(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6931394
(24)【登録日】2021年8月17日
(45)【発行日】2021年9月1日
(54)【発明の名称】分離レバー脱進機によって維持される、撓み支承体を有する回転共振器
(51)【国際特許分類】
G04B 17/04 20060101AFI20210823BHJP
G04B 15/14 20060101ALI20210823BHJP
【FI】
G04B17/04
G04B15/14 B
【請求項の数】22
【全頁数】16
(21)【出願番号】特願2019-527338(P2019-527338)
(86)(22)【出願日】2017年7月27日
(65)【公表番号】特表2019-537015(P2019-537015A)
(43)【公表日】2019年12月19日
(86)【国際出願番号】EP2017069040
(87)【国際公開番号】WO2018095594
(87)【国際公開日】20180531
【審査請求日】2019年5月21日
(31)【優先権主張番号】16200152.3
(32)【優先日】2016年11月23日
(33)【優先権主張国】EP
(73)【特許権者】
【識別番号】591048416
【氏名又は名称】ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス
(74)【代理人】
【識別番号】100098394
【弁理士】
【氏名又は名称】山川 茂樹
(74)【代理人】
【識別番号】100064621
【弁理士】
【氏名又は名称】山川 政樹
(72)【発明者】
【氏名】ウィンクレ,パスカル
(72)【発明者】
【氏名】エルフェ,ジャン−リュック
(72)【発明者】
【氏名】ディ・ドメニコ,ジャンニ
【審査官】
平野 真樹
(56)【参考文献】
【文献】
特表2013−531257(JP,A)
【文献】
特開2011−185932(JP,A)
【文献】
特表2018−503078(JP,A)
【文献】
特表2019−536034(JP,A)
【文献】
特表2019−536038(JP,A)
【文献】
特許第6810800(JP,B2)
【文献】
特許第6828180(JP,B2)
【文献】
特許第6828179(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
G04B 15/00−15/14,
17/00−17/34,
18/00−18/08
(57)【特許請求の範囲】
【請求項1】
計時器調整機構(300)であって、地板(1)上に配置した前記計時器調整機構(300)は、ある品質係数Qを有する共振器機構(100)、及びムーブメント(500)内に含まれる駆動手段(400)のトルクを受ける脱進機機構(200)を備え、前記共振器機構(100)は、前記板(1)に対して発振するように構成する慣性要素(2)を備え、前記慣性要素(2)は、前記板(1)に直接又は間接的に取り付けた弾性戻り手段(3)の作用を受け、前記慣性要素(2)は、前記脱進機機構(200)内に含まれるがんぎ車セット(4)と間接的に協働するように構成する、計時器調整機構(300)において、前記共振器機構(100)は、主軸(DP)回りに回転する仮想枢動部、及び少なくとも2つの可撓性条片(5)を含む撓み支承体を有する共振器であり、前記慣性要素(2)と一体である推進ピン(6)を含むこと、前記脱進機機構(200)は、第2の軸(DS)回りに枢動し前記推進ピン(6)と協働するように構成したレバー・フォーク(8)を含むレバー(7)を含み、分離脱進機機構であり、動作周期の間、前記共振器機構(100)は、前記推進ピン(6)が前記レバー・フォーク(8)からある距離にある少なくとも1つの自由段階を有すること、前記レバー(7)は、前記板(1)に対して枢動する心軸上に置いた単層シリコンであることを特徴とする、計時器調整機構(300)。
【請求項2】
一方の、前記主軸(DP)に対する前記慣性要素(2)の慣性IB、及びもう一方の、前記第2の軸(DS)に対する前記レバー(7)の慣性IAは、比率IB/IAが2Q.α2/(0.1.π.β2)を超えるようなものであり、式中、αは、前記レバー・フォーク(8)の最大角度行程に対応するレバーの持ち上がり角度であり、βは、前記推進ピン(6)が前記レバー・フォーク(8)に接触する間の前記共振器の持ち上がり角度である
ことを特徴とする、請求項1に記載の調整機構(300)。
【請求項3】
全体的な前記共振器の持ち上がり角度(β)は、前記慣性要素(2)が一運動方向のみにおいて静止位置から最も遠くに逸れる振幅角度の2倍未満であることを特徴とする、請求項1または2のいずれかに記載の調整機構(300)。
【請求項4】
前記慣性要素(2)が静止位置から最も遠くに逸れる振幅角度は、5°から40°までの間に含まれることを特徴とする、請求項1から3のいずれかに記載の調整機構(300)。
【請求項5】
前記レバー(7)は、前記板(1)に対して枢動する心軸上に置いた単層シリコンであることを特徴とする、請求項1から4のいずれかに記載の調整機構(300)。
【請求項6】
前記がんぎ車セット(4)は、シリコンがんぎ車であることを特徴とする、請求項1から5のいずれかに記載の調整機構(300)。
【請求項7】
前記がんぎ車セット(4)は、前記がんぎ車セット(4)の枢動軸に対する慣性を最小にするため、穴のあいたがんぎ車であることを特徴とする、請求項1から6のいずれかに記載の調整機構(300)。
【請求項8】
前記レバー(7)は、前記第2の軸(DS)に対する慣性(IA)を最小にするため、穴があいていることを特徴とする、請求項1から7のいずれかに記載の調整機構(300)。
【請求項9】
前記レバー(7)は、前記第2の軸(DS)線に対して対称であることを特徴とする、請求項1から8のいずれかに記載の調整機構(300)。
【請求項10】
前記慣性要素(2)の最大寸法は、前記板(1)の最大寸法の半分を超えることを特徴とする、請求項1から9のいずれかに記載の調整機構(300)。
【請求項11】
前記主軸(DP)、前記第2の軸(DS)、及び前記がんぎ車セット(4)の枢動軸(DE)は、頂点が前記第2の軸(DS)上にある直角を中心に置かれるように構成することを特徴とする、請求項1から10のいずれかに記載の調整機構(300)。
【請求項12】
前記撓み支承体は、2つの可撓性条片(5)を含み、前記可撓性条片(5)は、前記主軸(DP)を画定する前記仮想枢動部において、前記主軸(DP)に直交する平面上で突出する状態で交差し、2つの平行な、異なる段に位置することを特徴とする、請求項1から11のいずれかに記載の調整機構(300)。
【請求項13】
前記主軸(DP)に直交する平面上に突出する前記2つの可撓性条片(5)は、59.5°から69.5°の間に含まれる角度を間に形成し、前記2つの可撓性条片(5)の長さの10.75%から14.75%の間で交差し、前記共振器機構(100)が、意図的な等時性誤差を有するようにし、前記意図的な等時性誤差は、前記脱進機機構(200)の脱進における損失誤差に対する加法の逆元であることを特徴とする、請求項12に記載の調整機構(300)。
【請求項14】
前記2つの可撓性条片(5)は、同一であり、対称に配置することを特徴とする、請求項12又は13に記載の調整機構(300)。
【請求項15】
各前記可撓性条片(5)は、前記板(1)又は中間弾性懸架条片(9)への位置合わせ手段及び取り付け手段と一体に、一体組立体(50)の一部を形成し、前記中間弾性懸架条片(9)は、前記板(1)に取り付け、前記主軸(DP)方向での前記撓み支承体及び前記慣性要素(2)の変位を可能にするように構成することを特徴とする、請求項12から14のいずれかに記載の調整機構(300)。
【請求項16】
前記慣性要素(2)は、速度及び不平衡を調節する慣性ブロックを含むことを特徴とする、請求項1から15のいずれかに記載の調整機構(300)。
【請求項17】
前記推進ピン(6)は、前記可撓性条片(5)と一体であることを特徴とする、請求項1から16のいずれかに記載の調整機構(300)。
【請求項18】
前記レバー(7)は、支承表面を含み、前記支承表面は、前記がんぎ車セット(4)に含まれる歯と当接した状態で協働し、前記レバー(7)の角度行程を制限するように構成することを特徴とする、請求項1から17のいずれかに記載の調整機構(300)。
【請求項19】
前記撓み支承体は、前記調整機構(300)の速度に対する温度の影響を補償するため、酸化シリコンから作製することを特徴とする、請求項1から18のいずれかに記載の調整機構(300)。
【請求項20】
前記慣性要素(2)はてんぷであり、前記てんぷ(2)は、金及び/又は白金及び/又はタングステンを含む重合金から作製し、同じ組成の慣性ブロックを含むことを特徴とする、請求項1から19のいずれかに記載の調整機構(300)。
【請求項21】
駆動手段(400)、及び請求項1から20のいずれかに記載の調整機構(300)を含み、前記脱進機機構(200)は、前記駆動手段(400)のトルクを受ける、計時器ムーブメント(500)。
【請求項22】
請求項21に記載のムーブメント(500)又は請求項1から20のいずれかに記載の調整機構(300)を含む時計(1000)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、計時器調整機構に関し、地板上に配置される計時器調整機構は、ある品質係数Qを有する共振器機構、及びムーブメント内に含まれる駆動手段のトルクを受ける脱進機機構を備え、前記共振器機構は、前記板に対して発振するように構成した慣性要素を備え、前記慣性要素は、前記板に直接又は間接的に取り付けた弾性戻り手段の作用を受け、前記慣性要素は、前記脱進機機構内に含まれるがんぎ車セットと協働するように構成される。
【0002】
本発明は、計時器ムーブメントにも関し、計時器ムーブメントは、駆動手段及びそのような調整機構を備え、調整機構の脱進機機構は、この駆動手段のトルクを受ける。
【0003】
本発明は、そのようなムーブメント及び/又はそのような調整機構を含む時計、より詳細には機械式時計にも関する。
【0004】
本発明は、特に時計のための、計時器調整機構の分野に関する。
【背景技術】
【0005】
大部分の機械式時計は、スイス・レバー脱進機と協働するてんぷ/ひげぜんまい型発振器を含む。てんぷ/ひげぜんまいは、時計の時間基準を形成する。てんぷ/ひげぜんまいを本明細書では共振器と呼ぶ。脱進機は、2つの主な機能、即ち、共振器の前後運動の維持、及びこれら前後運動の計数を実施する。脱進機は、強固でなければならず、てんぷがその平衡点から離れるような妨害があってはならず、衝撃に耐え、(例えばどてピン越え(overbanking)の際の)ムーブメントの詰まりを回避しなければならず、したがって、計時器ムーブメントの不可欠な構成要素を形成するものである。
【0006】
典型的には、てんぷ/ひげぜんまいは、300°の振幅で発振し、持ち上がり角度は50°である。持ち上がり角度とは、レバー・フォークが推進ピンと相互作用する際にてんぷが進行する角度であり、推進ピンは、てんぷの転動ピンとも呼ばれる。大部分の現在のスイス・レバー脱進機において、持ち上がり角度は、てんぷの平衡点の両側で分割され(±25°)、レバーは±7°傾く。
【0007】
スイス・レバー脱進機は、分離脱進機のカテゴリーに属す。というのは、持ち上がり角度の半分を超えると、共振器はもはやレバーに接触しないためである。この特性は、良好な等時性を得るために必須である。
【0008】
機械式共振器は、慣性要素、案内部材及び弾性戻り要素を含む。従来、てんぷは、慣性要素を形成し、ひげぜんまいは、弾性戻り要素を形成する。てんぷは、枢動体によって回転する状態で案内され、枢動体は、平滑なルビー支承体内で回転する。関連する摩擦は、エネルギーの損失及び速度の乱れを生じさせる。この乱れをなくすことが求められている。更に、この乱れは、重力場では時計の向きに左右される。損失は、共振器の品質係数Qによって特徴付けられる。可能な最良のパワー・リザーブを得るため、この品質係数Qを最大にすることも、一般に求められている。案内部材が損失の本質的な要因であることは、明らかである。
【0009】
枢動体及び従来のひげぜんまいを使用する代わりに、回転撓み支承体を使用することは、品質計数Qを最大にする1つの解決策である。可撓性条片共振器は、これらが良好に設計されているとすれば、特に、枢動摩擦がないため、重力場の向きとは無関係に、有望な等時性を有し、高い品質計数を有する。更に、撓み支承体を使用すると、枢動体の摩耗に関する問題が解消される。
【0010】
しかし、そのような回転撓み支承体で一般に使用される可撓性条片は、ひげぜんまいよりも硬い。このことは、より高い周波数、例えば約20Hzにおける、より低い振幅、例えば10°から20°での動作をもたらす。このことは、一見して、スイス・レバー型脱進機に適合しないと思われる。
【0011】
回転撓み支承体、特に条片を有する共振器に適合する動作振幅は、典型的には6°から15°である。このことは、最小動作振幅の2倍でなければならない特定の持ち上げ角度値をもたらす。
【0012】
特別の注意がない場合、持ち上がり角度がわずかである脱進機は、効率が劣り、多大な速度損失を生じさせるおそれがある。しかし、高周波数と低振幅とを組み合わせると、速すぎることがない許容可能なてんぷの運動速度を可能にし、したがって、脱進機の効率が自動的に劣らない。
【0013】
共振器は、計時器ムーブメント内側への収容に適合する許容可能な寸法を有さなければならない。現在までのところ、かなり大型の直径、又はいくつかの段の対の条片を有する回転撓み支承体を作製することは可能ではない。この回転撓み支承体は、理論的には、連続する撓み支承体を直列に置くことによって、慣性要素が数十度で発振振幅することを可能にするものである。したがって、多くとも1又は2つの段の条片を有する撓み支承体を使用すべきであり、この撓み支承体は、例えば、THE SWATCH GROUP RESEARCH AND DEVELOPMENT Ltd名義の欧州特許第3035126号から公知である。
【0014】
要約すると、回転撓み支承体を選択する影響は、てんぷの振幅を低減し、持ち上がり角度の半分よりも著しく大きいてんぷの振幅、即ち25°よりも大きい振幅を必要とする従来のスイス・レバー脱進機の使用がもはや可能ではなくなることである。したがって、撓み支承体を有する共振器を備える調整器は、共振器の同じ慣性要素と共に動作するように考案した通常のスイス・レバー脱進機の寸法とは異なる寸法の、特別な脱進機機構を必要とする。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】欧州特許第3035126号
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の全体的な目的は、現在の機械式時計のパワー・リザーブ及び精度を向上させることである。この目的を達成するため、本発明は、回転撓み支承体を有する共振器と、最適化したレバー脱進機とを組み合わせ、許容可能な動的損失を維持し、解放段階の時刻測定に対する影響を制限するようにする。
【0017】
共振器及び脱進機機構の両方の寸法決定に関する従来技術の教示の不在下、分析モデルの計算及び一連のシミュレーションは、許容可能な損失及び許容可能な効率に適合する共振器及び脱進機のパラメータを示した。
【0018】
これらの計算及びシミュレーションは、慣性要素、特にてんぷの慣性と、アンクル・レバーの慣性との間の比率が決定的であることを実証するものである。
【課題を解決するための手段】
【0019】
この目的で、本発明は、請求項1に記載の調整機構に関する。
【0020】
回転撓み支承体を有するこれらの共振器は、通常の時計の場合200である品質計数と比較して、かなり高い、例えば、約3000の品質計数を有する。動的損失(推進終了時のがんぎ車及びアンクル・レバーからの運動エネルギー)は、品質計数とは無関係である。したがって、これらの損失は、高い品質計数では、相対的にてんぷに伝達されるエネルギーと比較して、かなり重要になることがある。
【0021】
機構を適切に動作させるため、慣性要素と一体の推進ピンを、「深度」と呼ぶ特定の値までレバー・フォークの開口に貫入させなければならない。同様に、解放段階の間の安全を保証するため、推進ピンが解放された後、推進ピンは、解放の直前に接触していた角とは反対側のフォークの角から、安全距離と呼ぶ特定の距離で保つことができなければならない。
【0022】
したがって、本発明は、更に、レバー・フォークの寸法と、深度及び安全距離値と、レバー及び慣性要素の持ち上がり角度値との間に特定の関係を課すようにするものであり、推進ピンが、持ち上がり角度の半分を通過する行程が終了した後、適切にフォークから外れることを保証する。
【0023】
本発明は、計時器ムーブメントにも関し、計時器ムーブメントは、駆動手段及びそのような調整機構を備え、調整機構の脱進機機構は、この駆動手段のトルクを受ける。
【0024】
本発明は、そのようなムーブメント及び/又はそのような調整機構を含む時計、より詳細には機械式時計にも関する。
【0025】
本発明の他の特徴及び利点は、添付の図面を参照して、以下の詳細な説明を読めば明らかになるであろう。
【図面の簡単な説明】
【0026】
【
図1】2つのグラフであり、2つのグラフは、同じ横軸上に、共振器の慣性要素の慣性とレバーの慣性との間の比率を含み、縦軸は、特定の例示的機構に関し、一方の、上のグラフの正の部分では、調整器の効率を%で示し、下のグラフの負の部分では、1日当たりの秒の損失比を示す。これら上下のグラフは、品質計数、レバーの持ち上がり角度及び動作振幅に関し特定値を有する同じ所与の脱進機形状に対して描かれている。
【
図2】本発明による調整機構を支持する地板を有する計時器ムーブメントの概略部分斜視図であり、調整機構は、2つの可撓性条片を有する撓み支承体を有する共振器を備え、2つの可撓性条片は、2つの平行段上に配置され、突出して交差し、弾性要素により板に固着され、この共振器は、広大な、文字オメガのような形状の慣性要素を含み、2つの可撓性条片が支持する慣性要素の中心部分は、対称形レバー(金属心軸による板上でのレバーの枢動は図示しない)と協働するように構成した推進ピンを支持し、対称形レバーは、従来のがんぎ車と協働する。
【
図3】ムーブメントの板上に配置した、
図2の調整機構の平面図である。
【
図6】どてピン上の停止位置で図示する、共振器の慣性要素の推進ピンと、レバー・フォークとの間の協働領域の平面詳細図である。
【
図7】ワツシ牛の角のような形状の、
図2の機構のレバーの平面図である。
【
図9】
図2の機構の1つの段の撓み支承体の特定の実施形態の平面図である。
【
図11】ムーブメントの板上の緩衝停止部を示す、
図2の調整機構の斜視詳細図である。
【
図12】横軸上に、がんぎ車セットに加えたトルクを含み、縦軸上に、測定した振幅度を含むグラフである。
【
図13】横軸上に、がんぎ車セットに加えたトルクを含み、縦軸上に、1日当たりの秒の損失を含むグラフである。
【
図14】横軸上に、がんぎ車セットに加えたトルクを含み、縦軸上に、調整器の効率%を含むグラフである。
【
図15】ムーブメントを備える時計を表すブロック図であり、ムーブメントは、駆動手段及び本発明による調整機構を有する。
【
図16】推進ピン、
図7のレバー・フォーク、及びがんぎ車セットについての、
図6によって既に表した運動段階の平面図であり、がんぎ車セットは、ここでは従来のがんぎ車によって形成される。がんぎ車は、共振器と補弧をなす入りづめ上に係止されている。
【
図17】推進ピン、
図7のレバー・フォーク、及びがんぎ車セットについての、
図6によって既に表した運動段階の平面図であり、がんぎ車セットは、ここでは従来のがんぎ車によって形成される。がんぎ車は、解放されている。
【
図18】推進ピン、
図7のレバー・フォーク、及びがんぎ車セットについての、
図6によって既に表した運動段階の平面図であり、がんぎ車セットは、ここでは従来のがんぎ車によって形成される。推進を開始している。
【
図19】推進ピン、
図7のレバー・フォーク、及びがんぎ車セットについての、
図6によって既に表した運動段階の平面図であり、がんぎ車セットは、ここでは従来のがんぎ車によって形成される。がんぎ車は、共振器と補弧をなす出づめ上に係止され、安全な状態である。
【発明を実施するための形態】
【0027】
本発明は、パワー・リザーブ及び精度を向上させる回転撓み支承体を有する共振器と、最適化したレバー脱進機とを組み合わせ、許容可能な動的損失を維持し、解放段階の時刻測定に対する影響を制限するようにする。
【0028】
したがって、本発明は、計時器調整機構300に関し、地板1上に配置した計時器調整機構300は、ある品質係数Qを有する共振器機構100、及びムーブメント500内に含まれる駆動手段400のトルクを受ける脱進機機構200を備える。
【0029】
この共振器機構100は、板1に対して発振するように構成した慣性要素2を含む。この慣性要素2は、板1に直接又は間接的に取り付けた弾性戻り手段3の作用を受ける。慣性要素2は、がんぎ車セット4、特にがんぎ車と間接的に協働するように構成し、がんぎ車セット4は、脱進機機構200内に含まれ、脱進機軸DE回りに枢動する。
【0030】
本発明によれば、共振器機構100は、共振器であり、この共振器は、主軸DP回りに回転する仮想枢動部、及び少なくとも2つの可撓性条片5を含む撓み支承体を有し、慣性要素2と一体である推進ピン6を含む。脱進機機構200は、第2の軸DS回りに枢動するレバー7、及び推進ピン6と協働するように構成したレバー・フォーク8を含み、したがって、分離脱進機機構である。共振器機構100の動作周期の間、共振器機構100は、推進ピン6がレバー・フォーク8からある距離にある少なくとも1つの自由段階を有する。推進ピン6がレバー・フォーク8に接触する間の共振器の持ち上がり角度βは、10°未満である。
【0031】
特定の脱進機形状及び特定の動作振幅、具体的には8°の動作振幅を利用すると、動的多体シミュレーションにより、慣性要素の慣性とレバーの慣性との間の慣性比の関数として、脱進機機構の効率及び損失を評価することが可能である(即ち、動的多体シミュレーションとは、それぞれに特定の質量及び慣性分布を割り当てたいくつかの構成要素のセットに関連するものである)。この脱進機機構の効率及び損失は、通常の運動学的シミュレーションの使用では確立することができない。
図1からわかるように、
図1のシミュレーション条件下では、慣性要素、特にてんぷの慣性が、レバーの慣性の10000倍を超えると、35%を超える良好な効率閾値、及び1日当たり8秒未満の低損失閾値があることが観察される。
【0032】
したがって、システム分析モデルは、動的損失の制限を望む場合、特定の条件が、レバーの慣性、慣性要素の慣性、共振器の品質計数、並びにレバー及び慣性要素の持ち上がり角度に関連することを示した。動的損失係数εに関し、一方の、主軸DPに対する全ての慣性要素2の慣性I
B、及びもう一方の、第2の軸DSに対するレバー7の慣性I
Aは、比率I
B/I
Aが2Q.α
2/(0.1.π.β
2)を超えるようなものであり、式中、αは、レバー・フォーク8の最大角度行程に対応するレバーの持ち上がり角度である。
【0033】
より詳細には、動的損失を関数ε=10%に制限することを望む場合、一方の、主軸DPに対する慣性要素2の慣性I
B、及びもう一方の、第2の軸DSに対するレバー7の慣性I
Aは、比率I
B/I
Aが2Q.α
2/(0.1.π.β
2)を超えるようなものであり、式中、αは、レバー・フォーク8の最大角度行程に対応するレバーの持ち上がり角度である。
【0034】
より詳細には、静止位置の両側から取った全体角度である共振器の持ち上がり角度βは、慣性要素2がただ1つの運動方向で静止位置から最も遠くに逸れる振幅角度の2倍未満である。
【0035】
より詳細には、慣性要素2が静止位置から最も遠くに逸れる振幅角度は、5°から40°までの間に含まれる。
【0036】
より詳細には、各発振の間、接触段階において、推進ピン6は、100マイクロメートルを超える行程深度Pでレバー・フォーク8に貫入し、解放段階において、推進ピン6は、レバー・フォーク8から安全距離Sである距離に留まり、安全距離Sは、25マイクロメートルを超える。
【0037】
したがって、レバー7のフォーク8は、かなり狭い従来のスイス・レバー・フォークと比較して拡大し、ピン6の自由を少なくすることを可能にする。ピン6は、そのような角度振幅がわずかな従来のスイス・レバー・フォークの場合、出入りすることができない。フォークの拡大というこの概念により、共振器の振幅が、従来のひげぜんまいにおけるものよりもかなり小さい場合でさえ、レバー脱進機の動作を可能にし、このことは、現在のケースのように、振幅が低い、撓み支承体を有する共振器に特に有利である。実際、てんぷは、動作周期の間の特定の瞬間で完全に自由であることが重要である。
【0038】
推進ピン6及びレバー・フォーク8は、有利には、レバー・フォーク8の幅Lが(P+S)/sin(α/2+β/2)を超えるように寸法決定し、行程深度P及び安全距離Sは、主軸DPに対して径方向で測定する。
【0039】
推進ピン6の有用な幅L1は、
図6からわかるように、レバー・フォーク8の幅Lよりもわずかに小さく、より詳細には、Lの98%未満であるか又は98%に等しい。推進ピン6は、有利には、推進ピン6の有用な幅の表面L1の背後が先細になっており、ピンは、特に、図面で示唆される三角形断面の柱形状又は同様の形状を有する。
【0040】
図を検討すると、ピン6の配置に対する相補的作用がわかり、ピン6は、従来の脱進機機構におけるものよりも、てんぷ2の回転軸からかなり遠くに位置する。より大きい半径と、より低い枢動角度との組合せにより、ピン6の等しい曲線行程の維持を可能にし、この等しい曲線行程は、ピンが分配/計数機能を実施できるために必要なものである。したがって、大きな直径のてんぷの使用は、特に有利である。
【0041】
より詳細には、てんぷの軸に対するピン6の偏心率E2、及びレバー7の軸に対するフォーク8の角の偏心率E7は、レバー7の軸とてんぷ軸との間の中心距離Eの40%から60%の間に含まれる。より詳細には、偏心率E2は、中心距離Eの55%から60%の間に含まれ、偏心率E7は、中心距離Eの40%から45%の間に含まれる。より詳細には、ピン6とフォーク8との間の干渉領域は、中心距離Eの5%から10%に及ぶ。
【0042】
したがって、設計により、本発明は、かなり著しく特徴的である推進ピン/フォークの新たなレイアウトを規定するものであり、フォークの角は、かなり離れており、ピンは、通常の持ち上がり角度が50°である公知の種類のスイス・レバー機構のものよりも広い。
【0043】
したがって、レバー・フォークを通常の割合と比較して実質的に拡大することにより、持ち上がり角度が非常にわずかである、例えば約10°のスイス・レバー脱進機を設計することも可能である。
【0044】
図6は、非常にわずかな枢動角度でさえ、ピン6が、良好な行程深度Pでフォーク8に入り、十分な安全距離Sでフォーク8から出ることが可能であることを示す。
【0045】
図16から
図19は、運動力学を示し、適切な行程深度P及び安全距離Sが、この組合せ設計によって得られることを示し、ピン6は、てんぷ軸からかなり遠く離れており、レバー7は、特にフォークが拡大した特定の形状を有する。
【0046】
共振器の効率を最大にするため、上述した、慣性要素の慣性とレバーの慣性とを10,000を超える比率で関連付ける特定の関係の利点は、明らかである。
【0047】
したがって、かなり小型でかなり軽量であるレバー、及び大きな寸法で高い質量のてんぷを有することが特に有利である。
【0048】
より詳細には、レバー7は、シリコンから作製し、これにより、小型で、かなり正確な実施形態を可能にし、シリコンの密度は、鉄鋼の密度の3分の1未満である。レバーをシリコンから作製することにより、金属レバーと比較してその慣性を低減する。てんぷと比較してレバーの慣性が低いことは、本ケースの撓み支承体を有する共振器において低振幅及び高周波数で良好な効率を得るために重要である。
【0049】
時計の範囲が許容する場合、てんぷは、有利には、金、白金、タングステン又は同様のものを含む重金属又は合金から作製し、同様の組成の慣性ブロックを含むことができる。その他の場合、てんぷは、従来の様式で銅ベリリウム合金CuBe2又は同様のものから作製し、平衡が保たれている慣性ブロック及び/又は調節慣性ブロックで安定させ、これらのブロックは、洋銀又は別の合金から作製する。
【0050】
より詳細には、このレバー7は、単一段のシリコンであり、板1に対して枢動するセラミック若しくはそれ以外のもの等の金属又は同様のものから作製した心軸上に置かれる。
【0051】
より詳細には、がんぎ車セット4は、シリコンがんぎ車である。
【0052】
より詳細には、がんぎ車セット4は、穴のあいたがんぎ車であり、がんぎ車セット4の枢動軸DEに対する慣性を最小にする。
【0053】
より詳細には、レバー7は、穴があいており、第2の軸DSに対する慣性I
Aを最小にする。
【0054】
好ましくは、レバー7は、第2の軸DSに対して対称形であり、特に並進移動の線形衝撃の際、あらゆる不平衡及び不要なトルクを回避するようにする。したがって、更なる利点は、このかなり小型の構成要素の組立てをかなり容易にすることであり、これにより、組立てを実施するオペレータがあらゆる側からこの構成要素を扱うことができる。
【0055】
図7は、推進ピン6と協働するように構成した2つの角81及び82、がんぎ車セット4の歯と協働するように構成したつめ72及び73、並びに角状要素80及びつめ状要素70を示し、角状要素80及びつめ状要素70の唯一の役割は、完全な平衡を達成することである。
【0056】
より詳細には、慣性要素2の最大寸法は、板1の最大寸法の半分を超える。
【0057】
より詳細には、主軸DP、第2の軸DS、及びがんぎ車セット4の枢動軸は、頂点が第2の軸DS上にある直角を中心に置かれるように構成する。したがって、レバー・シャフト及び2つの腕部を有する従来のT字形スイス・レバーと比較すると、
図7からわかるように、シャフトは、除去され、角81及び82並びに角82とほぼ一致する出づめ72を支持する2つの腕部76のうちの一方、入りづめ73を支持するもう一方の腕部75となることは明らかである。
【0058】
スイス・レバーとの比較は、どてピン越えを防止する手段について継続することができ、どてピンは、通常、レバーの偏心平面上に位置する保護ピンによって形成される。この機能は、てんぷの詰まりを防止するのに重要である。特に、てんぷには、安全転動子がないため、そのような保護ピンと協働するように構成した転動子の切欠きがない。ここで、わずかな枢動角度のために、推進ピンは、フォークから遠ざかることがない。したがって、どてピン越え防止機能は、有利には、円弧形状の推進ピン6の縁部60と、関係する角81、82の対応する表面810、820との組合せによって実施される。この角は、保護ピンの通常の役割を果たし、推進ピンの周辺は、安全転動子の役割を果たす。更に得られる利点は、てんぷが単一段のレバーと協働する場合、てんぷも1つの段上にあることができ、てんぷの製造を簡略化し、費用を低減する。
【0059】
どてピン越えが、低振幅の共振器と、(ピンの幅が拡大フォークにほぼ等しい)大きな幅の推進ピンとの組合せによって防止されるからこそ、単一段のレバーの設計が可能であり、レバーの製造が大幅に簡略化される。
【0060】
より詳細には、撓み支承体は、2つの可撓性条片5を含み、可撓性条片5は、主軸DPを画定する仮想枢動部において、主軸DPに直交する平面上に突出する状態で交差し、2つの平行な、異なる段に位置する。より更に詳細には、主軸DPに直交する平面上に突出する2つの可撓性条片5は、59.5°から69.5°の間に含まれる角度を間に形成し、2つの可撓性条片5の長さの10.75%から14.75%の間で交差し、共振器機構100が、意図的な等時性誤差を有するようにし、この意図的な等時性誤差は、脱進機機構200の脱進における損失誤差に対する加法の逆元である。
【0061】
したがって、共振器は、脱進機が生じる損失を補償する非等時性曲線を有する。このことは、分離共振器が、レバー脱進機が生じる誤差の加法の逆元である等時性誤差を伴って設計されることを意味する。したがって、共振器の設計は、脱進機における損失を補償する。
【0062】
より詳細には、2つの可撓性条片5は、同一であり、対称に配置される。より更に詳細には、各可撓性条片5は、2つの中実部品51、55、板1への第1の位置合わせ手段52A、52B、及び取り付け手段54、又は有利には
図10からわかるように、板1に取り付けた中間弾性懸架条片9への取り付け手段と一体に、一体組立体50の一部を形成する。一体組立体50は、撓み支承体及び慣性要素2が主軸DPの方向で変位可能であるように構成し、そのような一体組立体50の平面に直交するZ方向への衝撃に対する良好な保護を保証し、したがって、撓み支承条片の破断を防止する。この中間弾性懸架条片9は、有利には、Durimphy合金又は同様のものから作製される。
【0063】
図示の非限定的な変形形態では、第1の位置合わせ手段は、第1のV字形部分52A及び第1の平坦部分52Bであり、第1の取り付け手段は、少なくとも1つの第1の穴54を含む。第1の押圧条片53は、第1の取り付け手段を押圧する。同様に、一体組立体50は、一体組立体50を慣性要素2に取り付けるため、第2の位置合わせ手段を含み、第2の位置合わせ手段は、第2のV字形部分56A及び第2の平坦部分56Bであり、第2の取り付け手段は、少なくとも1つの第2の穴58を含む。第2の押圧条片57は、第2の取り付け手段を押圧する。
【0064】
交差条片5を有する撓み支承体3は、有利には、2つの同一のシリコン一体組立体50から形成され、条片の交差を形成するように対象的に組み付けられ、一体化した位置合わせ手段、並びにピン及びねじ等の図示しない補助手段により、互いに対して正確に位置合わせされる。
【0065】
したがって、より詳細には、少なくとも共振器機構100は、板1に取り付けた中間弾性懸架条片9に取り付けられ、共振器機構100の主軸DP方向への変位を可能にするように構成し、板1は、少なくとも主軸DPの方向への少なくとも1つの緩衝停止部11、12を含み、好ましくは、少なくとも2つのそのような緩衝停止部11、12を含み、緩衝停止部11、12は、慣性要素2の少なくとも1つの剛性要素と協働するように構成し、剛性要素は、例えば突縁21又は22であり、条片5を備える撓み支承体3に慣性要素を組み付ける間に追加される。
【0066】
弾性懸架条片9又は同様のデバイスは、実質的に支承体の仮想回転軸DPが画定する方向で共振器100全体の変位を可能にする。このデバイスの目的は、方向DPへの横方向の衝撃の際、条片5の破断を回避することである。
【0067】
図11は、緩衝停止部の存在を示し、緩衝停止部は、衝撃の際に3つの方向に慣性要素2が進行するのを制限するものであるが、重力の影響下、慣性要素が停止部に接触しないような十分な距離で置かれる。例えば、突縁21又は22は、穴211及び面212を含み、穴211及び面212はそれぞれ、緩衝停止構成において、停止部21又は22上でトラニオン121及び相補形表面122と協働することができる。
【0068】
より詳細には、慣性要素2は、速度及び不平衡を調節する慣性ブロック20を含む。
【0069】
より詳細には、推進ピン6は、図示のように、可撓性条片5、又はより詳細には、一体組立体50と一体である。
【0070】
より詳細には、レバー7は、支承表面を含み、支承表面は、がんぎ車セット4に含まれる歯と当接した状態で協働し、レバー7の角度行程を制限するように構成する。これらの支承表面は、中実どてピンが制限するように、レバーの角度行程を制限する。レバー78の角度行程は、どてピン700によって従来の様式で制限することもできる。
【0071】
より詳細には、撓み支承体3は、調整機構300の速度に対する温度の影響を補償するため、酸化シリコンから作製する。
【0072】
本発明は、計時器ムーブメント500にも関し、計時器ムーブメント500は、駆動手段400及びそのような調整機構300を備え、調整機構300の脱進機機構200は、この駆動手段400のトルクを受ける。
【0073】
図12から
図14のグラフは、シミュレーションからの一連の結果を示し、Q=2000であり、I
B=26550mg.mm
2であり、周波数は20Hzであり、がんぎ車セットは20の歯を有し、より詳細には、レバーの持ち上がり角度αは14°であり、共振器の持ち上がり角度βは10°である。
【0074】
本発明は、そのようなムーブメント500及び/又はそのような調整機構300を含む時計1000、より詳細には機械式時計にも関する。
【0075】
要約すると、本発明は、現在の機械式時計のパワー・リザーブ及び精度を向上させることを可能にする。所与のムーブメントのサイズに対し、時計の自律性を4倍にし、時計の調整力を2倍にすることができる。このことは、本発明がムーブメントの性能に8倍の利得をもたらすことを意味する。