(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0017】
図1は本発明にかかる成膜装置の一実施形態の概略構成を示す側面図および上面図である。
図2は成膜装置内部の主要構成の配置を示す斜視図である。
図3は成膜装置の電気的構成を示すブロック図である。以下の説明における方向を統一的に示すために、
図1に示すようにXYZ直交座標軸を設定する。XY平面が水平面を表す。また、Z軸が鉛直軸を表し、より詳しくは(−Z)方向が鉛直下向き方向を表している。
【0018】
この成膜装置1は、プラズマスパッタリングにより処理対象である基板Sの表面に皮膜を形成する装置である。例えば、基板Sとしてのガラス基板や樹脂製の平板、シート、フィルム等の一方表面に、チタン、クロム、ニッケル等の金属皮膜や酸化アルミニウム等の金属酸化物皮膜を形成する目的に、この成膜装置1を適用することが可能である。ただし基板や皮膜の材料はこれに限定されず任意である。なお、ここでは矩形、枚葉状の基板Sに対し成膜を行う場合を例として説明するが、基板Sは任意の形状を有するものであってよい。
【0019】
基板Sは、中央部に開口を有する額縁状のトレーTにより、その周縁部を保持されつつ下面の中央部を含む大部分が下向きに開放された状態で、成膜装置1内を搬送される。このようにすることで、薄くまたは大判で撓みやすい基板Sであっても水平姿勢に維持された状態での安定した搬送が可能となる。以下の説明では、トレーTが基板Sを支持することでトレーTと基板Sとが一体化された構造体を、成膜装置1の処理対象物であるワークWkと称する。なお基板Sの搬送態様はこれに限定されるものではなく任意である。例えば、基板Sが単体で搬送される態様であってもよく、また例えば上面が吸着保持された状態で搬送される態様であってもよい。また、基板は水平姿勢に限定されるものではなく、例えば主面が略垂直となった状態で搬送されてもよい。この場合、基板の搬送方向は水平方向、上下方向のいずれであってもよい。
【0020】
成膜装置1は、真空チャンバ10と、ワークWkを搬送する搬送機構30と、スパッタソース50と、成膜装置1全体を統括制御する制御ユニット90とを備えている。真空チャンバ10は略直方体形状の外形を有する中空の箱型部材であり、底板の上面が水平姿勢となるように配置されている。真空チャンバ10は例えばステンレス、アルミニウム等の金属を主たる材料として構成されるが、チャンバ内を視認可能とするために、例えば石英ガラス製の透明窓が部分的に設けられてもよい。
【0021】
図3に示すように、真空チャンバ10には、真空チャンバ10の内部空間SPと外部空間または他の処理チャンバ内の処理空間との間を開閉するシャッタ11と、真空チャンバ10内を減圧するための真空ポンプ12と、真空チャンバ10の内部空間SPの気圧を計測する圧力センサ13とが設けられている。
図1では記載が省略されているが、シャッタ11は真空チャンバ10の(−X)側端部および(+X)側端部の一方または両方に設けられている。
【0022】
シャッタ11は制御ユニット90に設けられたシャッタ開閉制御部92により開閉制御される。シャッタ11の開状態ではワークWkの搬入および搬出が可能となる一方、シャッタ11の閉状態では真空チャンバ10内が気密状態とされる。また、真空ポンプ12および圧力センサ13は制御ユニット90に設けられた雰囲気制御部93に接続されている。雰囲気制御部93は、圧力センサ13による真空チャンバ10内の圧力計測結果に基づき真空ポンプ12を制御して、真空チャンバ10の内部空間SPを所定の気圧に制御する。雰囲気制御部93は、後述する成膜動作における真空チャンバ10内の気圧、すなわち成膜圧力を、CPU91からの制御指令に応じて設定することが可能である。
【0023】
搬送機構30は、ワークWkを略水平な搬送経路に沿って搬送する機能を有する。具体的には、搬送機構30は、基板Sを保持するトレーTの下面に当接することにより処理チャンバ10内でワークWkを支持する複数の搬送ローラ31と、搬送ローラ31を回転させることでワークWkをX方向に移動させる搬送駆動部32とを備えている。搬送駆動部32は制御ユニット90に設けられた搬送制御部94により制御される。このように構成された搬送機構30は、真空チャンバ10内で基板Sを水平姿勢に保持しつつ搬送して、基板SをX方向に移動させる。搬送機構30による基板Sの移動は、
図1に点線矢印で示すように往復移動であってもよく、また(+X)方向または(−X)方向のいずれか一方向であってもよい。
【0024】
搬送機構30により真空チャンバ10内を搬送される基板Sの下方に、スパッタソース50が設けられている。スパッタソース50は、スパッタカソード51と、スパッタカソード51をX方向から挟むように設けられた1対の誘導結合アンテナ52,53と、スパッタカソード51の周囲にスパッタガスを供給するスパッタガス供給ノズル54,54とを備えている。また、スパッタカソード51、誘導結合アンテナ52,53およびスパッタガス供給ノズル54,54の周囲を覆うように、金属板により箱型に形成されたチムニー55が設けられている。
【0025】
スパッタカソード51は、例えば銅板のような導電性材料により板状に形成されたバッキングプレート511を備えている。バッキングプレート511の上面には、基板Sへの成膜材料により平板状(プレーナ状)に形成されたターゲット512が装着されている。ターゲット512の周囲はアノードシールド513により囲まれている。すなわち、アノードシールド513は上面にターゲット512の平面サイズと同等の開口が設けられた額縁形状をしており、ターゲット512の周囲を覆うとともに、開口を介してターゲット512の上面を基板Sの下面に臨ませる。なお、
図1の上面図および
図2においては、スパッタソース50の内部構造を明示するために、チムニー55はその外形のみが二点鎖線で示されている。
【0026】
バッキングプレート511の下部は箱型に形成されたハウジング514により覆われている。ハウジング514は真空チャンバ10の底面に固定されている。バッキングプレート511の下面とハウジング514との間の空間には磁石ユニット515が設けられるとともに、その周囲の空隙には後述する冷却機構58から冷媒としての流体、例えば冷却水が供給される。
【0027】
バッキングプレート511の下部に配置された磁石ユニット515は、ヨーク515aと、ヨーク515a上に設けられた複数の磁石、すなわち中央磁石515bおよびこれを囲むように設けられた周辺磁石515cとを備えている。ヨーク515aは透磁鋼などの磁性材料により形成されY方向に延設された平板状部材である。ヨーク515aは図示しない固定部材によりハウジング514に固定されている。
【0028】
ヨーク515aの上面のうち長手方向(Y方向)に沿った中心線上には、Y方向に延在する中央磁石515bが配置されている。また、ヨーク515aの上面の外縁部には、中央磁石515bの周囲を囲む環状(無端状)の周辺磁石515cが設けられる。中央磁石515bおよび周辺磁石515cは例えば永久磁石である。バッキングプレート511の下面に対向する側の中央磁石515bと周辺磁石515cとの極性は互いに異なっている。したがって、磁石ユニット515によりターゲット512の周辺に静磁場が形成される。このように、ターゲット512を装着されたバッキングカソードプレート511、磁石ユニット515、ハウジング514等が一体としてマグネトロンカソードを構成する。
【0029】
真空チャンバ10内でスパッタカソード51を挟むように、1対の誘導結合アンテナ52,53が真空チャンバ10の底面から突出して設けられている。誘導結合アンテナ52,53はLIA(Low Inductance Antenna:株式会社イー・エム・ディーの登録商標)とも称されるものであり、
図2に示すように、略U字型に形成された導体521,531の表面が例えば石英などの誘電体522,532で被覆された構造を有する。導体521,531は、U字を上下逆向きにした状態で、真空チャンバ10の底面を貫通してY方向に延設される。導体521,531は、Y方向に位置を異ならせてそれぞれ複数個並べて配置される。誘電体522は、複数の導体521それぞれを個別に被覆するように独立して設けられてもよく、また複数の導体521を一括して覆うように設けられてもよい。誘電体532についても同様である。
【0030】
導体521,531の表面が誘電体522,532で被覆された構造とすることで、導体521,531がプラズマに曝露されることが防止される。これにより、導体521,531の構成元素が基板S上の膜に混入することが回避される。また、後述するように導体521,531に印加される高周波電流により誘導結合プラズマを生成することとなり、アーク放電などの異常放電を抑制して安定したプラズマを発生させることが可能となる。
【0031】
このように構成された誘導結合アンテナ52,53の各導体521,531は、X方向を巻回軸方向とし巻回数が1未満のループアンテナと見ることができる。そのため、低インダクタンスである。このような小型のアンテナを、巻回軸方向と直交する方向に複数並べて配置することで、インダクタンスの増大を抑えつつ、後述するプラズマ発生のための誘導磁場を広い範囲に形成することが可能である。また、それぞれがY方向に並ぶ複数のアンテナからなる1対のアンテナ列をX方向に離隔して平行配置することにより、両アンテナ列に挟まれる空間に強く均一な誘導磁場を発生させることができる。
【0032】
誘導結合アンテナ52,53に挟まれるスパッタカソード51の周囲空間には、ガス供給部56からスパッタガス(例えば不活性ガス)が導入される。具体的には、真空チャンバ10の底面に、スパッタカソード51をX方向から挟むように、それぞれガス供給部56に接続された1対のノズル54,54が設けられている。ガス供給部56は、成膜プロセス制御部95からの制御指令に応じてスパッタガスとしての不活性ガス、例えばアルゴンガスまたはキセノンガスをノズル54,54に供給する。スパッタガスはノズル54,54からスパッタカソード51の周囲に向けて吐出される。ガス供給部56はスパッタガスの流量を自動的に制御する流量調整機能を有することが好ましく、例えばマスフローコントローラを備えたものとすることができる。
【0033】
チムニー55内でターゲット512の表面を臨む位置に、例えば光ファイバーからなる光学プローブ59が配置されており、チムニー55内の空間において発生するプラズマ発光の一部が光学プローブ59に入射する。光学プローブ59は図示しない分光器に接続されており、該分光器の出力信号が制御ユニット90に入力される。
【0034】
制御ユニット90は、分光器の出力信号に基づき、プラズマエミッション法(PEM)によりプラズマ空間におけるプラズマ発光強度を測定する。具体的には、スパッタによりターゲット512から飛翔する成膜粒子、プラズマ中で励起された原子もしくは分子、またはイオン等(例えばアルゴン原子)について物質固有のスペクトル成分の光強度を測定することで、プラズマ空間における当該物質の濃度を検出する。これにより、プラズマ空間におけるプラズマ密度を求めることができる。
【0035】
図4はスパッタソースの動作を示す図である。スパッタカソード51と誘導結合アンテナ52,53との間には、電源部57から適宜の電圧が印加される。具体的には、スパッタカソード51のバッキングプレート511は電源部57に設けられたカソード電源571に接続されており、カソード電源571から接地電位に対する適宜の負電位がバッキングプレート511に与えられる。カソード電源571が出力する電圧としては、直流、直流パルス、正弦波交流、矩形波交流、矩形波交流パルスおよびそれらの幾つかが重畳されたもの等を使用可能である。ただし以下の説明において「カソード電圧」というとき、カソード電源571から出力される種々の波形の負の直流または負の交流成分における電圧を指すものとする。一方、誘導結合アンテナ52,53には、電源部57に設けられた高周波電源572がそれぞれ整合回路575,576を介して接続されており、高周波電源572から適宜の高周波電力が印加される。
【0036】
カソード電源571および高周波電源572のそれぞれから出力される電圧波形は、制御ユニット90の成膜プロセス制御部95からの制御指令により設定される。また、カソード電源572からバッキングプレート511に至る配線の途中に電流測定部573が介挿されており、電流測定部573は当該配線に流れる電流、すなわちカソード電流を測定する。電流測定部573の検出出力はカソード電源571および高周波電源572に入力される。また、当該配線と装置グラウンドとの間に電圧測定部574が設けられており、カソード電圧、より具体的には接地電位に対するバッキングプレート511の直流電圧が測定される。電圧測定部574の検出出力もカソード電源571および高周波電源572に入力される。
【0037】
カソード電源571は、電流測定部573により測定されるカソード電流の値、および、電圧測定部574により測定されるカソード電圧の値に基づき、出力電力を制御する。制御方式としては、カソード電流の値を一定に維持する定電流制御、カソード電圧の値を一定に維持する定電圧制御およびカソード電流とカソード電圧との積を一定に維持する定電力制御を選択可能である。
【0038】
一方、高周波電源572には、電流測定部573、電圧測定部574からの出力の他に、プラズマ発光強度を測定する光学プローブ59からの検出出力が入力されている。なお、
図4では原理説明のために光学プローブ59と高周波電源572とが直接接続されるような記載となっているが、実際には、光学プローブ59から分光器を介して与えられる信号に基づき制御ユニット90が検出したプラズマ密度の大きさに対応する値が、制御ユニット90から高周波電源572に与えられる。高周波電源572による出力制御の態様については後述する。
【0039】
高周波電源572から誘導結合アンテナ52,53に高周波電力(例えば周波数13.56MHzの高周波電力)が供給されることで、誘導結合アンテナ52,53の周囲空間に高周波誘導磁場が生じ、スパッタガスのプラズマ、より具体的にはマグネトロンプラズマと誘導結合プラズマ(Inductivity Coupled Plasma;ICP)との混合プラズマが発生する。ターゲット512および磁石ユニット515を含むスパッタカソード51と、誘導結合アンテナ52,53とは、いずれも
図1紙面に垂直なY方向に沿って長く延びている。したがって、プラズマが発生するプラズマ空間PLも、スパッタカソード51の表面に沿ってY方向に長く延びた形状を有する空間領域となる。
【0040】
こうしてプラズマ空間PLに生成されるプラズマに含まれる陽イオン(図において白丸印で示す)が、負電位を与えられたスパッタカソード51に衝突する。これによりターゲット512の表面がスパッタされ、ターゲット512から飛翔した微細なターゲット材料の粒子が成膜粒子(図において黒丸印で示す)として基板Sの下面に付着する。その結果、基板Sの表面(下面)に成膜が行われる。具体的には、基板S下面のうちY方向に沿った帯状の領域にプラズマスパッタリングによる成膜が行われ、基板Sが、その主面に平行でY方向と直交する方向、つまりX方向に走査移動されることで、成膜対象領域の全体に二次元的に成膜が行われる。
【0041】
プラズマ空間PLを覆うようにチムニー55が設けられることで、プラズマ空間PLで発生するプラズマ粒子およびこれにスパッタされて生じる成膜粒子が真空チャンバ10内に飛散することが抑制され、ターゲット512表面からスパッタにより飛翔した成膜粒子の飛翔方向が基板Sに向かう方向に制限される。このため、ターゲット材料を効率よく成膜に寄与させることができる。冷却機構58からスパッタカソード51に冷却水が供給されることで、プラズマに曝されるターゲット512の温度上昇が抑制される。
【0042】
図3に示すように、制御ユニット90は、上記以外に、各種演算処理を行うCPU(Central Processing Unit)91、CPU91が実行するプログラムや各種データを記憶するメモリおよびストレージ96、外部装置およびユーザとの間での情報のやり取りを担うインターフェース97等を備えている。例えば汎用のコンピュータ装置を、制御ユニット90として使用することが可能である。なお、制御ユニット90に設けられるシャッタ開閉制御部92、雰囲気制御部93、搬送制御部94および成膜プロセス制御部95等の各機能ブロックについては、専用のハードウェアにより実現されるものであってもよく、またCPU91により実行されるソフトウェア上で実現されるものであってもよい。
【0043】
図5はこの成膜装置による成膜処理を示すフローチャートである。この処理は、制御ユニット90が予め用意された制御プログラムに基づき、成膜装置1の各部に所定の動作を行わせることにより実現される。成膜対象である基板Sを含むワークWkが成膜装置1に搬入されるのに先立って、真空チャンバ10内の排気が開始されている(ステップS101)。
【0044】
真空チャンバ10内が所定の気圧に制御された状態で、プラズマの点灯が開始される(ステップS102)。具体的には、ノズル54からスパッタガスが所定流量で真空チャンバ10内に吐出される。そして、電源部57がスパッタカソード51および誘導結合アンテナ52,53のそれぞれに所定の電圧を印加することにより、真空チャンバ10内にマグネトロンプラズマと誘導結合プラズマとの混合プラズマが発生する。
【0045】
こうして予め真空チャンバ10内にプラズマを点灯させた状態で、シャッタ11が開かれ、真空チャンバ10にワークWkが受け入れられる(ステップS103)。プラズマの点灯状態を安定させるため、ワークWkは、真空チャンバ10と同程度の真空状態に保たれた他の真空チャンバ(図示省略)から搬入されることが望ましい。成膜処理後のワーク搬出時についても同様である。なお、成膜処理前のワークWkを受け入れるためのシャッタと、成膜処理後のワークWkを払い出すためのシャッタとは異なっていてもよい。
【0046】
真空チャンバ10にワークWkが搬入されると、搬送機構30がワークWkをX方向に走査移動させる(ステップS104)。これにより、ワークWk中の基板Sの下面に、ターゲット材料を含んだ組成の皮膜が形成されることになる。なお、プラズマ空間PLに反応性ガス(例えば酸素ガス)をさらに供給し、ターゲット512の成分と反応性ガスの成分とを含む皮膜(例えば金属酸化物皮膜)が形成されるようにしてもよい。
【0047】
搬送機構30がワークWkを走査移動させることで、基板S下面における成膜粒子の着弾位置を変化させて基板S全体に成膜を行うことが可能である。このようなワークWkの走査移動を所定時間継続することで(ステップS105)、基板Sの表面(下面)に所定厚さの皮膜が形成される。基板Sに皮膜が形成された成膜後のワークWkは外部へ払い出される(ステップS106)。そして、次に処理すべきワークWkがあれば(ステップS107においてYES)、ステップS103に戻って新たなワークWkを受け入れて上記と同様の成膜処理を実行する。処理すべきワークがなければ(ステップS107においてNO)、装置各部を動作終了が可能な状態へ移行させる終了処理が実行され(ステップS108)、一連の動作は終了する。
【0048】
次に、高周波電源572の出力制御について説明する。この成膜装置1では、ターゲット512の近傍にマグネトロンプラズマと誘導結合プラズマとの混合プラズマを発生させ、これによりターゲット表面をスパッタリングして基板Sへの成膜を行う。ここで、ターゲット512がスパッタされることでその表面が消耗しターゲット512の厚さが減少すると、ターゲット512の表面と磁石ユニット515との距離が小さくなることでターゲット512表面における静磁場の磁束密度が高くなる。これにより、ターゲット512表面近傍におけるプラズマ密度が高くなり、ターゲット512のスパッタ量が増加する。
【0049】
スパッタ量の増加は成膜速度の向上につながるが、プラズマ密度の増加に伴ってプラズマインピーダンスが低下するため、同じカソード電流に対してカソード電圧は低下する傾向にある。カソード電圧は膜質、特に膜密度に影響を及ぼす因子であり、プラズマ密度の増加は成膜速度を向上させるが膜質を低下させるという結果に帰着する。
【0050】
特に、ターゲット512が例えば金属ニッケルのような強磁性体材料で形成されている場合には、ターゲット512による磁気シールド効果がその厚さの減少に伴って弱まってくる。このため、ターゲット512表面近傍での磁束密度が大きく変動しプラズマ密度も変動する。
【0051】
継続的な成膜において成膜速度および膜質を安定的に維持しつつ成膜を行うためには、成膜プロセス中、カソード電流およびカソード電圧の両方について変動が少ないことが求められる。ターゲット厚さの減少分だけ磁石ユニット515を遠ざければこの問題は解消されるが、重く大きな磁石ユニットを優れた位置精度で移動させるための機構および制御を実現するには装置コストの大幅な上昇が避けられない。
【0052】
前記したように、カソード電源571としては定電力制御、定電流制御および定電圧制御の種々の制御方式を取り得るが、いずれもカソード電流とカソード電圧との両方を安定的に維持することができるものではない。というのは、カソード電流とカソード電圧とはプラズマインピーダンスを介して相互に関連しており、プラズマ密度の上昇に伴うプラズマインピーダンスの低下に対応して、カソード電源571での制御によりカソード電流とカソード電圧との一方を適正値にしようとすると、他方が適正値から離れてしまうからである。
【0053】
そこで、この実施形態では、誘導結合アンテナ52,53に与える高周波電力を変化させることで、プラズマ密度の安定化を図っている。具体的には、プラズマ空間PLにおけるプラズマ密度の変動に伴って変化する物理量を測定し、その測定結果に基づいて高周波電源572が出力する高周波電力の大きさを制御することでプラズマ密度を安定化させ、結果としてカソード電源571からスパッタカソード51に供給されるカソード電流とカソード電圧とをともに適正値に維持する。
【0054】
プラズマ密度を指標する物理量としては、例えば、カソード電流の大きさ、カソード電圧の大きさおよびプラズマ発光強度が挙げられる。前記したようにプラズマ密度が高くなるとターゲット512のスパッタ量が増加し、そのためカソード電流も増加する。すなわち、カソード電源571の定電力制御下におけるカソード電流の増加はプラズマ密度が上昇していることを意味する。また、プラズマ密度の上昇によりプラズマインピーダンスが低下するとカソード電圧は低下する。すなわち、カソード電源571の定電力制御下におけるカソード電圧の低下はプラズマ密度の上昇を示す。
【0055】
また、前記したように、ターゲット512の表面近傍におけるプラズマ発光強度の測定結果からプラズマ密度を推定することが可能である。さらに、成膜が行われた基板Sにおける膜厚を実測し、その膜厚から間接的にプラズマ密度を推定することも可能である。特に、成膜中にリアルタイムに膜厚を測定することが可能であれば、測定された膜厚をプラズマ密度の指標となる物理量として高周波電力の制御に用いることが可能である。
【0056】
この実施形態では、これらのうち適宜の物理量を制御入力として、高周波電源572が出力電力の制御を行う。より具体的には、制御入力される物理量の測定値が予め定められた目標値または目標範囲を充足するように、高周波電源572の出力電力が制御される。特にカソード電流またはカソード電圧が制御入力とされる場合、高周波電源572の出力電力が、カソード電源571からスパッタカソード51への電力供給の状況を検出した結果に基づいて決定されることになる。
【0057】
図6はカソード電源の制御方式と高周波電源が採用し得る制御入力との関係を示す図である。図において「○」印は、当該物理量が高周波電源572の制御入力として用いられることがカソード電源571における出力制御と整合する、つまり制御入力として適切に利用可能なものであることを示す。一方、「−」印は、当該物理量を制御入力とする高周波電源572の制御とカソード電源571の出力制御とが整合しないことを示す。
【0058】
カソード電源571が定電流制御、つまりカソード電流が一定となるように出力を制御する場合、高周波電源572は、カソード電圧を制御入力として高周波出力を決定することができる。この場合、カソード電圧の測定値が目標値(または目標範囲内、以下同様)となるように高周波電源572の出力が制御される。カソード電流はカソード電源571により定電流制御されているから、結果的にカソード電流およびカソード電圧の両方が目標値に維持されることになる。
【0059】
カソード電源571の出力が定電流制御されているため、カソード電流およびプラズマ密度は適正値に管理されている。したがって、これらの物理量を高周波電源572の制御入力としても、カソード電圧を適正に維持することはできない。
【0060】
カソード電源571が定電圧制御、つまりカソード電圧が一定となるように出力を制御する場合、高周波電源572は、カソード電流またはプラズマ発光強度を制御入力として高周波出力を決定することができる。この場合、カソード電流またはプラズマ発光強度の測定値が目標値となるように高周波電源572の出力が制御される。カソード電圧が一定に制御される場合、ターゲット512のエロージョン進行に伴いプラズマ密度が上昇しカソード電流が増加する。
【0061】
このような増加を検出して高周波出力を調整することで、カソード電流およびプラズマ密度の増加を抑えることができる。すなわち、カソード電流およびカソード電圧の両方を目標値に維持することができる。カソード電圧は定電圧制御されているので、これを制御入力としてもカソード電流の変動に対応する制御とはならない。
【0062】
カソード電源571が定電力制御、つまりカソード電流とカソード電圧との積が一定となるように出力を制御する場合、カソード電流およびカソード電圧の個々の値は不安定となり得るが、いずれか一方を高周波電源572の高周波出力調整により安定化させることで、他方も安定なものとなる。すなわち、カソード電流およびカソード電圧のいずれの測定値も、高周波電源572の制御入力として利用可能である。
【0063】
また、プラズマ発光強度を制御入力とした場合でも、該制御入力により指標されるプラズマ密度が一定となるような高周波電力制御を行うことでカソード電流が安定するから、カソード電源571の定電力制御によってカソード電圧も安定する。よってこの場合、カソード電流、カソード電圧およびプラズマ発光強度のいずれもが制御入力として成立し得る。
【0064】
図7は高周波電源での出力制御処理の例を示すフローチャートである。ここでは、カソード電源571が定電圧制御を行っており、カソード電流を制御入力とする場合の高周波電源572の制御動作を例示する。しかしながら、カソード電源571の制御方式および高周波電源572と制御入力となる物理量がこれと異なる場合についても、同様の考え方で処理フローを作成することができる。この処理は、例えば高周波電源572に内蔵された図示しないコントローラが実行してもよく、また成膜装置1の制御ユニット90に設けられたCPU91または成膜プロセス制御部95がこの処理を実行し高周波電源571に出力指示を与えることにより実現されてもよい。
【0065】
高周波電源572から予め設定された高周波電圧および電流が出力され誘導結合アンテナ52,53への印加が開始される(ステップS201)。そして、カソード電源571とスパッタカソード51との間に介挿された電流測定部573が測定するカソード電流の値が取得される(ステップS202)。電流値が予め定められた目標値を超える場合には(ステップS203においてYES)、誘導結合アンテナ52,53に印加される電圧および電流が、超過分に応じた大きさで低下される(ステップS204)。一方、電流値が目標値に満たない場合には(ステップS205においてYES)、誘導結合アンテナ52,53に印加される電圧および電流が、不足分に応じた大きさで増大される(ステップS206)。カソード電流が目標値に合致していれば(ステップS203、S205においていずれもNO)、現在の高周波出力が維持される。以後、カソード電流値の取得およびそれに伴う高周波電力出力の調整が継続的に実行される。
【0066】
このような処理によって、カソード電源571からスパッタカソード51に流入するカソード電流が一定値に維持される。カソード電圧はカソード電源571により定電圧制御されているため、結果としてカソード電流およびカソード電圧の両方が一定に維持され、スパッタカソード51に注入される電力が一定となる。これにより、成膜速度および成膜される皮膜の膜質が安定したものとなる。
【0067】
図8はこの出力制御処理の効果を例示する図である。
図8上側のグラフに示すように、カソード電圧が目標値Vtとなるように定電圧制御された状態で、カソード電流が目標値Itから電流値Iaに変化した場合を考える。
図8下側のグラフに示すように、高周波電源572は、カソード電流が大きくなるほど高周波電力出力が小さくなるように構成されている。目標値Itから電流値Iaへのカソード電流の増加が検出されると、高周波電源572は、高周波電力出力を当初の値Poから値Paに低下させる。これによりプラズマ空間PLにおけるプラズマ密度が低下し、カソード電流が減少する方向に変化する。このようにしてカソード電流は目標値Itに維持される。制御入力として発光プラズマ強度が用いられる場合も概ね同じようにすることができる。
【0068】
図9はカソード電流が定電流制御され、カソード電圧が制御入力とされる場合を例示する図である。この場合、
図9下側のグラフに示すように、高周波電源572は、カソード電圧が高くなるほど高周波電力出力が大きくなるように構成されている。したがって、
図9上側のグラフに示すようにカソード電圧が目標値Vtから値Vbに低下したとき、高周波電源572の高周波電力出力も初期の値Poから値Pbに減少する。定電流制御下でのカソード電圧の低下はプラズマ密度の上昇によるプラズマインピーダンスの低下によって起こるので、高周波電力を低下させてプラズマ密度を低下させることにより、カソード電圧を回復させることが可能である。このようにしてカソード電圧は目標値Vtに維持される。
【0069】
なお、
図8および
図9においては、原理説明のために制御入力に対し高周波電力が線形に変化するように描かれているが、これらは非線形の関係を有していてもよい。また、カソード電源571が出力を定電力制御している場合には、
図8および
図9それぞれの上側のグラフにおける電流と電圧との関係が放物線により表される関係となるが、その場合でも
図8または
図9と同様の原理で高周波電力の出力を調整してカソード電流およびカソード電圧の一方を安定化させることで、他方も一意に決定される。
【0070】
また、
図8および
図9ではカソード電圧およびカソード電流の目標値It、Vtをそれぞれ一意の値としているが、図に符号ΔI、ΔVを付して示すように、一定の幅を有する目標範囲として定められていてもよい。
【0071】
また、ここでは、定電圧制御においてカソード電流が増える方向に変化したケース(
図8)、および定電流制御においてカソード電圧が低下する方向に変化したケース(
図9)を例として説明した。これらの場合、いずれも高周波電力については低下させる方向に変更されることになる。このような例を挙げた理由は以下の通りである。
【0072】
ターゲット512のエロージョンに起因するプラズマ密度の変動を考えるとき、ターゲット512の厚さは減少する方向にしか変化しないから、ターゲット512表面の磁束はスパッタの進行に伴って不可逆的に強くなってゆく。このため、エロージョンの進行はプラズマ密度を増加させる方向に作用する。このことから、プラズマ密度の増加に対して、これを抑制するように高周波電力の制御がなされればよいこととなる。
【0073】
言い換えれば、ターゲット512のエロージョンへの対応という点に着目したとき、ターゲット512の消耗が少ない初期段階では誘導結合アンテナ52,53に供給される高周波電力は比較的大きく、消耗が進むにつれて供給電力は次第に少なくなるように、高周波電源572からの出力が制御されればよいことになる。このため、例えば予め設定されたスケジュールに基づき高周波電力出力を漸減させてゆくような構成も考えられる。しかしながら、制御の安定性という観点からは、上記のようにプラズマ密度の変化を指標する物理量を制御入力とした出力制御の方が有効である。
【0074】
また、
図7に例示した本実施形態の出力制御処理は、制御入力として用いられる物理量の増加、減少の両方に対応可能な処理内容となっている。このため、ターゲットのエロージョンとは異なる種々の原因によるプラズマ密度の変動にも対応することが可能であり、成膜速度および膜質の安定した成膜を継続的に行うことができる。
【0075】
以上のように、この実施形態では、プラズマ発生源としてのマグネトロンを使用するプラズマスパッタリング成膜装置1において、高周波アンテナである誘導結合アンテナ52,53に与えられることで誘導結合プラズマを生じさせる高周波電力の大きさが、ターゲット表面近傍でのプラズマ密度を指標する物理量の測定結果に基づいて制御される。したがって、ターゲットの消耗による磁束密度の増加に伴って生じるプラズマ密度の上昇が、高周波電力の調整によって抑えられる。このため、カソード電源571からスパッタカソード51に供給されるカソード電流とカソード電圧とをともに適正値に維持しつつ成膜を行うことができる。
【0076】
カソード電流は成膜速度に、またカソード電圧は成膜される膜の膜質(より具体的には膜密度)に、それぞれ影響を及ぼす因子である。これらが適正に制御された状態で成膜を行うことにより、成膜速度および膜質の変動を抑えて安定した成膜を継続的に行うことができる。そのため、膜質の良好な皮膜を安定して得ることができる。これに加えて、ターゲットの厚さが変化しても成膜結果に影響が現れないため、ターゲット材料を効率よく利用することが可能となる。その結果、ターゲット材料のロスを抑え、またターゲットの交換頻度を少なくすることができるので、成膜コストについても低減を図ることが可能となる。
【0077】
以上説明したように、上記実施形態においては、磁石ユニット515を備えるスパッタカソード51が、本発明の「マグネトロンカソード」として機能している。また、搬送機構30、特に搬送ローラ31が、本発明の「基板保持部」として機能している。また、誘導結合アンテナ52,53がいずれも本発明の「高周波アンテナ」として機能している。また、誘導結合アンテナ52,53においては、導体521,531が本発明の「線状導体」に、また誘電体522,532が本発明の「誘電体層」に相当している。
【0078】
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記した実施形態においては、真空チャンバ10内で1組のスパッタカソード51を挟んで2組の誘導結合アンテナ52,53が配置されている。しかしながら、スパッタソースにおけるスパッタカソードおよび誘導結合アンテナの配置はこれに限定されるものではなく、例えば次のような配置も可能である。
【0079】
図10はスパッタソースの変形例を示す図である。ここでは成膜装置を構成する各部のうちスパッタカソードおよび誘導結合アンテナの配置のみを示すが、上記実施形態が備える他の各構成も、適宜配置されるものとする。
図10(a)に示す変形例では、1組の誘導結合アンテナ611を挟むように2組のスパッタカソード612,613が配置される。また、
図10(b)に示す変形例では、2組並べて配置されたスパッタカソード621,622を挟んで2組の誘導結合アンテナ623,624が配置される。さらに、
図10(c)に示す変形例では、2組のスパッタカソード631,632と3組の誘導結合アンテナ633,634,635が交互に配置される。
【0080】
これらの構成によっても、誘導結合アンテナへの高周波電力供給およびスパッタカソードへのカソード電力供給によりスパッタカソードの周囲に誘導結合プラズマが発生し、これによりターゲットのスパッタおよび基板への成膜が実現される。
【0081】
また、上記実施形態ではスパッタカソードとしてターゲットが平板状に形成されたプレーナカソードが用いられ、ターゲットは真空チャンバ内で固定されている。従来のマグネトロンプラズマスパッタリング成膜においては、ターゲット表面に平行な水平磁束の偏在に起因するターゲットの局所的な消費によってターゲットの利用効率が悪化する。この問題を解消しターゲットを満遍なく利用するために、ターゲットを円筒形状に形成し回転させることでターゲットと磁気回路とを相対移動させる、ロータリーカソード方式も用いられている。
【0082】
このようなロータリーカソード方式の成膜装置においても、ターゲット厚さの減少による磁束密度の上昇という問題は依然として残されている。したがって、上記実施形態と同様の高周波電力制御を適用することで、より安定で膜質の優れた成膜を行うことが可能となる。
【0083】
また、上記実施形態では、プラズマ密度を指標する物理量の測定結果に基づき高周波電力出力をリアルタイムに制御しているが、これに代えて、例えば次のようにすることもできる。すなわち、1枚の基板への成膜ごとに膜厚を実測し、これに基づいて次の成膜プロセスにおける高周波電力の出力値を決定するようにしてもよい。
【0084】
また、上記実施形態では、カソード電流およびカソード電圧を測定するための電流測定部573および電圧測定部574が電源部57に設けられている。しかしながら、カソード電源571が出力制御のためにこれらの測定機能を内蔵しており、その測定結果を外部へ取り出すことが可能であれば、この測定機能を電流および電圧測定部として使用するようにしてもよい。
【0085】
以上、具体的な実施形態を例示して説明してきたように、本発明において、高周波電力の制御に用いられる物理量としては、例えば、マグネトロンカソードに流れる電流、マグネトロンカソードの電圧、およびターゲット表面近傍でのプラズマ発光強度のいずれかであってよい。これらはいずれもプラズマ密度の変動によって変化する物理量であり、その測定結果に基づき高周波電力の制御を行うことで、プラズマ密度の変動を抑制することが可能になる。
【0086】
また例えば、高周波アンテナは、巻き数が1周未満の線状導体を誘電体層で被覆した構造を有するものであってよい。このような構造の高周波アンテナは低インダクタンスであり、大きな高周波電力を注入することが可能である。このため高密度の誘導結合プラズマを安定して発生させることが可能である。
【0087】
具体的には、例えば、カソード電源はマグネトロンカソードに与える電圧を定電圧制御しまたはマグネトロンカソードに与える電力を定電力制御し、高周波電源はマグネトロンカソードに流れる電流を物理量として高周波電力を制御する構成とすることができる。このような構成によれば、マグネトロンカソードに流れる電流が安定化されることで、結果的にマグネトロンカソードの電流、電圧の双方が適正値に維持される。
【0088】
あるいは、カソード電源はマグネトロンカソードに流れる電流を定電流制御しまたはマグネトロンカソードに与える電力を定電力制御し、高周波電源はマグネトロンカソードの電圧を物理量として高周波電力を制御する構成とすることができる。このような構成によれば、マグネトロンカソードに印加される電圧が安定化されることで、結果的にマグネトロンカソードの電流、電圧の双方が適正値に維持される。
【0089】
さらには、カソード電源はマグネトロンカソードに与える電圧を定電圧制御しまたはマグネトロンカソードに与える電力を定電力制御し、高周波電源は、プラズマ発光強度を物理量として高周波電力を制御する構成とすることができる。このような構成によれば、プラズマ発光強度の大きさに応じて高周波電力を増減することで、プラズマ密度の変動を抑えることができる。その結果、マグネトロンカソードに流れる電流が安定化され、結果的にマグネトロンカソードの電流、電圧の双方が適正値に維持される。
【0090】
また例えば、高周波電源が、物理量の測定値が所定の適正範囲内となるように高周波電力を制御する構成であれば、上記制御の結果として、マグネトロンカソードの電圧および電流の両方を適正範囲に維持することが可能となる。
【0091】
また、本発明において、ターゲットが強磁性体材料であってよい。ターゲットが強磁性体材料であるとき、ターゲットが磁気シールドとして作用するが、ターゲットの厚さが減少するにつれて磁気シールド作用も弱くなる。このため、ターゲット表面における磁束密度の変動はターゲットが非磁性体である場合よりも大きくなり、カソード電源によるプラズマ密度の安定化も難しくなる。このようなケースに本発明を適用することで、得られるプラズマ密度の安定化効果はより顕著なものとなる。
【0092】
また例えば、本発明に係る高周波電力の制御においては、高周波アンテナに与えられる高周波電力が経時的に低減されるような制御であってよい。スパッタによるターゲットの厚さ変化は不可逆的に小さくなる方向に現れる。これによるプラズマ密度の上昇を抑えるために、高周波電力は経時的に低減するように制御されることが好ましい。こうすることで、ターゲットの厚さ変化によらずプラズマ密度を安定させて、安定した成膜を行うことが可能となる。