右側および
図4のBの右側に示すように、テクスチャ画像101に対応するデプス画像111と、テクスチャ画像102に対応するデプス画像112は、同一である。なお、デプス画像は、各画素における被写体の奥行き方向の位置が遠いほど、画素値(輝度値)が小さい。従って、デプス画像111とデプス画像112は、中心の画素値が最も大きく、中心から離れるほど小さくなっている。
【0047】
以上のように、テクスチャ画像101とテクスチャ画像102のいずれにも、南極大陸等は描画されない。従って、
図5に示すように、テクスチャ画像101およびデプス画像111並びにテクスチャ画像102およびデプス画像112を用いて再構成された3次元構造121は、表面および裏面に世界地図がテクスチャとして貼られた球81の一部分のみである。
【0048】
図3乃至
図5の例では、ポリゴンの形状が比較的単純な球81であったが、ポリゴンの形状が複雑である場合、2視点のテクスチャ画像では3次元構造を表現できないポリゴンの領域が増加する。
【0049】
図6および
図7は、視点O1に対して球81の裏面を視線方向V1の透視投影面に透視投影することにより生成されるテクスチャ画像と、そのテクスチャ画像に対応するデプス画像とを説明する図である。
【0050】
上述したように、視点O1に対して球81の表面を視線方向V1の透視投影面に透視投影することによりテクスチャ画像を生成する場合、テクスチャ画像には、
図6に示すように、各投影方向82と最初に交差する球81上の表面の各点c1に貼られたテクスチャが描画される。また、このテクスチャ画像に対応するデプス画像は、視点O1に対する各点c1の奥行き方向(視線方向V1)の位置を表す画像である。
【0051】
一方、視点O1に対して球81の表面を視線方向V1の透視投影面に透視投影することによりテクスチャ画像を生成する場合、テクスチャ画像には、
図6に示すように、各投影方向82と最初に交差する球81上の裏面の各点c2に貼られたテクスチャが描画される。また、このテクスチャ画像に対応するデプス画像は、視点O2に対する各点c2の奥行き方向(視線方向V1)の位置を表す画像である。
【0052】
例えば、球81の表面および裏面に世界地図がテクスチャとして貼られており、アフリカ沖大西洋上空が視点O1である場合、
図7に示すように、視点O1のテクスチャ画像131には、各点c2の裏面にテクスチャとして貼られた北アメリカ大陸、南アメリカ大陸の一部、南極大陸、ヨーロッパ大陸の一部、アジア大陸、およびオーストラリア大陸が描画される。また、テクスチャ画像131に対応するデプス画像132は、中心の画素値が最も小さく、中心から離れるほど小さくなる。
【0053】
図8乃至
図10は、3Dモデル座標系の原点に対して対向する2視点のそれぞれについて、各ポリゴンの裏面を透視投影面に透視投影することにより生成されるテクスチャ画像と、そのテクスチャ画像に対応するデプス画像とを説明する図である。
【0054】
図8乃至
図10の例では、主要な被写体のポリゴンが球81である。この場合、
図8のAに示すように、視点O1に対して、球81の裏面を視線方向V1の透視投影面に透視投影することにより生成されるテクスチャ画像には、各投影方向82と最初に交差する球81上の裏面の領域153Aに貼られたテクスチャが描画される。また、このテクスチャ画像に対応するデプス画像は、視点O1に対する領域81Aの奥行き方向(視線方向V1)の位置を表す画像である。
【0055】
また、
図8のBに示すように、2視点のうちの他方の視点O2に対して、球81の裏面を視線方向V2の透視投影面に透視投影することにより生成されるテクスチャ画像には、各投影方向83と最初に交差する球81上の裏面の領域153Bに貼られたテクスチャが描画される。また、このテクスチャ画像に対応するデプス画像は、視点O2に対する領域81Bの奥行き方向(視線方向V2)の位置を表す画像である。
【0056】
従って、
図8のCに示すように、視点O1のテクスチャ画像およびデプス画像、並びに、視点O2のテクスチャ画像およびデプス画像により、球81の中心に対して互いに対向する2つの領域153Aおよび領域153Bの3次元構造を表現することができる。
【0057】
なお、
図8のCに示すように、領域153Aおよび領域153Bは重複する。従って、視点O1のテクスチャ画像およびデプス画像、並びに、視点O2のテクスチャ画像およびデプス画像により、球81の全ての3次元構造を表現することができることになる。
【0058】
例えば、球81の表面および面に世界地図がテクスチャとして貼られており、アフリカ沖大西洋上空が視点O1である場合、
図9のAの左側に示すように、視点O1のテクスチャ画像161には、領域153Aの裏面にテクスチャとして貼られた北アメリカ大陸、南アメリカ大陸の一部、南極大陸、ヨーロッパ大陸の一部、アジア大陸、オーストラリア大陸が描画される。
【0059】
また、この場合、視点O2は太平洋上空であり、
図9のBの左側に示すように、視点O2のテクスチャ画像162には、領域153Bの裏面にテクスチャとして貼られたアフリカ大陸、北アメリカ大陸、南アメリカ大陸、南極大陸、ヨーロッパ大陸の一部が描画される。従って、7大陸の全てが、テクスチャ画像161とテクスチャ画像162の少なくとも一方に描画される。
【0060】
また、
図9のAおよび
図9のBの右側に示すように、テクスチャ画像161に対応するデプス画像163と、テクスチャ画像162に対応するデプス画像164は、同一である。デプス画像163とデプス画像164は、中心の画素値が最も小さく、中心から離れるほど大きくなっている。
【0061】
以上のように、7大陸の全てが、テクスチャ画像161とテクスチャ画像162の少なくとも一方に描画される。従って、
図10のAに示すように、テクスチャ画像161とデプス画像163を用いて再構成された3次元構造171は、球81の視点O2側の半分(図中右半分)より大きい部分である。また、
図10のBに示すように、テクスチャ画像162とデプス画像164を用いて再構成された3次元構造172は、球81の視点O1側の半分(図中左半分)より大きい部分である。よって、テクスチャ画像161およびデプス画像163並びにテクスチャ画像162およびデプス画像164を用いて3次元構造を再構成することにより、球81全体を生成することができる。
【0062】
なお、領域153Aと領域153Bの重複領域は、テクスチャ画像161およびデプス画像163と、テクスチャ画像162およびデプス画像164のいずれか一方を用いて生成される。
【0063】
例えば、
図8のAに示すように、領域153Aと領域153Bの重複領域のうちの領域153Aの端部の領域154は、視点O1に対して透視投影される場合、投影方向82との角度が小さい。従って、テクスチャ画像161とデプス画像163では、領域154の3次元構造を高精度で表現することはできない。
【0064】
しかしながら、
図8のBに示すように、領域154は、視点O2に対して透視投影される場合、投影方向83との角度が、視点O1に対して透視投影される場合に比べて大きくなる。従って、テクスチャ画像162とデプス画像164では、テクスチャ画像161とデプス画像163に比べて、領域154の3次元構造を高精度で表現することができる。よって、領域154は、テクスチャ画像162とデプス画像164を用いて生成される。
【0065】
以上のように、領域153Aと領域153Bの重複領域を、テクスチャ画像161およびデプス画像163と、テクスチャ画像162およびデプス画像164のうちの、重複領域との角度が大きい投影方向に対応する方を用いて生成することにより、球81の再構成の精度を向上させることができる。
【0066】
(生成装置の処理の説明)
図11は、
図1の生成装置12の生成処理を説明するフローチャートである。この生成処理は、N個の撮影装置11により取得されるN個の撮影画像とデプス画像のフレームごとに行われる。
【0067】
図11のステップS11において、生成装置12の領域抽出部31は、撮影装置11から供給されるN個の撮影画像とデプス画像から、主要な被写体の領域と背景領域を抽出する。領域抽出部31は、主要な被写体の領域のN個の撮影画像とデプス画像を位置情報生成部32に供給し、背景領域のN個の撮影画像とデプス画像を全天球画像生成部36に供給する。
【0068】
ステップS12において、位置情報生成部32は、領域抽出部31から供給される主要な被写体の領域のN個のデプス画像を用いて、主要な被写体の各ポリゴンの位置情報を生成し、カラー情報生成部33と描画部35に供給する。また、位置情報生成部32は、主要な被写体の領域のN個の撮影画像をカラー情報生成部33に供給する。
【0069】
ステップS13において、カラー情報生成部33は、位置情報生成部32から供給される各ポリゴンの位置情報と主要な被写体の領域のN個の撮影画像を用いて、各ポリゴンの表面と裏面のカラー情報を生成する。カラー情報生成部33は、各ポリゴンの表面と裏面のカラー情報を描画部35に供給する。
【0070】
ステップS14において、描画部35は、位置情報生成部32から供給される各ポリゴンの位置情報に基づいて各ポリゴンを生成し、カラー情報生成部33から供給される各ポリゴンの表面と裏面のカラー情報に基づいて、各ポリゴンの表面および裏面に対してテクスチャを貼り付ける。
【0071】
ステップS15において、描画部35は、予め決められた2視点のそれぞれに対して、各ポリゴンの裏面を視線方向の透視投影面に透視投影することにより2視点のテクスチャ画像を生成する。描画部35は、2視点のテクスチャ画像をエンコーダ38に供給する。
【0072】
ステップS16において、描画部35は、ポリゴンに基づいて、2視点のテクスチャ画像それぞれに対応するデプス画像を生成し、エンコーダ38に供給する。
【0073】
ステップS17において、全天球画像生成部36は、領域抽出部31から供給される背景領域のN個の撮影画像を3Dモデル座標系の原点を中心とする正八面体に透視投影することにより、全天球画像のテクスチャ画像を生成し、低解像度化部37に供給する。
【0074】
ステップS18において、全天球画像生成部36は、領域抽出部31から供給される背景領域のN個のデプス画像を、撮影画像と同様に正八面体に透視投影することにより、全天球画像のデプス画像を生成し、低解像度化部37に供給する。
【0075】
ステップS19において、低解像度化部37は、全天球画像生成部36から供給される全天球画像のテクスチャ画像とデプス画像を低解像度化し、エンコーダ38に供給する。
【0076】
ステップS20において、エンコーダ38は、描画部35から供給される2視点のテクスチャ画像およびデプス画像、並びに、低解像度化部37から供給される全天球画像のテクスチャ画像およびデプス画像を符号化する。エンコーダ38は、その結果生成される2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを記憶部39に供給して記憶させる。
【0077】
ステップS21において、送信部40は、記憶部39に記憶されている2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを読み出し、送信する。そして、処理は終了する。
【0078】
以上のように、生成装置12は、3Dモデル座標系の原点に対して対向する2視点のそれぞれについて各視点の視線方向の透視投影面にポリゴンの裏面を透視投影することにより、2視点のテクスチャ画像とデプス画像を生成する。従って、生成された2視点のテクスチャ画像とデプス画像は、ポリゴンの表面を透視投影することにより生成される場合に比べて、より多くの領域の主要な被写体のポリゴンの3次元構造を表現することができる。
【0079】
(表示装置の構成例)
図12は、本開示を適用した画像処置装置としての表示装置の第1実施の形態の構成例を示すブロック図である。
【0080】
図12の表示装置200は、
図1の生成装置12から送信されてくる2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを受信し、所定の視点のテクスチャ画像を生成する。
【0081】
具体的には、表示装置200は、受信部201、記憶部202、デコーダ203、再構成部204、描画部205、および表示部206により構成される。
【0082】
表示装置200の受信部201は、生成装置12から送信されてくる2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを受信し、記憶部202に供給する。
【0083】
記憶部202は、受信部201から供給される2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを記憶する。
【0084】
デコーダ203は、記憶部202から2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを読み出し、復号する。デコーダ203は、復号の結果得られる2視点のテクスチャ画像およびデプス画像、並びに、全天球画像のテクスチャ画像およびデプス画像を再構成部204に供給する。
【0085】
再構成部204は、デコーダ203から供給される2視点のテクスチャ画像およびデプス画像を用いて、3Dモデル座標系に主要な被写体の3次元構造を再構成する。上述したように、生成装置12で生成される2視点のテクスチャ画像およびデプス画像は、ポリゴンの表面を透視投影することにより生成される場合に比べて、より多くの領域の主要な被写体のポリゴンの3次元構造を表現することができる。従って、復号された2視点のテクスチャ画像およびデプス画像を用いて3次元構造が再構成される主要な被写体の領域は、2視点のテクスチャ画像とデプス画像がポリゴンの表面を透視投影することにより生成される場合に比べて多い。
【0086】
また、再構成部204は、デコーダ203から供給される全天球画像のテクスチャ画像とデプス画像を用いて、3Dモデル座標系に背景領域の3次元構造を再構成する。再構成部204は、主要な被写体と背景領域の3次元構造の位置情報とカラー情報を描画部205に供給する。
【0087】
描画部205(画像生成部)は、再構成部204から供給される主要な被写体と背景領域の3次元構造の位置情報とカラー情報に基づいて、視聴者等により指定された3Dモデル座標系における視点、視線方向、および画角のテクスチャ画像を表示画像として生成する。描画部205は、生成された表示画像を表示部206に供給する。
【0088】
表示部206は、描画部205から供給される表示画像を表示する。これにより、視聴者は、例えば、主要な被写体の周囲の任意の位置から主要な被写体を見ることができる。
【0089】
(第1の再構成方法の説明)
図13は、第1の再構成方法を説明する図である。
【0090】
なお、
図13の例では、説明の便宜上、2視点のテクスチャ画像およびデプス画像の解像度が、4(横)×4(縦)画素であるものとする。また、
図13では、2視点のうちの1つの視点O1のテクスチャ画像とデプス画像を用いて主要な被写体の3次元構造を再構成する場合について説明する。
【0091】
第1の再構成方法は、ポイントクラウドを用いて3次元構造を再構成する方法である。具体的には、
図13に示すように、第1の再構成方法では、再構成部204は、視点O1、視線方向V1、画角2θ、視点O1のテクスチャ画像220の各画素221に対応するサンプリング点231のテクスチャ画像220上の位置(u,v)、および、テクスチャ画像220に対応するデプス画像の各画素221の画素値に基づいて、サンプリング点231の3Dモデル座標系における3次元座標(X,Y,Z)を生成する。
【0092】
また、再構成部204は、テクスチャ画像220の各画素221の画素値であるYCbCr値をRGB値に変換し、各画素221に対応するサンプリング点231のRGB値とする。再構成部204は、各サンプリング点231の3次元座標(X,Y,Z)に、そのサンプリング点231のRGB値の点を描画することにより、主要な被写体の3次元構造を再構成する。再構成部204は、各サンプリング点231の3次元座標(X,Y,Z)を主要な被写体の3次元構造の位置情報として描画部205に供給するとともに、各サンプリング点231のRGB値を主要な被写体の3次元構造のカラー情報として描画部205に供給する。
【0093】
(第2の再構成方法の説明)
図14は、第2の再構成方法を説明する図である。
【0094】
なお、
図14の例では、説明の便宜上、2視点のテクスチャ画像およびデプス画像の解像度が、4(横)×3(縦)画素であるものとする。また、
図14では、2視点のうちの1つの視点O1のテクスチャ画像とデプス画像を用いて主要な被写体の3次元構造を再構成する場合について説明する。
【0095】
第2の再構成方法は、三角形パッチを用いて3次元構造を再構成する方法である。具体的には、
図14の左側に示すように、第2の再構成方法では、再構成部204は、視点O1のテクスチャ画像240上に各画素241に対応するサンプリング点251を生成する。再構成部204は、テクスチャ画像240の全ての画素に対応するサンプリング点251のうちの、隣接する3つのサンプリング点251どうしを接続することにより、隣接する3つのサンプリング点251を頂点とする三角形パッチ252を生成する。
【0096】
そして、再構成部204は、視点O1、視線方向V1、画角2θ、各サンプリング点251のテクスチャ画像240上の位置(u,v)、および、テクスチャ画像240に対応するデプス画像の各画素241の画素値に基づいて、各サンプリング点251に対応する3Dモデル座標系の3次元座標(X,Y,Z)を生成する。
【0097】
そして、再構成部204は、
図14の右側に示すように、各サンプリング点251の3次元座標(X,Y,Z)に基づいて、各サンプリング点251に対応する各サンプリング点261を3Dモデル座標系に配置する。また、再構成部204は、三角形パッチ252の頂点を構成する3つのサンプリング点251に対応するサンプリング点261を接続することにより、三角形パッチ262を生成する。
【0098】
また、再構成部204は、三角形パッチ262ごとに、三角形パッチ262に対応する三角形パッチ252を構成する画素241のYCbCr値をRGB値に変換し、そのRGB値を用いて三角形パッチ262のRGB値を生成する。再構成部204は、三角形パッチ262ごとに、三角形パッチ262のRGB値のテクスチャを三角形パッチ262に貼り付ける。これにより、再構成部204は、主要な被写体の3次元構造を再構成する。再構成部204は、各三角形パッチ262の頂点となるサンプリング点261の3次元座標(X,Y,Z)を主要な被写体の3次元構造の位置情報として描画部205に供給する。また、再構成部204は、各三角形パッチ262のRGB値を主要な被写体の3次元構造のカラー情報として描画部205に供給する。
【0099】
図13および
図14では、視点O1のテクスチャ画像とデプス画像から主要な被写体の3次元構造を再構成する方法について説明したが、視点O2のテクスチャ画像とデプス画像から主要な被写体の3次元構造を再構成する方法および全天球画像のテクスチャ画像とデプス画像から背景領域の3次元構造を再構成する方法についても同様である。
【0100】
(表示装置の処理の説明)
図15は、
図12の表示装置200の表示処理を説明するフローチャートである。この表示処理は、例えば、2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームが記憶部202に記憶されている状態で、視聴者により表示画像の表示が要求されたとき、開始される。
【0101】
図15のステップS32において、デコーダ203は、記憶部202から2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを読み出し、復号する。デコーダ203は、復号の結果得られる2視点のテクスチャ画像およびデプス画像、並びに、全天球画像のテクスチャ画像およびデプス画像を再構成部204に供給する。
【0102】
ステップS33において、再構成部204は、デコーダ203から供給される2視点のテクスチャ画像およびデプス画像を用いて、3Dモデル座標系に主要な被写体の3次元構造を再構成する。再構成部204は、主要な被写体の3次元構造の位置情報とカラー情報を描画部205に供給する。
【0103】
ステップS34において、再構成部204は、デコーダ203から供給される全天球画像のテクスチャ画像とデプス画像を用いて、3Dモデル座標系に背景領域の3次元構造を再構成する。再構成部204は、背景領域の3次元構造の位置情報とカラー情報を描画部205に供給する。
【0104】
ステップS35において、描画部205は、再構成部204から供給される主要な被写体と背景領域の3次元構造の位置情報とカラー情報に基づいて、視聴者等により指定された3Dモデル座標系における視点、視線方向、および画角のテクスチャ画像を表示画像として生成する。描画部205は、生成された表示画像を表示部206に供給する。
【0105】
ステップS36において、表示部206は、描画部205から供給される表示画像を表示し、処理を終了する。
【0106】
以上のように、表示装置200は、生成装置12により生成された2視点のテクスチャ画像とデプス画像を用いて表示画像を生成する。従って、2視点のそれぞれに対してポリゴンの表面を透視投影することにより生成された2視点のテクスチャ画像とデプス画像を用いる場合に比べて、より多くの領域の主要な被写体の3次元構造を再構成し、その3次元構造から表示画像を生成することができる。その結果、表示画像の画質が向上する。
【0107】
<第2実施の形態>
(生成装置の構成例)
図16は、本開示を適用した画像処理装置としての生成装置の第2実施の形態の構成例を示すブロック図である。
【0108】
図16に示す構成のうち、
図1の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0109】
図16の生成装置300の構成は、再構成部301、視点制御部302、およびレイヤ画像生成部303が新たに設けられる点、並びに、エンコーダ38、記憶部39、および送信部40の代わりに、エンコーダ304、記憶部305、および送信部306が設けられる点が、
図1の生成装置12の構成と異なる。
【0110】
生成装置300は、視点テクスチャストリーム、視点デプスストリーム、全天球テクスチャストリーム、および全天球デプスストリームに加えて、複数のレイヤのテクスチャ画像の符号化ストリーム(以下、レイヤテクスチャストリームという)およびデプス画像の符号化ストリーム(以下、レイヤデプスストリームという)を生成する。
【0111】
具体的には、再構成部301は、N個の撮影装置11から供給されるN個の撮影画像とデプス画像に基づいて3次元再構成を行い、撮影画像内の各オブジェクトの3Dモデル座標系における3次元構造を表現する3次元モデルを生成する。再構成部301は、生成した3次元モデルをレイヤ画像生成部303に供給する。
【0112】
なお、再構成部301が用いる3Dモデル座標系は、位置情報生成部32等が用いる3Dモデル座標系と同一でも同一でなくてもよい。
【0113】
視点制御部302は、各レイヤのテクスチャ画像およびデプス画像を生成する際の基準となる、3Dモデル座標系における視点および視線方向を設定する。視点制御部302は、設定した視点および視線方向を示す視点情報をレイヤ画像生成部303に供給する。
【0114】
レイヤ画像生成部303は、後述するように、視点制御部302により設定された視点および視線方向に基づいて、複数のレイヤのテクスチャ画像およびデプス画像を生成する。すなわち、レイヤ画像生成部303は、設定された視点から視線方向を見た場合のテクスチャ画像およびデプス画像を、視点からの視線方向の距離に応じて複数のレイヤに階層化する。各レイヤのテクスチャ画像およびデプス画像には、設定された視点からの視線方向の距離が、レイヤ毎に設定された所定の閾値以上のオブジェクトが含まれる。なお、上位のレイヤ(番号が小さいレイヤ)ほど閾値が小さくなり、視点からの視線方向の距離がより近い被写体(以下、オブジェクトとも称する)が含まれるようになる。一方、下位のレイヤ(番号が小さいレイヤ)ほど閾値が大きくなり、視点からの視線方向の距離がより遠いオブジェクトのみが含まれるようになる。レイヤ画像生成部303は、各レイヤのテクスチャ画像およびデプス画像をエンコーダ38に供給する。
【0115】
なお、以下、各レイヤのテクスチャ画像およびデプス画像をまとめてレイヤ画像という場合がある。
【0116】
エンコーダ304は、
図1のエンコーダ304と同様に、2視点のテクスチャ画像とデプス画像の符号化、および、全天球画像のテクスチャ画像とデプス画像の符号化を行う。さらに、エンコーダ304は、レイヤ画像生成部303から供給される各レイヤのテクスチャ画像とデプス画像を符号化する。これにより、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームが生成される。エンコーダ304は、2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、並びに、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを記憶部305に供給する。
【0117】
記憶部305は、エンコーダ304から供給される2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、並びに、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを記憶する。
【0118】
送信部306は、記憶部305に記憶されている2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、並びに、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、送信する。
【0119】
(生成装置の処理の説明)
次に、生成装置300の処理について説明する。なお、生成装置300が、視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを生成する処理は、
図1の生成装置12と同様であり、その説明は省略する。そして、
図17のフローチャートを参照して、生成装置300が、各レイヤのテクスチャストリームおよびデプスストリームを生成する処理について説明する。
【0120】
ステップS101において、生成装置300の再構成部301は、撮影装置11から供給されるN個の撮影画像とデプス画像に基づいて、撮影画像内の各オブジェクトの3Dモデル座標系における3次元構造を表現する3次元モデルを生成する。再構成部301は、生成した3次元モデルをレイヤ画像生成部303に供給する。
【0121】
ステップS102において、生成装置300は、レイヤ画像生成処理を行う。レイヤ画像生成処理の詳細は、
図18等を参照して後述するが、この処理により、各レイヤのテクスチャ画像およびデプス画像が生成される。
【0122】
ステップS103において、エンコーダ304は、レイヤ画像生成部303から供給される各レイヤのテクスチャ画像およびデプス画像を符号化する。エンコーダ304は、その結果生成される各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを記憶部305に供給して記憶させる。
【0123】
ステップS104において、送信部306は、記憶部305に記憶されている各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、送信する。そして、処理は終了する。
【0124】
次に、
図18のフローチャートを参照して、
図17のステップS102のレイヤ画像生成処理の詳細について説明する。
【0125】
ステップS131において、視点制御部302は、視点および視線方向を設定する。すなわち、視点制御部302は、3Dモデル座標系において、各レイヤのテクスチャ画像およびデプス画像を生成する基準となる視点および視線方向を設定する。視点制御部302は、設定した視点および視線方向を示す視点情報をレイヤ画像生成部303に供給する。
【0126】
なお、視点および視線方向は、例えばユーザにより設定される。
【0127】
ステップS132において、レイヤ画像生成部303は、画像を生成していないレイヤのうち1つを選択する。すなわち、レイヤ画像生成部303は、まだ画像の生成を行っていないレイヤのうち、最も上位のレイヤ(最も視点に近いレイヤ)を選択する。従って、最初のステップS132の処理においては、第1レイヤが選択される。
【0128】
なお、以下、選択されたレイヤを注目レイヤともいう。
【0129】
ステップS133において、レイヤ画像生成部303は、選択したレイヤに応じて、最近距離閾値を設定する。最近距離閾値は、注目レイヤのテクスチャ画像およびデプス画像において描画するオブジェクトのうち、視点から最も近いオブジェクトまでの視線方向の距離を表す。従って、視点からの視線方向の距離が最近距離閾値未満であるオブジェクトは、注目レイヤのテクスチャ画像およびデプス画像において描画されない。
【0130】
なお、第1レイヤの最近距離閾値は、0に設定される。従って、第1レイヤのテクスチャ画像およびデプス画像においては、3次元モデルにおいて、視点から視線方向に見える全てのオブジェクトが描画される。
【0131】
また、第2レイヤ以降においては、レイヤが下位になるほど、最近距離閾値は大きな値に設定される。従って、レイヤが上位のテクスチャ画像およびデプス画像ほど、視点からの視線方向の距離がより近いオブジェクトが描画される。一方、レイヤが下位のテクスチャ画像およびデプス画像ほど、視点からの視線方向の距離が近いオブジェクトが除外され、視点からの視線方向の距離がより遠いオブジェクトが描画される。
【0132】
なお、最近距離閾値は、視点から3次元モデルの背景(例えば、空、遠くの風景等)までの視線方向の距離より短い距離に設定される。
【0133】
ステップS134において、レイヤ画像生成部303は、画素値およびデプス値が未設定の画素のうち1つを選択する。具体的には、レイヤ画像生成部303は、視線方向に垂直であり、視点からの視線がほぼ中央を通る所定の大きさ(例えば、縦1080画素×横1920画素)の面である投影面の画素の中から、画素値およびデプス値が未設定の画素を1つ選択する。
【0134】
なお、以下、選択された画素を注目画素ともいう。また、以下、投影面の横方向をx軸方向とし、投影面の縦方向をy軸方向とし、視線方向、すなわち、投影面に垂直な方向をz軸方向とする。
【0135】
ステップS135において、レイヤ画像生成部303は、画素方向に最初のオブジェクトまでレイキャスティングを行う。具体的には、レイヤ画像生成部303は、視点から注目画素への方向(画素方向)にレイ(光線)を延ばしていき、レイが3次元モデル内の最初のオブジェクトの表面にぶつかる位置(以下、採用候補位置と称する)を検出する。
【0136】
ステップS136において、レイヤ画像生成部303は、オブジェクトまでの視線方向の距離≧最近距離閾値であるか否かを判定する。すなわち、レイヤ画像生成部303は、ステップS135または後述するステップS137において検出した採用候補位置の視点からの視線方向(z軸方向)の距離を、最近距離閾値と比較する。そして、レイヤ画像生成部303が、採用候補位置までの視線方向の距離が最近距離閾値より近いと判定した場合、処理はステップS137に進む。
【0137】
ステップS137において、レイヤ画像生成部303は、画素方向に次のオブジェクトまでレイキャスティングを行う。具体的には、レイヤ画像生成部303は、レイをさらに画素方向に延ばしていき、レイが現在のオブジェクトの次のオブジェクトの表面にぶつかる位置(採用候補位置)を検出する。
【0138】
その後、処理はステップS136に戻り、ステップS136において、オブジェクトまでの視線方向の距離≧最近距離閾値であると判定されるまで、ステップS136およびS137の処理が繰り返し実行される。
【0139】
これにより、画素方向に存在するオブジェクトのうち、視点からの視線方向の距離が最近距離閾値以上であって、視点に最も近いオブジェクトの表面が、最終的な採用候補位置として検出される。
【0140】
なお、上述したように、最近距離閾値は、視点から3次元モデルの背景までの視線方向の距離より短い距離に設定されるため、画素方向にオブジェクトが存在しなくても、画素方向の背景が最終的な採用候補位置として検出される。
【0141】
一方、ステップS136において、オブジェクトまでの視線方向の距離≧最近距離閾値であると判定された場合、処理はステップS138に進む。
【0142】
ステップS138において、レイヤ画像生成部303は、選択した画素の画素値およびデプス値を設定する。具体的には、レイヤ画像生成部303は、採用候補位置の画素値を、注目レイヤのテクスチャ画像の注目画素の画素値に設定する。また、レイヤ画像生成部303は、視点から採用候補位置までの視線方向(z軸方向)の距離を、注目レイヤのデプス画像の注目画素のデプス値に設定する。
【0143】
ステップS139において、レイヤ画像生成部303は、画素値およびデプス値が未設定の画素があるか否かを判定する。まだ画素値およびデプス値が未設定の画素があると判定された場合、処理はステップS134に戻る。
【0144】
その後、ステップS139において、画素値およびデプス値が未設定の画素がないと判定されるまで、ステップS134乃至S139の処理が繰り返し実行される。これにより、注目レイヤのテクスチャ画像の全ての画素の画素値、および、注目レイヤのデプス画像の全ての画素のデプス値が設定される。
【0145】
一方、ステップS139において、画素値およびデプス値が未設定の画素がないと判定された場合、処理はステップS140に進む。
【0146】
ステップS140において、レイヤ画像生成部303は、画像を生成していないレイヤがあるか否かを判定する。画像を生成していないレイヤがあると判定された場合、処理はステップS132に戻る。
【0147】
その後、ステップS140において、画像を生成していないレイヤがないと判定されるまで、ステップS132乃至S140の処理が繰り返し実行される。これにより、各レイヤのテクスチャ画像およびレイヤ画像が生成される。
【0148】
一方、ステップS140において、画像を生成していないレイヤがあると判定された場合、レイヤ画像生成処理は終了する。
【0149】
ここで、
図19乃至
図22を参照して、
図18のレイヤ画像生成処理の具体例について説明する。
【0150】
図19及び
図20は、撮影装置11と各オブジェクトの配置例を示している。
図19は、各オブジェクトをほぼ正面から見た模式図を示している。
図20は、各オブジェクトを上から見た模式図を示している。
【0151】
図19及び
図20の例では、人331、車332、ビル333、家334、家335、ビル336、ビル337、および家338が撮影対象に含まれている。ビル333、家334、家335、ビル336、ビル337、および家338は、横一列に並んでいる。家335およびビル336の前には、車332が止まっている。車332の前には、人331が立っている。正面から見て、人331の陰に車332の一部、および家335のほぼ全部が隠れている。
【0152】
図19および
図20には撮影装置11−1乃至11−9のみが図示されているが、例えば、撮影装置11は、人331乃至家338の各オブジェクトを含む領域の周囲の少なくとも一部を水平方向および垂直方向に取り囲むように配置され、それぞれ異なる視点から各オブジェクトを含む領域を撮影する。なお、図示されている撮影装置11−1乃至11−8のうち、撮影装置11−1、11−3、11−5、および11−8は、上方から被写体を撮影し、撮影装置11−2、11−4、11−6、および11−8は、下方から被写体を撮影する。撮影装置11−1および11−2は、人331の左斜め前方から右斜め前方を撮影するように配置されている。撮影装置11−3および11−4は、人331の正面やや左寄りからほぼ正面方向を撮影するように配置されている。撮影装置11−5および11−6は、人331の正面やや右寄りからほぼ正面方向を撮影するように配置されている。撮影装置11−7および11−8は、人331の右斜め前方から左斜め方向を撮影するように配置されている。撮影装置11−9は、人331のほぼ右側から左斜め前方を撮影するように配置されている。
【0153】
図21の左側の図は、撮影装置11−3(撮影画像カメラ21−3)で撮影した撮影画像の例を示しており、右側の図は、撮影装置11−5(撮影画像カメラ21−5)で撮影した撮影画像の例を示している。
【0154】
この例に示されるように、撮影装置11−3および11−5の撮影画像では、正面から各オブジェクトを見た場合と異なり、車332のほぼ全体が、人331の陰に隠れることなく写っている。また、左側の撮影画像では、人331および車332の陰に隠れることなく、家335のほぼ全体が写っている。
【0155】
このように、各オブジェクトを含む領域を水平方向および垂直方向に取り囲んで撮影することにより、所定の視点から見た場合に他のオブジェクトの陰に隠れるオブジェクトの一部または全部を撮影することができる。従って、撮影装置11の数および配置を調整して撮影し、得られた撮影画像の座標変換や合成等を適切に行うことにより、所定の視点を基準とする各レイヤのテクスチャ画像を生成することができる。
【0156】
例えば、
図22は、
図19の各オブジェクトを各撮影装置11で撮影した撮影画像に基づいて生成される3層構造のテクスチャ画像の例を示している。
【0157】
図22の左側の図は、各オブジェクトの位置関係を上から見た模式図である。
図22の右側の図は、各オブジェクトの位置関係が左側の図の状態の場合の第1レイヤ乃至第3レイヤのテクスチャ画像の例を示している。
【0158】
なお、以下、
図22において、人331から視点Pに向かう方向を前方とし、人331から車332に向かう方向を後方とする。また、
図22において、ビル333から家338に向かう方向を右側とし、家338からビル333に向かう方向を左側とする。これは、他の同様の図についても、同様とする。
【0159】
第1レイヤのテクスチャ画像では、左側の図の線L1で示される部分が描画されている。具体的には、視点Pから見た人331から家338までの全てのオブジェクトが描画対象となるとともに、車332が人331の陰に隠れている。
【0160】
第2レイヤのテクスチャ画像では、左側の図の線L2で示される部分が描画されている。具体的には、第2レイヤのテクスチャ画像では、第1レイヤのテクスチャ画像から人331が除去され、車332の全体が描画されている。また、家335およびビル336の一部が、車332の陰に隠れている。
【0161】
第3レイヤのテクスチャ画像では、左側の図の線L3で示される部分が描画されている。具体的には、第3レイヤのテクスチャ画像では、第2レイヤのテクスチャ画像から車332が除去され、家335およびビル336の全体が描画されている。
【0162】
このように、視点Pからの距離に応じて各オブジェクトを階層化することにより、上位のレイヤのテクスチャ画像において前方のオブジェクトの陰に隠れているオブジェクトが、下位のレイヤのテクスチャ画像において描画され、視認できるようになる。
【0164】
図23乃至
図25の左側の図は、各オブジェクトの位置関係を上から見た模式図である。
図23乃至
図25の右側の図は、各オブジェクトの位置関係が左側の図の状態の場合の第1レイヤ乃至第3レイヤのテクスチャ画像の例を示している。
【0165】
なお、
図23乃至
図25の各レイヤのテクスチャ画像は時系列に並んでおり、人331の後ろを車332が左から右方向に移動している状態における各レイヤのテクスチャ画像の例が示されている。
【0166】
図23乃至
図25の例では、最近距離閾値TH1乃至TH3が設定されている。最近距離閾値TH1は0に設定されている。最近距離閾値TH2は、視点Pから人331と車332の間の位置までの距離に設定されている。最近距離閾値TH3は、視点Pから車332とビル333乃至家338との間の位置までの距離に設定されている。
【0167】
従って、第1レイヤのテクスチャ画像では、視点Pからの視線方向の距離が最近距離閾値TH1以上である人331乃至家338の全てのオブジェクトが描画対象となる。第2レイヤのテクスチャ画像では、視点Pからの視線方向の距離が最近距離閾値TH2以上である車332乃至家338が描画対象となり、視点Pからの視線方向の距離が最近距離閾値TH2未満である人331が描画対象から除外される。第3レイヤのテクスチャ画像では、視点Pからの視線方向の距離が最近距離閾値TH3以上であるビル333乃至家338が描画対象となり、視点Pからの視線方向の距離が最近距離閾値TH3未満である人331および車332が描画対象から除外される。
【0168】
従って、第1レイヤのテクスチャ画像では、車332が右方向に移動するにつれて、車332が人331の陰に隠れるようになる。一方、第2レイヤのテクスチャ画像では、人331が除去されるため、車332が左から右方向に移動する様子が全て描画される。また、第3レイヤのテクスチャ画像では、人331および車332が除去されるため、人331と車332の背景であるビル333乃至家338の全体が描画される。
【0169】
なお、以上の説明では、各レイヤのテクスチャ画像の生成方法について説明したが、各レイヤのデプス画像の生成方法も同様である。
【0170】
(表示装置の構成例)
図26は、本開示を適用した画像処置装置としての表示装置の第2実施の形態の構成例を示すブロック図である。
【0171】
図26に示す構成のうち、
図12の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0172】
図26の表示装置400の構成は、描画部404が新たに設けられる点、並びに、受信部201、記憶部202、デコーダ203、および表示部206の代わりに、受信部401、記憶部402、デコーダ403、および表示部405が設けられる点が、
図12の表示装置200の構成と異なる。表示装置400は、視点テクスチャストリーム、視点デプスストリーム、全天球テクスチャストリーム、および全天球デプスストリームに加えて、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームに基づいて表示画像を生成する。
【0173】
表示装置400の受信部401は、生成装置300から送信されてくる2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、並びに、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを受信し、記憶部402に供給する。
【0174】
記憶部402は、受信部401から供給される2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、並びに、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを記憶する。
【0175】
デコーダ403は、記憶部402から2視点の視点テクスチャストリームおよび視点デプスストリーム、全天球テクスチャストリームおよび全天球デプスストリーム、および、各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、復号する。デコーダ403は、復号の結果得られる2視点のテクスチャ画像およびデプス画像、並びに、全天球画像のテクスチャ画像およびデプス画像を再構成部204に供給する。また、デコーダ403は、復号の結果得られる各レイヤのテクスチャ画像およびデプス画像を描画部404に供給する。
【0176】
描画部404(画像生成部)は、デコーダ403から供給される各レイヤのテクスチャ画像およびデプス画像を用いて、表示画像を生成する。例えば、描画部404は、視聴者等により指定されたレイヤのテクスチャ画像を用いて、2次元の表示画像を生成する。或いは、例えば、描画部404は、視聴者等により指定されたレイヤのテクスチャ画像およびデプス画像を用いて、3次元の表示画像を生成する。描画部404は、表示画像を表示部405に供給する。
【0177】
表示部405は、描画部205または描画部404から供給される表示画像を表示する。
【0178】
(表示装置の処理の説明)
次に、表示装置400の処理について説明する。なお、表示装置400が、視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを用いて表示画像を生成し、表示する処理は、
図12の表示装置200と同様であり、その説明は省略する。そして、
図27のフローチャートを参照して、表示装置400が、各レイヤのテクスチャストリームおよびデプスストリームを用いて表示画像を生成し、表示する処理について説明する。
【0179】
ステップS201において、デコーダ403は、記憶部402から各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、復号する。デコーダ403は、復号の結果得られる各レイヤのテクスチャ画像およびデプス画像を描画部404に供給する。
【0180】
ステップS202において、描画部404は、各レイヤのテクスチャ画像およびデプスストリームを用いて、表示画像を生成する。例えば、描画部404は、視聴者等により指定されたレイヤのテクスチャ画像を用いて、2次元の表示画像を生成する。或いは、例えば、描画部404は、視聴者等により指定されたレイヤのテクスチャ画像およびデプス画像を用いて、3次元の表示画像を生成する。描画部404は、表示画像を表示部405に供給する。
【0181】
ステップS36において、表示部405は、描画部404から供給される表示画像を表示し、処理を終了する。
【0182】
例えば、上述した
図23乃至
図25の例において、第1レイヤの表示が指定された場合、全てのオブジェクトを含む第1レイヤの2次元または3次元の表示画像が表示される。第2レイヤの表示が指定された場合、人331を除いた第2レイヤの2次元または3次元の表示画像が表示される。第3レイヤの表示が指定された場合、人331および車332を除いた第3レイヤの2次元または3次元の表示画像が表示される。
【0183】
このように、視聴者はレイヤを指定することにより、視点Pからの視線方向の距離に応じて、各オブジェクトの表示または非表示を制御することができる。例えば、視聴者は、下位のレイヤを指定することにより、視点Pに近いオブジェクトを非表示とし、非表示とされたオブジェクトの陰に隠れていたオブジェクトを表示させ、視認することができる。
【0184】
(レイヤ画像生成処理の変形例)
ここで、
図28乃至
図30を参照して、レイヤ画像生成処理の変形例について説明する。この例では、上位のレイヤで描画されたオブジェクトの全部または一部が、下位のレイヤでは描画されない。
【0185】
図28乃至
図30は、上述した
図23乃至
図25と同じオブジェクトの配置に対して、上位のレイヤで描画されたオブジェクトの全部または一部を下位のレイヤで描画しないようにした場合の各レイヤのテクスチャ画像の例を示している。
【0186】
図28の第1レイヤのテクスチャ画像では、ビル333、家334、家335、およびビル336の一部が、人331および車332の陰に隠れている。従って、第2レイヤのテクスチャ画像では、第1レイヤのテクスチャ画像において人331および車332の陰に隠れている部分のみ描画される。第2レイヤのテクスチャ画像では、他のオブジェクトの陰に隠れているオブジェクトが存在しないため、第3レイヤのテクスチャ画像では、何も描画されない。
【0187】
図29の第1レイヤのテクスチャ画像では、車332、家335、およびビル336の一部が人331の陰に隠れている。また、家334および家335の一部が、車332の陰に隠れている。従って、第2レイヤのテクスチャ画像では、第1レイヤのテクスチャ画像において人331および車332の陰に隠れている部分のみ描画される。第2レイヤのテクスチャ画像では、家335の一部が、車332の陰に隠れている。従って、第3レイヤのテクスチャ画像では、第2レイヤのテクスチャ画像において車332の陰に隠れている部分のみ描画される。
【0188】
図30の第1レイヤのテクスチャ画像では、車332全体、並びに、家335およびビル336の一部が、人331の陰に隠れている。従って、第2レイヤのテクスチャ画像では、第1レイヤのテクスチャ画像において人331の陰に隠れている部分のみ描画される。第2レイヤのテクスチャ画像では、家335およびビル336の一部が、車332の陰に隠れている。従って、第3レイヤのテクスチャ画像では、第2レイヤのテクスチャ画像において車332の陰に隠れている部分のみ描画される。
【0189】
<第3実施の形態>
(表示装置の構成例)
図31は、本開示を適用した画像処置装置としての表示装置の第3実施の形態の構成例を示すブロック図である。
【0190】
図31に示す構成のうち、
図26の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
【0191】
図31の表示装置500の構成は、セグメント情報生成部501が新たに設けられる点、並びに、描画部404の代わりに、描画部502が設けられる点が、
図26の表示装置400の構成と異なる。表示装置500は、各レイヤのレイヤ画像内の各オブジェクトの表示形態を個別に変更することができる。例えば、表示装置500は、各オブジェクトの全部または一部の表示または非表示、移動、回転、拡大または縮小、変形、各オブジェクトの濃淡、色、輝度、解像度、または透明度の変更等を個別に行うことができる。
【0192】
表示装置500のセグメント情報生成部501は、デコーダ403から供給される各レイヤのテクスチャ画像およびデプス画像を用いて、セグメンテーションテーブルを生成する。セグメンテーションテーブルは、
図35を参照して後述するように、各レイヤのレイヤ画像(テクスチャ画像およびデプス画像)において各オブジェクトが存在するセグメントのレイヤ方向および画素方向の位置を示すセグメント情報である。セグメント情報生成部501は、各レイヤのテクスチャ画像およびデプス画像、並びに、セグメンテーションテーブルを描画部502に供給する。また、セグメント情報生成部501は、セグメンテーションテーブルを記憶部402に記憶させる。
【0193】
描画部502(画像生成部)は、セグメント情報生成部501から供給される各レイヤのテクスチャ画像およびデプス画像、並びに、セグメンテーションテーブルを用いて、表示画像を生成する。例えば、描画部502は、視聴者等により指定されたレイヤのテクスチャ画像を用いて、2次元の表示画像を生成する。或いは、例えば、描画部502は、視聴者等により指定されたレイヤのテクスチャ画像およびデプス画像を用いて、3次元の表示画像を生成する。また、描画部502は、視聴者等による指定に基づいて、表示画像内の各オブジェクトの表示形態を変更する。描画部502は、表示画像を表示部405に供給する。
【0194】
(表示装置の処理の説明)
次に、表示装置500の処理について説明する。なお、表示装置500が、視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを用いて表示画像を生成し、表示する処理は、
図12の表示装置200と同様であり、その説明は省略する。そして、
図32のフローチャートを参照して、表示装置500が、各レイヤのテクスチャストリームおよびデプスストリームを用いて表示画像を生成し、表示する処理について説明する。
【0195】
ステップS301において、デコーダ403は、記憶部402から各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、復号する。デコーダ403は、復号の結果得られる各レイヤのテクスチャ画像およびデプス画像をセグメント情報生成部501に供給する。
【0196】
ステップS302において、セグメント情報生成部501は、セグメント情報生成処理を行う。
【0197】
ここで、
図33のフローチャートを参照して、セグメント情報生成処理の詳細について説明する。なお、適宜、
図34および
図35を参照しながら、セグメント情報生成処理の具体例について説明する。
図34は、第1乃至第3レイヤのテクスチャ画像のセグメントの例を示し、
図35は、セグメンテーションテーブルの例を示している。
【0198】
ステップS331において、セグメント情報生成部501は、各レイヤのテクスチャ画像に対してセグメンテーションを実行する。具体的には、セグメント情報生成部501は、各レイヤのテクスチャ画像を、所定の方法によりオブジェクト毎に1つ以上のセグメントに分割する。
【0199】
なお、セグメンテーションの方法には、任意の方法を採用することができる。また、テクスチャ画像の画素値だけでなく、デプス画像のデプス値を用いて、セグメンテーションを行ってもよい。
【0200】
また、セグメント情報生成部501は、各レイヤのテクスチャ画像のセグメントを一意に識別するセグメント番号を付ける。セグメント番号は、上位のレイヤのテクスチャ画像のセグメントから0から昇順に付与される。
【0201】
例えば、
図34の例では、第1レイヤのテクスチャ画像において、セグメント番号0乃至3の4つのセグメントが認識されている。第2レイヤのテクスチャ画像において、セグメント番号4乃至6の3つのセグメントが認識されている。第3レイヤのテクスチャ画像において、セグメント番号7および8の2つのセグメントが認識されている。
【0202】
さらに、セグメント情報生成部501は、セグメンテーションの結果に基づいて、セグメンテーションテーブルを生成する。例えば、
図35のセグメンテーションテーブルには、レイヤ毎に、レイヤ画像の各画素のx座標、y座標、およびセグメント番号(seg)が設定される。従って、セグメンテーションテーブルには、各レイヤのレイヤ画像の画素毎に、各画素が属するセグメントのセグメント番号が示される。
【0203】
なお、最上位の第1レイヤの各セグメントのセグメント番号は、この処理で付与されたセグメント番号で確定する。例えば、
図34の例において、第1レイヤの各セグメントのセグメント番号は、セグメント番号0乃至3で確定する。これに伴い、第1レイヤのレイヤ画像の各画素のセグメント番号も確定する。
【0204】
ステップS332において、セグメント情報生成部501は、セグメント番号が未確定のレイヤのうち最上位のレイヤを選択する。なお、最初のステップS332の処理では、第2レイヤが選択される。
【0205】
なお、以下、選択されたレイヤを注目レイヤともいう。
【0206】
ステップS333において、セグメント情報生成部501は、選択したレイヤにおいて、セグメント番号が未確定の画素のうち1つを選択する。
【0207】
なお、以下、選択された画素を注目画素ともいう。
【0208】
ステップS334において、セグメント情報生成部501は、選択した画素の画素値を上位のレイヤの画素値と比較する。すなわち、セグメント情報生成部501は、注目レイヤのテクスチャ画像の注目画素の画素値を、注目レイヤより上位の各レイヤのテクスチャ画像の同じ位置の画素の画素値と比較する。
【0209】
ステップS334において、セグメント情報生成部501は、画素値の比較結果に基づいて、選択した画素を含むセグメント番号を確定する。具体的には、セグメント情報生成部501は、注目レイヤのテクスチャ画像の注目画素と画素値が一致する画素が上位のレイヤのテクスチャ画像に存在する場合、その上位のレイヤのテクスチャ画像の画素を含むセグメントと、注目画素を含むセグメントが同じオブジェクトに対応するセグメントであると認識する。そして、セグメント情報生成部501は、注目画素を含むセグメントのセグメント番号を、その上位のレイヤのテクスチャ画像の画素のセグメント番号と同じ値に更新する。また、注目レイヤにおいて注目画素と同じセグメントに属する画素のセグメント番号を、当該更新後のセグメント番号に更新し、確定する。これにより、同じオブジェクトに対応するセグメントがレイヤ間で対応付けられる。
【0210】
例えば、
図34の例において、第2レイヤのセグメント番号4のセグメントが、第1レイヤのセグメント番号0のセグメントと同じオブジェクトに対応するセグメントであると認識され、セグメント番号が0に更新され、確定する。第2レイヤのセグメント番号5のセグメントが、第1レイヤのセグメント番号2のセグメントと同じオブジェクトに対応するセグメントであると認識され、セグメント番号が2に更新され、確定する。第2レイヤのセグメント番号6のセグメントが、第1レイヤのセグメント番号3のセグメントと同じオブジェクトに対応するセグメントであると認識され、セグメント番号が3に更新され、確定する。第3レイヤのセグメント番号7のセグメントが、第1レイヤのセグメント番号0のセグメントと同じオブジェクトに対応するセグメントであると認識され、セグメント番号が0に更新され、確定する。第3レイヤのセグメント番号8のセグメントが、第1レイヤのセグメント番号3のセグメントと同じオブジェクトに対応するセグメントであると認識され、セグメント番号が3に更新され、確定する。
【0211】
一方、セグメント情報生成部501は、注目レイヤのテクスチャ画像の注目画素と画素値が一致する画素が上位のレイヤのテクスチャ画像に存在しない場合、注目画素を含むセグメントのセグメント番号を、現在のセグメント番号で確定する。また、注目レイヤにおいて注目画素と同じセグメントに属する画素のセグメント番号を、現在のセグメント番号で確定する。
【0212】
セグメント情報生成部501は、セグメンテーションテーブルにおいて、確定した各画素のセグメント番号を更新する。
【0213】
ステップS336において、セグメント情報生成部501は、選択したレイヤにおいて、セグメント番号が未確定の画素があるか否かを判定する。選択したレイヤにおいて、セグメント番号が未確定の画素があると判定された場合、処理はステップS333に戻る。
【0214】
その後、ステップS336において、セグメント番号が未確定の画素がないと判定されるまで、ステップS333乃至S336の処理が繰り返し実行される。これにより、注目レイヤの全ての画素のセグメント番号が確定する。
【0215】
一方、ステップS336において、セグメント番号が未確定の画素がないと判定された場合、処理はステップS337に進む。
【0216】
ステップS337において、セグメント情報生成部501は、セグメント番号が未確定のレイヤがあるか否かを判定する。セグメント番号が未確定のレイヤがあると判定された場合、処理はステップS332に戻る。
【0217】
その後、ステップS337において、セグメント番号が未確定のレイヤがないと判定されるまで、ステップS332乃至S337の処理が繰り返し実行される。これにより、全てのレイヤの全ての画素のセグメント番号が確定する。
【0218】
一方、ステップS337において、セグメント番号が未確定のレイヤがないと判定された場合、処理はステップS338に進む。
【0219】
ステップS338において、セグメント情報生成部501は、各レイヤのテクスチャ画像およびデプス画像、並びに、セグメンテーションテーブルを出力する。すなわち、セグメント情報生成部501は、各レイヤのテクスチャ画像およびデプス画像、並びに、セグメンテーションテーブルを描画部502に供給する。また、セグメント情報生成部501は、セグメンテーションテーブルを記憶部402に記憶させる。
【0220】
図32に戻り、ステップS303において、描画部502は、オブジェクトの非表示が指示されたか否かを判定する。例えば、視聴者は、あるオブジェクトを非表示にしたい場合、表示するレイヤ、および非表示にするオブジェクトを指定する。そして、描画部502は、オブジェクトの非表示が指示されたと判定された場合、処理はステップS304に進む。なお、描画部502は、セグメンテーションテーブルに基づいて、指定された非表示にするオブジェクトに対応するセグメントのセグメント番号を求める。
【0221】
ステップS304において、描画部502は、描画対象画素選択処理を実行する。ここで、
図36のフローチャートを参照して、描画対象画素選択処理の詳細について説明する。
【0222】
ステップS361において、描画部502は、未処理の画素のうち1つを選択する。
【0223】
なお、以下、選択された画素を注目画素ともいう。
【0224】
ステップS362において、描画部502は、
図32のステップS303の処理で指定されたレイヤを選択する。なお、描画部502は、表示するレイヤが指定されていない場合、例えば、最上位のレイヤを選択する。
【0225】
なお、以下、選択されたレイヤを注目レイヤともいう。
【0226】
ステップS363において、描画部502は、非表示にするオブジェクトの画素であるか否かを判定する。具体的には、描画部502は、セグメンテーションテーブルにおいて、注目レイヤを注目画素のセグメント番号が、非表示にするオブジェクトのセグメント番号と一致する場合、非表示にするオブジェクトの画素であると判定し、処理はステップS364に進む。
【0227】
ステップS364において、描画部502は、下位のレイヤがあるか否かを判定する。下位のレイヤがあると判定された場合、処理はステップS365に進む。
【0228】
ステップS365において、描画部502は、1つ下位のレイヤを選択する。これにより、注目レイヤが1つ下位のレイヤに変更される。
【0229】
その後、処理はステップS363に戻り、ステップS363において、非表示にするオブジェクトの画素でないと判定されるか、ステップS364において、下位のレイヤがないと判定されるまで、ステップS363乃至S365の処理が繰り返し実行される。
【0230】
一方、ステップS363において、非表示にするオブジェクトの画素でないと判定された場合、または、ステップS364において、下位のレイヤがないと判定された場合、処理はステップS366に進む。
【0231】
ステップS366において、描画部502は、現在のレイヤの画素を描画対象画素に設定する。すなわち、描画部502は、注目レイヤのテクスチャ画像の注目画素、および、注目レイヤのデプス画像の注目画素を描画対象画素に設定する。
【0232】
これにより、指定されたレイヤ以下の各レイヤの注目画素の中に、非表示にするオブジェクト以外のオブジェクトの画素がある場合、そのうちの最も上位のレイヤの画素が描画対象画素に設定される。これにより、例えば、指定されたレイヤのレイヤ画像において非表示にするオブジェクトに対応するセグメントの画素の代わりに、指定されたレイヤより下位のレイヤのレイヤ画像の同じ位置の画素であって、非表示にするオブジェクトに対応するセグメントと異なるセグメントの画素が、描画対象画素に用いられるようになる。
【0233】
一方、指定されたレイヤ以下の各レイヤの注目画素の中に、非表示にするオブジェクト以外のオブジェクトの画素がない場合、例えば、最下位のレイヤの注目画素が描画対象画素に設定される。
【0234】
なお、指定されたレイヤ以下の各レイヤの注目画素の中に、非表示にするオブジェクト以外のオブジェクトの画素がない場合、例えば、描画対象画素の画素値およびデプス値を所定の値に設定したり、所定の方法により算出したりするようにしてもよい。
【0235】
ステップS367において、描画部502は、未処理の画素があるか否かを判定する。未処理の画素があると判定された場合、処理はステップS361に戻る。
【0236】
その後、ステップS367において、未処理の画素がないと判定されるまで、ステップS361乃至S367の処理が繰り返し実行される。これにより、各画素について、指定されたレイヤ以下の画素の中から描画対象画素が1つ選択される。
【0237】
一方、ステップS367において、未処理の画素がないと判定された場合、描画対象画素選択処理は終了する。
【0238】
図32に戻り、ステップS305において、描画部502は、描画対象画素を用いて表示画像を生成する。描画部502は、各レイヤのテクスチャ画像から描画対象画素のみを抽出して、元の画素の順番に並べることにより、表示用のテクスチャ画像を生成する。また、描画部502は、各レイヤのデプス画像から描画対象画素のみを抽出して、元の画素の順番に並べることにより、表示用のデプス画像を生成する。描画部502は、表示用のテクスチャ画像およびデプス画像を用いて、上述した
図27のステップS202と同様の処理により、表示画像を生成する。描画部502は、表示画像を表示部405に供給する。
【0239】
その後、処理はステップS307に進む。
【0240】
一方、ステップS303において、オブジェクトの非表示が指示されなかったと判定された場合、処理はステップS306に進む。
【0241】
ステップS306において、上述した
図27のステップS202の処理と同様に、各レイヤのテクスチャ画像およびデプス画像を用いて、表示画像が生成される。
【0242】
その後、処理はステップS307に進む。
【0243】
ステップS307において、上述した
図24のステップS203の処理と同様に、表示画像が表示される。
【0245】
図37乃至
図39は、上述した処理により、所定のオブジェクトを非表示にする場合の例を示している。なお、
図37乃至
図39に示す構成のうち、
図23乃至
図25の構成と同じ構成には同じ符号を付してある。
【0246】
図37乃至
図39の左側の図は、各オブジェクトの位置関係を上から見た模式図である。
図37乃至
図39の右側の上の図は、各オブジェクトの位置関係が左側の図の状態の場合の第1レイヤ乃至第3レイヤのテクスチャ画像の例を示している。
図37乃至
図39の右側の下の図は、車332を非表示にした場合の第1レイヤ乃至第3レイヤの表示画像の例を示している。
【0247】
なお、
図37乃至
図39の各レイヤのテクスチャ画像および表示画像は時系列に並んでおり、車332が右斜め後方から右方向に進路を変えながら、人331の後方を進んでいる例が示されている。
【0248】
図37の車332の位置において、第1レイヤのテクスチャ画像では、人331と車332が重なることなく描画されている。第2レイヤのテクスチャ画像では、車332のうち最近距離閾値TH2より遠くにある部分のみが描画されている。第3レイヤのテクスチャ画像では、人331も車332も描画されていない。そして、上述した表示処理を行うことにより、第1レイヤおよび第2レイヤの表示画像において、車332のみを非表示にすることができる。
【0249】
図38の車332の位置において、第1レイヤのテクスチャ画像では、車332の一部が人331の陰に隠れている。第2レイヤのテクスチャ画像では、車332全体が描画されている。第3レイヤのテクスチャ画像では、人331も車332も描画されていない。そして、上述した表示処理を行うことにより、第1レイヤおよび第2レイヤの表示画像において、車332のみを非表示にすることができる。
【0250】
図39の車332の位置において、第1レイヤのテクスチャ画像では、車332が人331の陰に隠れ、描画されていない。第2レイヤのテクスチャ画像では、車332全体が描画されている。第3レイヤのテクスチャ画像では、人331も車332も描画されていない。そして、上述した表示処理を行うことにより、第2レイヤの表示画像において、車332のみを非表示にすることができる。
【0251】
このようにして、各レイヤの表示画像(実写コンテンツ)において、撮影時や画像生成時等に特別な処理を行うことなく、各オブジェクトの表示または非表示を容易に切り替えることができる。
【0252】
なお、以上の説明では、主に各オブジェクトの全体の表示または非表示を切り替える例を示したが、表示装置500は、それ以外の各オブジェクトの表示形態を変更することも可能である。すなわち、表示装置500は、各オブジェクトの位置を把握するとともに、各オブジェクトの陰に隠れている部分を描画することができるので、各オブジェクトの表示形態を容易に変更することができる。例えば、表示装置500は、各オブジェクトの一部の表示または非表示、移動、回転、拡大または縮小、変形、各オブジェクトの濃淡、色、輝度、解像度、または透明度の変更等を行うことができる。
【0253】
<変形例>
以下、上述した本開示の実施の形態の変形例について説明する。
【0254】
(テクスチャ画像の他の例)
図40は、テクスチャ画像の他の例を示す図である。
【0255】
上述した説明では、テクスチャ画像は、1つの視点のテクスチャ画像であったが、その視点に対応する左目用の視点と右目用の視点のテクスチャ画像が合成されたものであってもよい。
【0256】
具体的には、
図40のAに示すように、テクスチャ画像は、例えば、1つの視点に対応する左目用の視点のテクスチャ画像601と右目用の視点のテクスチャ画像602が、横方向(水平方向)にパッキングされたパッキング画像600であってもよい。
【0257】
また、
図40のBに示すように、テクスチャ画像は、例えば、テクスチャ画像601とテクスチャ画像602が、縦方向(垂直方向)にパッキングされたパッキング画像620であってもよい。
【0258】
以上のように、テクスチャ画像が左目用の視点と右目用の視点の画像をパッキングしたテクスチャ画像である場合、復号の結果得られるテクスチャ画像が、左目用の視点のテクスチャ画像と右目用の視点のテクスチャ画像に分離される。そして、目ごとに3次元構造が生成される。
【0259】
そして、視聴者等により指定された視点に対応する左目の視点、視線方向、および画角に基づいて、左目用の3次元構造から左目用の表示画像が生成される。また、視聴者等により指定された視点に対応する右目の視点、視線方向、および画角に基づいて、右目用の3次元構造から右目用の表示画像が生成される。
【0260】
表示部206(405)が3D表示可能である場合、表示部206(405)は、左目用の表示画像を左目用の画像として表示し、右目用の表示画像を右目用の画像として表示することにより、表示画像を3D表示する。一方、表示部206(405)が3D表示可能ではない場合、表示部206(405)は、左目用の表示画像または右目用の表示画像を2D表示する。
【0261】
(カメラの配置に関する変形例)
第2および第3の実施の形態において、
図19および
図20に示される撮影装置11の配置は、その一例であり、撮影対象となるオブジェクト等により任意に変更することが可能である。
【0262】
例えば、各オブジェクトを含む領域の周囲のうち、水平方向のみ取り囲むように撮影装置11を配置し、垂直方向の取り囲みは行わないようにしてもよい。
【0263】
また、レイヤ画像を生成する視点の位置に1台の撮影装置11を設置し、複数の異なる時刻において、1台の撮影装置11により視線方向を撮影することにより得られる複数のテクスチャ画像およびデプス画像に基づいて、各レイヤのテクスチャ画像およびデプス画像を生成するようにしてもよい。すなわち、所定の視点から所定の視線方向を定点観察することにより得られる複数のテクスチャ画像およびデプス画像に基づいて、各レイヤのテクスチャ画像およびデプス画像を生成するようにしてもよい。これにより、例えば、移動体であるオブジェクトが存在する状態と存在しない状態のテクスチャ画像およびデプス画像が得られ、容易に各レイヤのテクスチャ画像およびデプス画像を生成することができる。
【0264】
(その他の変形例)
例えば、第2および第3実施の形態において、複数の視点および視線方向の組を設定し、各組について複数のレイヤのレイヤ画像を生成するようにしてもよい。或いは、1つの視点に対して複数の視線方向を設定し、視線方向毎に複数のレイヤのレイヤ画像を生成するようにしてもよい。そして、視聴者等が視点、視線方向、およびレイヤを指定することにより、表示装置400または表示装置500が、所望の視点からの視線方向の表示画像のうち、所望のレイヤの表示画像を表示するようにしてもよい。
【0265】
また、例えば、第2および第3実施の形態において、2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームの生成処理および表示処理を行う構成を削除することも可能である。
【0266】
さらに、生成装置12(300)は、表示装置200から要求されたときのみ記憶部39(305)に記憶されている2視点の視点テクスチャストリームおよび視点デプスストリーム、並びに、全天球テクスチャストリームおよび全天球デプスストリームを読み出し、表示装置200に送信するようにしてもよい。テーブルの送信についても同様である。
【0267】
また、生成装置300は、表示装置400(500)から要求されたときのみ記憶部305に記憶されている各レイヤのレイヤテクスチャストリームおよびレイヤデプスストリームを読み出し、表示装置400(500)に送信するようにしてもよい。
【0268】
さらに、生成装置300が、
図35に示されるセグメンテーションテーブルを生成し、表示装置400または500に送信するようにしてもよい。
【0269】
また、例えば、生成装置300が、N個の撮影画像とデプス画像、または、N個の撮影画像とデプス画像に基づく3次元モデルを表示装置400(500)に送信し、表示装置400(500)が、各レイヤのテクスチャ画像およびデプス画像を生成するようにしてもよい。
【0270】
さらに、例えば、第3実施の形態では、他のオブジェクトの陰に隠れているオブジェクトの3次元的な移動速度を算出することが可能である。
【0271】
例えば、あるオブジェクトに対応するセグメントが存在する最も下位のレイヤにおけるセグメント(オブジェクト)の座標とデプス値を時系列に求めていくことで、そのオブジェクトの3次元的な移動速度が算出できる。
【0272】
ここで、
図41および
図42を参照して、車332の移動速度を算出する場合の例について説明する。なお、
図41および
図42に示す構成のうち、
図23乃至
図25の構成と同じ構成には同じ符号を付してある。
【0273】
図41および
図42の左側の図は、各オブジェクトの位置関係を上から見た模式図である。
図41および
図42の右側の上の図は、各オブジェクトの位置関係が左側の図の状態の場合の第1レイヤ乃至第3レイヤのテクスチャ画像の例を示している。
図41および
図42の右側の下の図は、第1レイヤ乃至第3レイヤのデプス画像の例を示している。
【0274】
なお、
図41および
図42の各レイヤのテクスチャ画像およびデプス画像は時系列に並んでおり、車332が家334の前から人331の後方まで右斜め前方に進んでいる例が示されている。
【0275】
図41の状態において、車332は、第2レイヤおよび第3レイヤのテクスチャ画像およびデプス画像に描画されている。一方、
図42の状態において、車332は、第3レイヤのテクスチャ画像およびデプス画像から消え、第2レイヤのテクスチャ画像およびデプス画像のみに描画されている。
【0276】
例えば、
図41の状態において、車332の所定の点(以下、注目点という)の第3レイヤのテクスチャ画像における座標を(x
3,y
3)とする。また、車332の注目点の第3レイヤのデプス画像におけるデプス値をD
3とする。一方、
図42の状態において、車332の注目点の第2レイヤのテクスチャ画像における座標を(x
2,y
2)とする。また、車332の注目点の第2レイヤのデプス画像におけるデプス値をD
2とする。さらに、
図41の状態から
図42の状態になるまでの時間をtとする。
【0277】
そうすると、
図41の状態から
図42の状態なるまでの車332の3次元の移動速度vは、次式(1)により算出される。
【0279】
このように、人331の陰に隠れている車332の速度を算出することができる。
【0280】
<応用例>
(本開示を適用したコンピュータの説明)
上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
【0281】
図43は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
【0282】
コンピュータ800において、CPU(Central Processing Unit)801,ROM(Read Only Memory)802,RAM(Random Access Memory)803は、バス804により相互に接続されている。
【0283】
バス804には、さらに、入出力インタフェース805が接続されている。入出力インタフェース805には、入力部806、出力部807、記憶部808、通信部809、及びドライブ810が接続されている。
【0284】
入力部806は、キーボード、マウス、マイクロフォンなどよりなる。出力部807は、ディスプレイ、スピーカなどよりなる。記憶部808は、ハードディスクや不揮発性のメモリなどよりなる。通信部809は、ネットワークインタフェースなどよりなる。ドライブ810は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア811を駆動する。
【0285】
以上のように構成されるコンピュータ800では、CPU801が、例えば、記憶部808に記憶されているプログラムを、入出力インタフェース805及びバス804を介して、RAM803にロードして実行することにより、上述した一連の処理が行われる。
【0286】
コンピュータ800(CPU801)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア811に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
【0287】
コンピュータ800では、プログラムは、リムーバブルメディア811をドライブ810に装着することにより、入出力インタフェース805を介して、記憶部808にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部809で受信し、記憶部808にインストールすることができる。その他、プログラムは、ROM802や記憶部808に、あらかじめインストールしておくことができる。
【0288】
なお、コンピュータ800が実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0289】
(移動体制御システムへの適用例)
本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
【0290】
図44は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。
図44に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。
【0291】
各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。
図44では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。
【0292】
駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。
【0293】
駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。
【0294】
ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
【0295】
バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。
【0296】
車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。
【0297】
環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。
【0298】
ここで、
図45は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
【0299】
なお、
図45には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。
【0300】
車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920〜7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。
【0301】
図44に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。
【0302】
また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。
【0303】
車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。
【0304】
統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。
【0305】
記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。
【0306】
汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE−A(LTE−Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi−Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。
【0307】
専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。
【0308】
測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。
【0309】
ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。
【0310】
車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。
【0311】
車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。
【0312】
統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。
【0313】
マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。
【0314】
音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。
図44の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
【0315】
なお、
図44に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。
【0316】
なお、
図1乃至
図42を用いて説明した本実施形態に係る生成装置12(300)および表示装置200(400,500)の各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
【0317】
以上説明した車両制御システム7000において、
図1乃至
図42を用いて説明した本実施形態に係る生成装置12(300)および表示装置200(400,500)を適用することができる。この場合、例えば、生成装置12(300)および表示装置200(400,500)は一体化され、マイクロコンピュータ7610、記憶部7690、および表示部7720に相当する。また、撮影装置11は、撮像部7410に相当する。この場合、例えば、車両制御システム7000は、レイヤ構造のテクスチャ画像とデプス画像を用いて、前方のオブジェクトの陰に隠れている他のオブジェクトを検出したり、各オブジェクトの移動速度を検出したりすることができる。
【0318】
また、
図1乃至
図42を用いて説明した生成装置12(300)および表示装置200(400,500)の少なくとも一部の構成要素は、
図44に示した車両制御システム7000のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、
図1乃至
図42を用いて説明した生成装置12(300)および表示装置200(400,500)は、
図44に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。
【0319】
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0320】
また、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
【0321】
例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
【0322】
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0323】
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0324】
なお、本開示は、以下のような構成もとることができる。
【0325】
(1)
複数の撮影画像に基づいて生成された画像であって、所定の視点からの距離に応じて複数のレイヤに階層化された画像である複数のレイヤ画像における各前記レイヤ画像に対して各オブジェクトが存在するセグメントの位置を示すセグメント情報に基づいて、表示画像内の各前記オブジェクトの表示形態を変更する画像生成部を
備える画像処理装置。
(2)
前記セグメント情報は、各前記セグメントのレイヤ方向および画素方向の位置を示す
前記(1)に記載の画像処理装置。
(3)
前記セグメント情報は、各前記レイヤ画像の各画素が属する前記セグメントを示し、前記レイヤ画像間で同じ前記オブジェクトに対応する前記セグメントが対応付けられている
前記(2)に記載の画像処理装置。
(4)
各前記レイヤ画像を前記オブジェクト毎に複数のセグメントに分割し、前記レイヤ画像間で同じ前記オブジェクトに対応する前記セグメントを対応付けることにより、前記セグメント情報を生成するセグメント情報生成部を
さらに備える前記(1)乃至(3)のいずれかに記載の画像処理装置。
(5)
前記画像生成部は、第1のレイヤの前記レイヤ画像において非表示とする前記オブジェクトに対応する第1のセグメントの画素の代わりに、前記第1のレイヤより下位の第2のレイヤの前記レイヤ画像の同じ位置の画素であって、前記第1のセグメントと異なる第2のセグメントの画素を用いて、前記表示画像を生成する
前記(1)乃至(4)のいずれかに記載の画像処理装置。
(6)
前記複数の撮影画像は、各前記オブジェクトを含む領域の周囲の少なくとも一部を取り囲むように配置された異なる視点から撮影した複数の画像を含む
前記(1)乃至(5)のいずれかに記載の画像処理装置。
(7)
前記複数のレイヤ画像は、前記異なる視点から撮影した前記複数の画像に基づいて3次元再構成を行うことにより生成される3次元モデルに基づいて生成される
前記(6)に記載の画像処理装置。
(8)
前記複数の撮影画像は、前記視点から異なる時刻に撮影した複数の画像を含む
前記(1)乃至(5)のいずれかに記載の画像処理装置。
(9)
各前記レイヤ画像には、前記視点からの所定の視線方向の距離が、前記レイヤ画像毎に設定された所定の閾値以上のオブジェクトが含まれる
前記(1)乃至(8)のいずれかに記載の画像処理装置。
(10)
各前記レイヤ画像は、テクスチャ画像およびデプス画像を含む
前記(1)乃至(9)のいずれかに記載の画像処理装置。
(11)
画像処理装置が
複数の撮影画像に基づいて生成された画像であって、所定の視点からの距離に応じて複数のレイヤに階層化された画像である複数のレイヤ画像における各前記レイヤ画像に対して各オブジェクトが存在するセグメントの位置を示すセグメント情報に基づいて、表示画像内の各前記オブジェクトの表示形態を変更する画像生成ステップを
含む画像処理方法。