【実施例】
【0062】
以下の実施例において、モノマー試薬に含まれる重合禁止剤は、活性炭を詰めたガラスカラムにモノマー試薬を通過させて、簡易的に吸着除去した。基本的に、グラフト化は窒素雰囲気下で行った。
【0063】
[実施例1:FTIRおよびXPS測定による酸化の評価]
酸化した材料について、FTIR測定およびXPS測定でそれぞれ評価した。
【0064】
・酸化処理
ポリプロピレン板(10mm×80mm×0.5mm)(アズワン61-6034-78)を大気中プラズマ処理することで酸化した。装置は、独自に製造した試料送り装置を接続した大気圧プラズマ装置(魁半導体(京都)卓上ダイレクト型TK-50)を使用して、出力目盛りを60Vとした(最大目盛り130)。
【0065】
・フーリエ変換赤外分光計(FTIR)による解析
酸化試料を溶剤(naxシリコンオフSP:日本ペイント)と水で洗浄して乾燥後、フーリエ変換赤外分光光度計IRPrestige−21(島津製作所(京都))により、全反射法(ATR)で測定を行った。結果を
図1、2に示す。
【0066】
FTIRのATR法では、表面から約10μm深さ以内の結合状態を測定できるといわれる。
図1に酸化時間の異なる6個の試料のスペクトルを示す。一般に、試料の酸化の場合、カルボニル基が生成するので、カルボニル基の吸収帯、1730cm
−1付近の吸光度の変化を観察する。
図1では1730cm
−1付近の吸光度の顕著な違いはみられない。
【0067】
吸光度を相対的に比較するために、強い酸化処理過程でほぼ変化のない吸収ピーク1440cm
−1の吸光度を分母として、吸光度の比「1730cm
−1の吸光度/1440cm
−1の吸光度」を求めて、酸化時間との関係を
図2にプロットした。吸光度比は酸化処理時間に対して分散しており相関性がみられない。後述のXPSの結果との比較から、本表面処理に好ましい微量な酸化は、FTIR−ATRの感度では測定が困難であると判断した。
【0068】
なお、材料の破壊を無視して、強度な酸化処理を行った場合には、IR測定によって1727cm
−1の吸光度の増加が観察されることが、超高分子量ポリエチレン(UHMWPE)試料の測定で確認された(
図3)。
【0069】
・X線光電子分光法(XPS)による分析
FTIRのATR法で測定したポリプロピレン試料について、X線光電子分光分析装置(XPS)で測定した。結果を
図4、5、6、7に示す。XPS測定は、表面から約10nm以内の深さの結合状態を測定できる条件であった。XPS分析のための条件は以下のとおりであった。
機器:PHI−5000VersaProbeII(アルバック・ファイ(株)、神奈川)、線源:CrKα線、AlKα線、取り出し角:90°。
【0070】
図4には酸化処理時間の異なるポリプロピレン試料のXPS測定における(A)C1sナロースペクトルおよび(B)O1sナロースペクトルを示す。スペクトルから求められたC1sの存在量(%)、O1sの存在量(%)及びO/C原子数比の関係を表1に示す。
【表1】
【0071】
表2には、C1sナロースペクトルの波形分析によって得られた炭素結合の種類およびその存在割合を示す。
【表2】
【0072】
これらの結果に基づき、表1の結果からO/C原子数比と酸化処理時間との関係を
図5に、表2の結果から各結合の割合と酸化処理時間との関係を
図6に示した。さらに、
図7には(C−O−H結合%)/(全炭素結合%)を拡大してプロットした。
【0073】
酸化処理時間の増加に伴い、C−C結合およびC−H結合の数が減少する一方で、O/C原子数比、C−O−H結合、C=O結合、およびO=C−O結合の数がいずれも増加することが確認された。
図1および
図2のFTIR測定では酸化処理時間に伴う酸素結合の変化は確認できなかったが、XPS測定によって酸化状態の確認が可能であることが分かった。なお、
図5、6、7から、酸化処理時間が10秒/cm
2以上では炭素−酸素の結合量の増加は緩やかになることがわかる。
【0074】
[実施例2:オゾン酸化ポリフェニレンサルファイド繊維のXPS測定]
ポリフェニレンサルファイド(PPS)繊維(トルコン(登録商標)、東レ、東京)をオゾン酸化処理してXPS測定を行った。エックス線光電子分光分析装置はサーモフィッシャーサイエンティフィック(米国)製K−Alpha(線源:AlKα線、取り出し角:90°)を用いた。
【0075】
未処理およびオゾン酸化PPS繊維のXPS表面分析結果を表3に示す。PPS繊維ではオゾン酸化処理によって、O/C原子数比が増加すること、およびC−O−H結合とO−C=O結合が増加することが確認された。
【表3】
【0076】
本実施例におけるオゾン酸化処理は、以下の手順に従って実施した。
・オゾン酸化処理
試験片を容積2Lの硬質ガラス製容器(ガスの導入口と出口付き)に入れ、オゾン発生機(日本オゾン社製ON−1−2型)により、オゾン発生量2g/h、濃度40g/m
3のオゾンを含む酸素を1000ml/分の流量で、試料について20分間吹き込んだ。次に、オゾンを含まない酸素を10分間吹き込んだ。オゾンの濃度はヨウ素滴定により求めた。
【0077】
ポリメチルペンテン(PMP)樹脂シートの酸化および処理試料のXPS測定の解析においても、酸化処理によって、O/C原子数比が増加すること、およびC−O−H結合とO−C=O結合が増加することが確認された。
・PMP樹脂シート:厚さ0.5mm、TPX(登録商標)樹脂(三井化学、東京)
【0078】
[実施例3:プラズマ放電酸化に伴うポリプロピレン布の強度変化]
次に、ポリプロピレンマルチフィラメント布(直径0.25mmのマイクロフィラメントを撚り合わせた糸からなる平織布:サイズ 幅100mm、長さ200mm、厚さ0.6mm、目付20g/m
2)をプラズマ放電により酸化処理した。1cm
2の面積当たりそれぞれ15秒間、30秒間、60秒間および150秒間のプラズマ放電を行った。プラズマ放電装置は実施例1と同様に行った。酸化処理後に引張り強度試験を行った。
【0079】
・引張り強度試験
試験機:万能試験機AUTOGRAPH AGS−H(島津製作所、京都)を使用、引張り速度:10mm/分、試験片支持点間:600mmで行った。
【0080】
結果を
図8に示す。縦軸は未処理の材料強度を100%とした場合の材料相対強度である。酸化処理時間の増加に伴って、材料強度は低下する。この場合、試料が細い繊維であるために強度低下が著しいことがある。酸化時間10秒/cm
2以下のこの繊維布を複合材料の補強材料に使用した場合、材料強度を増加させる事を確認した。また、ポリプロピレン材料が厚さ0.1mm以上の板状であれば、20秒/cm
2以下の酸化による材料強度低下は無視できるレベルである。
【0081】
[実施例4:オゾン酸化による材料強度の低下]
ポリプロピレンマルチフィラメント布(直径0.25mmのマイクロフィラメントを撚り合わせた糸からなる平織布:サイズ 幅100mm、長さ200mm、厚さ0.6mm、目付20g/m
2)をオゾン酸化処理した。次に、引張強度を試験した
【0082】
・オゾン酸化処理
実施例2と同様に行った。
・引張り強度試験
実施例3と同様に行った。
【0083】
結果を
図9に示す。プラズマ酸化処理と同様に、長時間の酸化処理は引張強度の低下を引き起こした。
図8と比較して、
図9の時間軸は分単位であるので、酸化による材料強度の低下は、行ったオゾン処理の条件では、オゾン処理の方がプラズマ処理よりも穏やかである。
【0084】
[実施例5:DHM処理と試料のXPS測定]
DHM(Durable Hydrophilic Modification)処理は酸化処理した材料について、次に表面コーティングステップを行って完成する。プラズマ酸化試料(照射時間5秒/cm
2)について、表面コーティングステップを行った試料についてXPS測定を行った。結果を表4に示す。プラズマ処理のみの試料に比べて、各試料は、O1s/C1s比、酸素を含む各官能基の割合が増加する事が確認された。
【表4】
【0085】
本実施例におけるDHM処理における酸化処理およびコーティングステップは、以下の手順に従って実施した。
・酸化処理
実施例1の大気圧プラズマ処理の方法で、材料について、10秒/cm
2の照射量で酸化した試料を、メタノール、水で洗浄した。
・コーティングステップ
体積比で、水400、メタノール100、アクリル酸1、メタクリル酸メチル0.1の反応液Aを作る。酸化処理材料を、平板型のトレイに入れて、反応液Aを処理材料の上に5mm程度の深さに覆うように加えて、厚さ0.5mmの硬質硝子板でフタをして(密閉しない)、紫外線照射
*を100mmの距離から20分間行った。材料を取り出して、メタノールで洗浄後、処理材料を熱水で十分に洗浄、乾燥して処理は終了した。処理後の試料の重量増加は処理前試料の重量に対して、0.1%以下であった。
*紫外線照射:高圧水銀ランプ(東芝ライテック(株)製、商品名H1500L、全長360mm、発光長200mm、ランプ電圧315V、ランプ電力1500W)を試料にフィルター無しで照射する。加熱を避けるために、ランプと試料間に自家製の「送風機にスリットをつけた冷却用ファン」で強い風を送る。
【0086】
[実施例6:DHM処理に最適な酸化処理の探索のための接着強度試験]
接着性改良に有効なDHM処理の「酸化ステップの酸化時間」を知るために酸化時間の異なるDHM処理を行ったポリプロピレン(PP)板とアルミニウム板をエポキシ接着剤で接着した試料の引張りせん断強度を測定した。
【0087】
PP板(サイズ10mm×80mm、厚さ1.0mm)を、以下の手順に従う酸化処理およびコーティングステップでDHM処理した。
・酸化処理
実施例1と同様にプラズマ放電で行った。酸化処理は0〜20秒/cm
2であった。
・コーティングステップ
実施例5のコーティングステップを行った。
【0088】
接着および引張りせん断強度の測定は以下の手順で実施した。
・接着引張りせん断強度試験
処理PP板とアルミニウム板(厚さ0.2mm)とをエポキシ系接着剤であるボンドクイック5(コニシ、大阪)を製造者の指示に従い使用して接着した。すなわち、接着剤混合用シート上でほぼ等量のA液(主剤;エポキシ樹脂)とB液(硬化剤;ポリチオール)とを混合してから、混合物をポリプロピレン試料に、接着面積が10mm×10mmとなるように均一に塗って、その上にアルミニウム板を重ねた(接着剤量は約80mg)。この接着試料をプラスチック製の板に挟み、1kgの重りを載せて、室温下で36時間放置した。以下の条件で引張試験を行い、引張せん断強度(N)を測定した。
使用機器:卓上型荷重試験機FTN1−13A(アイコーエンジニアリング(株))、引張速度:20mm/分、保持具間の空間中にPP板4cm−接着部分1cm−アルミニウム板1cmが存在し、PP板およびアルミニウム板の両端の部分を保持具で固定して、引張試験を行った。
【0089】
結果を
図10に示す。図中、四角囲み部分は接着試験中に材料破壊がみられた領域である。酸化処理3−7秒/cm
2の改質試料はPPの材料破壊が見られたので、接着強度が最も高いと言える。酸化処理3、4、6、7秒/cm
2の表面改質試料は
図10中の強度の数値でPP板の材料破壊が起こった。一方、酸化処理5秒/cm
2の改質試料は接着部分がはがれず、PP板が延伸して、応力425Nで測定不可能となった。酸化処理5秒/cm
2の改質試料はPP板が延伸したので最も好ましい接着と言える。酸化処理3−7秒/cm
2の前後の酸化時間では、改質試料の接着強度は低いが、未処理試料の接着試料よりは接着強度が高い。
【0090】
ポリプロピレンのXPS測定および接着強度試験の結果から、XPS測定した場合に、O/C原子数比が約0.03〜0.30およびC−O結合率が約3〜20%の酸化レベルの材料、あるいはXPS測定した場合に未処理の材料と比較して約0.01〜0.15のO原子数割合(水素を除く原子のうちのO原子の割合)の増大または約1〜15%のC−O−H結合率の増大を示す酸化レベルの材料が特に好適に材料の接着性改良に利用できると考えられる。材料の強度の低下は、板状の場合はほぼ0%で、細い繊維の場合は2〜3%減である。細い繊維は改質繊維を複合材料に使用する場合、その材料強度が増加する事を確認している。従って、同様の酸化レベルにおける材料強度の低下は問題視しなくてよいと言える。ポリプロピレン以外の材料においても、同様の見解は確認された。
【0091】
[実施例7:処理の耐久性]
プラズマ処理したシリコンゴムシートは処理後すぐに接着しないと接着性が失われるという。そこで、プラズマ処理したシリコンゴムシート、DHM処理したシリコンゴムシートを所定時間放置してから、アルミニウム板と接着して、その接着引っ張りせん断強度を比較した。比較のため、未処理シリコンゴムシートとアルミニウム板の接着も行った。結果は表5に示す。プラズマ処理シリコンゴムシートは約1時間以内に接着しないと接着性が失われる。また、接着強度はDHM処理試料より、かなり小さい。
【表5】
【0092】
本実施例における酸化処理およびDHM処理は、以下の手順に従って実施した。
・酸化処理
プラズマ処理;春日電機リアルプラズマAPJ−500(高周波電源AGI−B202)を用いて、空気中、大気圧下で、出力=300W、200V、試料−電極間距離=10mmとして、試料について、照射5秒/cm
2(試料面積1cm
2に対して1秒間照射)とした。酸化程度は実施例6の方法と同様の程度とした。
・DHM処理
シリコンゴムシートを上記プラズマ処理で酸化した材料について、以下のコーティングステップを行った。酸化材料を反応液に入れて、80℃で、10分間加熱した。具体的には、体積比で、水800、メタノール200、ヒドロキシエチルメタクリレート(HEMA)1、メタクリル酸メチル(MMA)0.1の溶液にアゾビスイソブチロニトリル(AIBN)10mgを加えた反応液を作る。反応液に入れて、80℃で、10分間加熱した。反応混合物から材料を取り出して、メタノールで洗浄後、水で煮沸洗浄して乾燥した。
【0093】
(熱硬化性樹脂(エポキシ樹脂)を母材とした繊維樹脂複合材料(FRP))
[実施例8:ポリプロピレン繊維とエポキシ樹脂の複合材料]
未処理または改質ポリプロピレン(PP)繊維/エポキシ樹脂のFRPを作製した。各試料の曲げ強度を測定した。結果は表6に示す。改質による繊維強度の少しの低下があるとしても、作製したFRPの材料強度は増加した。
【表6】
【0094】
本実施例において使用した材料は以下の通りであった。
・ポリプロピレン(PP)繊維;ポリプロピレン平織布、比重=20グラム/m
2、構成糸:マルチフィラメント(直径0.5mm)、モノフィラメント繊維の直径=30μm
・エポキシ樹脂;主剤:液状エポキシ樹脂、硬化剤:ジアミン系硬化剤:GM−6800(ブレニー技研、群馬)
【0095】
本実施例におけるDHM処理、FRPの製法、試験法は、以下の通りであった。
・DHM処理
実施例5のDHM処理と同様、ただし酸化時間は5秒/cm
2。
・PP繊維/エポキシ樹脂のFRPの製法
ハンドレイアップ法:ステンレス製成形型(凹型)の中に、PP布を6枚積層して、硬化剤を混合したエポキシ樹脂を流し込んで、1日放置して固化させた。成形型の成形部分(凹型)のサイズは、長さ80mm、幅10mm;JIS規格に従って製造された。作製FRPのサイズ=10mmx80mmx2.6mm。
・材料の引張りせん断強度試験
万能試験機AUTOGRAPH AGS−H(島津製作所、京都)を使用して測定した。
・材料の3点曲げ強度試験(JIS−K7171準拠)
同上の試験器で行った。曲げ速度:5mm/分、支点間距離:40mmとした。
【0096】
[実施例9:UHMWPE繊維とエポキシ樹脂の複合材料]
未処理または改質超高分子量ポリエチレン(UHMWPE)繊維/エポキシ樹脂のFRPを作製した。各試料の曲げ強度を測定した。結果は表7に示す。PP繊維/エポキシ樹脂のFRPと同様に、改質で繊維強度は少し低下しても、FRPにすると、材料強度は増加した。
【表7】
【0097】
本実施例において使用した材料は以下の通りである。
・超高分子量ポリエチレン(UHMWPE)繊維;モノフィラメント(直径=30μm)からなるマルチフィラメント糸(直径0.62mm):東洋紡(株)提供、商品名ダイニーマ。
【0098】
本実施例におけるDHM処理における酸化処理およびコーティングステップ、FRPの製法は、以下の通りであった。3点曲げ強度試験は、実施例8と同様である。
・酸化処理
実施例2のオゾン酸化法とした。酸化処理時間は15分とした。
・コーティングステップ
実施例5のコーティングステップと同様に行った。
・UHMWPE繊維/エポキシ樹脂のFRPの製法
ハンドレイアップ法:JIS準拠の成形型(凹型)の中に、40本の糸を平行に入れて、硬化剤を混合したエポキシ樹脂10gを流し込んで、1日放置して固化させた。成型したFRPのサイズ=10mmx80mmx2.6mm。
【0099】
図11に、表6と表7に対応する3点曲げ強度試験における「荷重−変位曲線」を示す;(A)はPP繊維/エポキシ樹脂、(B)はUHMWPE繊維/エポキシ樹脂である。未処理PP繊維/エポキシ樹脂ならびに未処理UHMWPE繊維/エポキシ樹脂は3点曲げ試験で、材料が二つに割れたが、DHM処理PP繊維/エポキシ樹脂、DHM処理UHMWPE繊維/エポキシ樹脂は3点曲げ強度試験後に、「くの字」に曲がったままの状態で二つに分離しなかった。繊維と樹脂の界面の密着性が高い事を示す。
【0100】
(熱可塑性樹脂を母材にした複合材料)
本開示の方法に従って表面改質処理した各種材料について、種々の材料との複合材料を作製して材料試験を行った。未処理または酸化処理だけを行った繊維またはフィルムと母材樹脂とから作製した複合材料では、3点曲げ強度試験において繊維またはフィルムが樹脂から引き抜かれることで材料が破壊された。他方、DHM処理した繊維またはフィルムと各種樹脂から作製した複合材料では、繊維またはフィルムが樹脂から抜けることなく、密着性を維持したまま材料が切断されることで材料破壊が生じることが観察された。
【0101】
[実施例10:PET繊維とポリプロピレン樹脂の複合材料]
PET繊維(ポリエチレンテレフタレート;平織布(NBCメッシュテック、東京))およびポリプロピレン(PP)樹脂の組み合わせで、繊維複合材料を作製した。その後、上記と同様の3点曲げ試験を行った。結果を表8に示す。
【表8】
【0102】
本実施例における酸化処理、DHM処理、複合材料の製法は、以下の通りであった。3点曲げ強度試験は、実施例8と同様である。
・酸化処理
プラズマ処理;PET繊維およびPP樹脂について、実施例6のプラズマ処理と同様に行った。
・DHM処理
酸化材料について、実施例7のコーティングステップを行った。
・複合材料の製法
金型に離型剤をスプレーする。次にポリプロピレン樹脂とPET繊維を交互に詰める。その金型をアズワン小型熱プレス機HC300−01に固定して、240℃として、無圧状態で10分おき、さらに2MPaの圧力をかけて5分間おく。その後、室温に戻して、金型から、複合材料試料を外す。金型はJIS規格に基づいて設計した。試料サイズは、長さ60mm、幅10mm、厚さ約2mmとした。
【0103】
[実施例11:炭素繊維とポリプロピレン樹脂の複合材料]
炭素繊維とポリプロピレン(PP)樹脂から高強度の繊維複合材料を作製した。
【0104】
炭素繊維(CF)とPPフィルムから、繊維含有量の異なる繊維複合材料を作製して、繊維複合材料の3点曲げ試験を行った。炭素繊維は三菱ケミカル製品を入手した。結果を表9に示す。
【表9】
【0105】
本実施例における酸化処理、DHM処理、複合材料の製法は、以下の通りであった。3点曲げ強度試験は、実施例8と同様である。
・酸化処理
プラズマ処理;炭素繊維(樹脂付き)およびポリプロピレンフィルムについて、実施例1のプラズマ酸化と同様に行った。
・DHM処理
酸化材料について、実施例7のコーティングステップを行った。
・複合材料の製法
厚さ0.3mmのPPフィルム10枚と、炭素繊維フィラメント束を、金型に詰める。その金型をアズワン小型熱プレス機H300−01に固定して、240℃として、無圧状態で10分おき、次に2MPaの圧力をかけて5分間おく。その後、室温に戻して金型から試料を外す。
【0106】
表面改質処理を行った繊維および樹脂から作製した繊維複合材料は、高い曲げ強度を示した。表面改質処理を行った繊維および樹脂から作製した繊維複合材料は、少量の繊維含有率20%において最大の強度を示した。
【0107】
[実施例12:炭素繊維とアミド樹脂の複合材料]
炭素繊維およびアミド樹脂から高強度の繊維複合材料を作製した。
【0108】
表面改質した炭素繊維(CF)とポリアミド(PA6)樹脂との繊維複合材料を作製して、繊維複合材料の3点曲げ試験を行った。結果を表10に示す。
【表10】
【0109】
本実施例において使用した材料は以下の通りである。
・炭素繊維;三菱ケミカル製品を入手した
・ポリアミド樹脂;シグマアルドリッチ製PA11=ナイロン−11ペレット
【0110】
本実施例における酸化処理、DHM処理は、以下の通りであった。3点曲げ強度試験は、実施例8と同様である。
・酸化処理
炭素繊維(樹脂付き)およびPA6について、実施例2のオゾン処理と同様に行った。
・CFのDHM処理
酸化材料について、実施例7のコーティングステップを行った。
・PA6のDHM処理
上記の酸化処理を行った材料について次のコーティングステップを行った。体積比で、水400、メタノール400、親水性モノマー(ビニルピロリドン
*)の反応液Aを作る。処理材料を、平板型のトレイに入れて、反応液Aを処理材料の上に5mm程度の深さに覆うように加えて、厚さ0.5mmの硬質硝子板でフタをして(密閉にしない)、紫外線照射を100mmの距離から10分間行った。材料を取り出して、メタノールで洗浄した。次に材料に親水性ポリマー水溶液B
**を塗布して乾燥後、水で煮沸洗浄した。
*ビニルピロリドン;1−ビニル−2−ピロリドン、富士フイルム和光純薬(株):製品コード228-01285
**親水性ポリマー水溶液B;ポリビニルピロリドン(PVP)
***とカルボキシメチルセルロース(CMC)
****の混合物(混合重量比10:1)の1重量%水溶液とした。
***PVP;平均分子量4万;K30富士フイルム和光純薬株式会社:製品コード161-03105
****CMC;カルボキシメチルセルロースナトリウム(富士フィルム和光純薬(株)製品コード4987481229082)
【0111】
[実施例13:ポリイミドフィルムとポリエステル樹脂の複合材料]
ポリイミド(PI)フィルムとポリエステル樹脂から同様に複合材料を作製して、複合材料の3点曲げ試験を行った。結果を表11に示す。
【表11】
【0112】
本実施例において使用した材料は以下の通りである。
・ポリイミド(PI)フィルム;アズワン、ポリイミドフィルムカプトン(R)、型番3-1966−07。厚さ0.25mm
・ポリエステル樹脂;PROST(株)、FRP補修用不飽和ポリエステル樹脂、低収縮タイプ、硬化剤つき、一般積層用(ノンパラフィン)
【0113】
本実施例における酸化処理、DHM処理は、以下の通りであった。3点曲げ強度試験は、実施例8と同様である。
・酸化処理
PIフィルムについて、耐水研磨紙(粒度600,耐水ペーパー;ベルスター研磨材工業STARCKE社(ドイツ))で、片道のみ5回研磨した。次に実施例2のオゾン処理を行った。
・DHM処理
上記の酸化処理を行った材料について、コーティングステップを次のように行った。電子線照射後重合を以下のように行った。研磨オゾン処理した材料に対して、電子線照射装置(岩崎電気株式会社製EC90)によって、加速電圧80kV、照射線量250kGyの条件で電子線(EB)を5秒/cm
2(試料面積あたり)照射した。材料を取り出して、体積比で、モノマー溶液(HEMA10、MMA1、水10、メタノール4の混合溶液)を塗り、60℃で1分間加熱した。処理材料を取り出して、水洗・乾燥した。
【0114】
[実施例14:高強度繊維布と加硫黒ゴムの複合材料]
未処理または処理した高強度アラミド繊維布を硬化前の加硫黒ゴムではさんでから硬化した繊維とゴムの複合材料を作製してT型剥離試験を行った。結果を表12に示す。
【表12】
【0115】
本実施例において使用した材料は以下の通りである。
・アラミド繊維布;株式会社エスコ サイズ1.0x1.0m:ケブラー繊維100生地 EA911AV−1、厚さ0.5mm。
・加硫黒ゴム;(株)スーリエ提供品
【0116】
本実施例における酸化処理、DHM処理、複合材料の製法は、以下の通りであった。
・酸化処理
化学反応処理;次亜塩素酸ナトリウム溶液(富士フィルム和光純薬株式会社製品コード197−02206、有効塩素:5.0+%)を体積10mlとり、水100mlとの水溶液とする。ガラス容器に入れて、処理すべき材料を入れる。徐々に加熱して、酢酸を0.2ml加えて、沸騰を3分間行い、室温までさましてから、材料を取り出した。材料を水洗、自然乾燥した。材料が酸化されている事はXPS測定で確認した。
・DHM処理
上記の酸化処理を行った材料について、次のコーティングステップを行った。モノマー溶液をアクリル酸(AA)10、メタクリル酸(MA)1、水10、メタノール4の混合溶液として、実施例7の方法で行った。
・複合材料の製法
加硫剤を加えて、まだやわらかい黒ゴムで、アラミド繊維試料をはさみ、それにシリコーンゴム板を載せて、1キログラムの重りで加圧して24時間置いて作製した。繊維含有量は20%とした。
【0117】
T型剥離試験は以下のように行った。
1)繊維布試料サイズ 幅10mm、長さ100mm
2)黒ゴム2枚に布をはさみ、布の末端10mmほど出して、加熱成型する。布とゴムの接着面積は10mmx90mm。
3)黒ゴムの片方の末端(布の出ている側)を10mm程度、手ではがす。
4)剥がしたゴム末端と布のはみ出した部分をそれぞれ、引っ張り試験の治具にとめて、引っ張り速度=10mm/分で引っ張った。
【0118】
本開示の表面改質により従来にない繊維―樹脂界面の密着した高強度の複合材料が得られる。