【文献】
安富敏 森英雄 清弘智昭,歩行のリズムに基づく歩行者検出の一手法,電子情報通信学会論文誌,日本,社団法人電子情報通信学会,1995年04月25日,第J78-D-II巻 第4号,Pages 608-617,ISSN 0915-1923
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
(実施形態1)
(1)概要
本実施形態に係るセンサ処理システム3及びセンサシステム1の概要について、
図1及び
図2を参照して説明する。
【0014】
本実施形態に係るセンサシステム1は、例えば、対象領域における人の存否を検知するためのシステムである。ここにおいて、「対象領域」は、例えば、介護施設、サービス付き高齢者向け住宅、病院等の施設に設けられて、検知対象の「人」によって使用される個室内の領域である。対象領域が、介護施設又はサービス付き高齢者向け住宅の個室内の領域であれば、検知対象の「人」は個室に居住する被介護者である。また、対象領域が、病院の病室内の領域であれば、検知対象の「人」は、治療等のために病室に入院している患者である。センサシステム1が、介護施設、サービス付き高齢者向け住宅、病院等に設けられた個室内の領域(対象領域)において人の存否を検知する場合、検知対象の人(被介護者又は病人)が対象領域の外に出たことを確実に検知したいという要望がある。本実施形態のセンサ処理システム3及びセンサシステム1は、対象領域における人の在不在の判定精度の向上を図ることを目的としている。
【0015】
センサシステム1は、測定部2と、センサ処理システム3とを備える。
【0016】
測定部2は、対象領域100(
図2参照)における人の存否に応じて値が変化する物理量を測定する。本実施形態では、測定部2は、対象領域100における人の存否に応じて値が変化する物理量を非接触で測定する。
【0017】
センサ処理システム3は、取得部31と、時系列分析部301と、判定部302とを備える。
【0018】
取得部31は測定部2から測定データを取得する。
【0019】
時系列分析部301は、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める。
【0020】
判定部302は、分析モデルの係数に関する条件を含む判定条件に基づいて、所定のタイミングにおける人の存否を判定する。
【0021】
このように、センサ処理システム3では、判定部302が、時系列分析部301によって求められた分析モデルの係数に関する判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定部302は、測定データの一時的な変動等の影響を受けにくくなり、判定部302による判定精度の向上を図ることができる。
【0022】
(2)詳細
以下、実施形態1に係るセンサ処理システム3及びセンサシステム1について図面を参照して説明する。
【0023】
(2.1)構成
センサシステム1は、上述のように、測定部2と、センサ処理システム3とを備える。
【0024】
センサシステム1は、例えば、
図2に示すように、対象領域100を含む個室50における人の在不在を判定する。個室50は、介護施設、サービス付き高齢者住宅又は病院等の施設において、検知対象の人が使用(居住、又は入院)する部屋である。個室50には、例えば、ベッド51、トイレ52、洗面台53、出入口の引き戸54、窓55等の設備が設けられている。なお、個室50においてベッド51、トイレ52、洗面台53、引き戸54、窓55等の設備は必須ではなく、適宜省略が可能である。個室50の壁には、個室50内の空気環境を調整する空調設備(エアコンディショナ)20が設置されている。本実施形態では、空調設備20の横に、個室50内にいる人を検知可能なように測定部2が配置されている。つまり、個室50において測定部2が人を検知可能な領域が対象領域100となる。
【0025】
測定部2は、例えば、電波式のドップラーセンサと、信号処理部とを備える。ドップラーセンサは、例えば、所定の時間間隔(例えば1秒間隔)で、例えばマイクロ波帯の電波を対象領域100(例えばベッド51の設置領域を含む領域)に送信する。ドップラーセンサは、対象領域100に存在する人などで反射された反射波を受信する。測定部2の信号処理部は、ドップラーセンサが受信した反射波を信号処理して、対象領域100に存在する人の体動を示す測定データ(体動測定データ)を生成する。また、測定部2の信号処理部は、人の体動を示す測定データをフィルタリングし、心拍によって発生する体動の周波数成分を抽出することで、心拍によって発生する体動を示す測定データ(心拍測定データ)を生成する。また、測定部2の信号処理部は、人の体動を示す測定データをフィルタリングし、呼吸によって発生する体動の周波数成分を抽出することで、呼吸によって発生する体動を示す測定データ(呼吸測定データ)を生成する。ここにおいて、測定部2の信号処理部が心拍測定データ及び呼吸測定データを生成する周期は、体動測定データを生成する周期よりも長い。例えば、測定部2の信号処理部は、体動測定データを1秒ごとに生成するが、心拍測定データ及び呼吸測定データを5秒ごとに生成する。
【0026】
測定部2は、対象領域100に存在する人の体動を示す体動測定データと、心拍によって発生する体動を示す心拍測定データと、呼吸によって発生する体動を示す呼吸測定データとをセンサ処理システム3に出力する。測定部2は、例えば、Bluetooth(登録商標)などに準拠した無線通信部を備え、測定データをセンサ処理システム3に無線送信する。
【0027】
本実施形態の測定部2は、体動測定データなどに基づいて、対象領域100に人が存在するか否かを判定しており、在/不在の判定結果をセンサ処理システム3に無線送信する。なお、測定部2が対象領域100における人の在/不在を判定する判定処理は必須ではなく、測定部2は測定データのみをセンサ処理システム3に無線送信してもよい。
【0028】
ここで、測定部2が人の体動を検知する対象領域100はベッド51の設置領域を含む領域であるが、個室50の全体でもよく、適宜変更が可能である。また、測定部2は電波式のドップラーセンサに限定されず、超音波を送信する超音波式のドップラーセンサでもよい。また、測定部2とセンサ処理システム3との間の通信は無線通信に限定されず、有線通信でもよい。また、測定部2は、体動測定データなどの測定データを非接触で測定しているので、人の動きを妨げることがない。
【0029】
センサ処理システム3は、演算処理部30と、取得部31と、記憶部32と、出力部33とを備える。また、演算処理部30は、時系列分析部301、判定部302等の機能を備えている。本実施形態では、センサ処理システム3は、例えば、介護施設、サービス付き高齢者住宅又は病院等の施設において、介護者、看護師などの詰め所に設けられたパーソナルコンピュータによって実現される。
【0030】
取得部31は、例えば、Bluetooth(登録商標)などに準拠した無線通信部を備える。取得部31は、測定部2との間で定期又は不定期に無線通信を行うことによって、測定部2から体動測定データと心拍測定データと呼吸測定データとを取得する。取得部31は、測定部2から体動測定データ、心拍測定データ、及び呼吸測定データを取得すると、取得した測定データを演算処理部30に出力する。
【0031】
記憶部32は、EEPROM(Electrically Erasable Programmable Read Only Memory)等の電気的に書き換え可能な不揮発性メモリ、RAM(Random Access Memory)などの揮発性メモリなどを備える。記憶部32は、演算処理部30が実行するプログラムなどを記憶する。記憶部32は、演算処理部30での演算結果などのデータを一時記憶する。また、記憶部32は、後述する判定値TH1,TH2の算出のため、過去の所定期間(例えば数日間)において、取得部31が測定部2から取得した測定データを記憶する。
【0032】
演算処理部30は、例えば、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、演算処理部30は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが所定のプログラムを実行することにより、コンピュータシステムが演算処理部30として機能する。プログラムは、メモリ又は記憶部32に予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
【0033】
時系列分析部301は、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める時系列分析処理を行う。取得部31は例えば1秒ごとに測定部2から測定データを取得しており、時系列分析部301は、所定のタイミングでの体動の測定データを、所定のタイミングよりも前の複数個(例えば30個)の測定データで表す時系列分析の分析モデルを求める。本実施形態では、時系列分析部301が、例えば自己回帰(Auto Regression:AR)モデルを用い、所定のタイミングでの体動の測定データを、過去30秒間の30個の測定データで表す自己相関関数の分析モデルを求める。なお、時系列分析部301が行う時系列分析の分析モデルは自己回帰モデルに限定されず、拡張カルマンモデルなどの他の分析モデルでもよく、分析モデルは計算量などを考慮して適宜変更が可能である。
【0034】
判定部302は、時系列分析部301によって求められた分析モデルの係数に関する条件を含む判定条件に基づいて、所定のタイミングにおける人の存否を判定する。判定部302は、例えば、時系列分析部301によって求められた分析モデルの係数が所定のしきい値を超える、又は測定部2の測定データの大きさが所定の判定値を超える、という判定条件に基づいて、所定のタイミングにおける人の存否を判定する。すなわち、判定部302は、自己回帰モデルの1次係数が所定のしきい値を超えるか、又は測定データの大きさが判定値を超えると、対象領域100に人が存在する(在室状態である)と判定する。判定部302は、自己回帰モデルの1次係数が所定のしきい値以下であり、かつ、測定データの大きさが判定値以下であると、対象領域100に人が存在しない(不在状態である)と判定する。
【0035】
出力部33は、例えば、ディスプレイ装置、スピーカ、プリンタなどである。出力部33は、判定部302による判定結果を出力する。詰め所にいる介護士、看護師などは、出力部33が出力する判定結果を確認することで、個室50に人が存在するか否かを確認できる。したがって、個室50から検知対象の人が出ていった場合に、詰め所にいる介護士、看護師は検知対象の人を捜すなどの対応をとることができる。
【0036】
(2.2)判定動作の説明
(2.2.1)全体的な判定動作の説明
本実施形態のセンサ処理システム3及びセンサシステム1による全体的な判定動作を
図3のフローチャートにしたがって説明する。
【0037】
演算処理部30は、所定のタイミング(例えば1秒間隔)で、対象領域100における人の在不在を判定する処理を開始する。
【0038】
演算処理部30は、所定のタイミング(例えば1秒間隔)で、測定データ及び生体データを測定部2から取得する取得処理を取得部31に行わせる(S1)。本実施形態では、取得部31は、例えば1秒ごとに、体動測定データ、心拍測定データ、及び呼吸測定データを取得する。取得部31は、測定部2から取得した体動測定データ、心拍測定データ、及び呼吸測定データを演算処理部30に出力する。なお、測定部2は、例えば1秒ごとに体動測定データを更新し、例えば5秒ごとに心拍測定データ及び呼吸測定データを更新している。したがって、取得部31が測定部2から取得した心拍測定データ及び呼吸測定データは例えば5秒ごとに更新される。
【0039】
演算処理部30は、取得部31から測定データ(体動測定データ、心拍測定データ、呼吸測定データ)が入力されると、測定データについてノイズカット、移動平均などのデータ加工を行う。演算処理部30は、データ加工後の体動の測定データを記憶部32に記憶させる。
【0040】
また、演算処理部30は、所定のタイミング(例えば1秒間隔)で、測定部2が対象領域100における人の在不在を判定した結果を示す仮判定フラグF30を測定部2から取得する(S2)。なお、測定部2が、対象領域100における人の在/不在を判定する判定処理を行うことは必須ではなく、ステップS2の処理は適宜省略が可能である。
【0041】
演算処理部30は、取得部31から入力された測定データのうち、心拍測定データ及び呼吸測定データの値(大きさ)に基づいて対象領域100に人が存在するか否かを判定する第1判定処理を行う(S3)。演算処理部30は、第1判定処理において、対象領域100に人が存在すると判定すると仮判定フラグF10の値を1とし、対象領域100に人が存在しないと判定すると仮判定フラグF10の値を0とする。なお、第1判定処理の詳細については後述する。
【0042】
演算処理部30は、時系列分析によって対象領域100に人が存在するか否かを判定する第2判定処理を行う(S4)。演算処理部30は、第2判定処理において、対象領域100に人が存在すると判定すると仮判定フラグF20の値を1とし、対象領域100に人が存在しないと判定すると仮判定フラグF20の値を0とする。なお、第2判定処理の詳細については後述する。
【0043】
演算処理部30は、第1判定処理と第2判定処理とを行うと、仮判定フラグF10,F20,F30の和を求め、仮判定フラグF10,F20,F30の和が1以上であるか否かを判定する(S5)。
【0044】
仮判定フラグF10,F20,F30の和(F10+F20+F30)が1以上であれば(S5:Yes)、演算処理部30は在室フラグF1の値を1とする(S6)。つまり、測定部2による判定処理の判定結果、第1判定処理の判定結果、第2処理処理の判定結果のうち少なくとも1つが人が存在するという判定結果であれば、演算処理部30は、対象領域100に人が存在すると判定する。
【0045】
仮判定フラグF10,F20,F30の和(F10+F20+F30)が1未満であれば(S5:No)、演算処理部30は在室フラグF1の値を0とする(S7)。つまり、測定部2による判定処理の判定結果、第1判定処理の判定結果、第2処理処理の判定結果の全てが人が存在しないという判定結果であれば、演算処理部30は、対象領域100に人が存在しないと判定する。
【0046】
そして、演算処理部30は、在室フラグF1の値に応じて、対象領域100における人の在不在を判定した判定結果を出力部33に出力させる(S8)。ここで、出力部33による出力の態様としては、例えば、センサ処理システム3を構成するパーソナルコンピュータのディスプレイ装置への表示、音声出力、プリントアウト(印刷)、非一時的記録媒体への書き込み、及び情報端末への送信等がある。
【0047】
演算処理部30は、所定のタイミング(例えば1秒間隔)で、ステップS1からステップS8までの処理を行い、対象領域100における人の在不在を判定し、判定結果を出力する。
【0048】
(2.2.2)第1判定処理の説明
演算処理部30が行う第1判定処理について
図4を参照して説明する。
【0049】
第1判定処理では、演算処理部30は、取得処理(S1)で取得した心拍測定データ及び呼吸測定データの大きさに基づいて、対象領域100における人の在不在を判定する。
【0050】
演算処理部30は、記憶部32に記憶されている過去の所定期間(例えば数日間)の心拍測定データに基づいて、人の存否を判定するための判定値TH1を算出する(S11)。演算処理部30は、例えば、過去の所定期間において、対象領域100に人が存在すると判定された期間での心拍測定データと、人が存在しないと判定された期間での心拍測定データとを用いて機械学習を行うことで、判定値TH1を設定する。
【0051】
演算処理部30は、心拍測定データの大きさと判定値TH1との大小を比較する(S12)。ここで、心拍測定データが判定値TH1よりも大きければ(S12:Yes)、演算処理部30は、心拍判定フラグF11の値を1にする(S13)。心拍測定データが判定値TH1以下であれば(S12:No)、演算処理部30は、心拍判定フラグF11の値を0にする(S14)。
【0052】
また、演算処理部30は、記憶部32に記憶されている過去の所定期間(例えば数日間)の呼吸測定データに基づいて、人の存否を判定するための判定値TH2を算出する(S15)。演算処理部30は、例えば、過去の所定期間において、対象領域100に人が存在すると判定された期間での呼吸測定データと、人が存在しないと判定された期間での呼吸測定データとを用いて機械学習を行うことで、判定値TH2を設定する。
【0053】
演算処理部30は、呼吸測定データの大きさと判定値TH2との大小を比較する(S16)。ここで、呼吸測定データが判定値TH2よりも大きければ(S16:Yes)、演算処理部30は、呼吸判定フラグF12の値を1にする(S17)。呼吸測定データが判定値TH2以下であれば(S16:No)、演算処理部30は、呼吸判定フラグF12の値を0にする(S18)。
【0054】
次に、演算処理部30は、心拍判定フラグF11の値と、呼吸判定フラグF12の値との総和(F11+F12)を求める(S19)。
【0055】
そして、演算処理部30は、総和(F11+F12)が1以上であるか否かを判定する(S20)。総和(F11+F12)が1以上であれば、演算処理部30は仮判定フラグF10の値を1にして(S21)、第1判定処理を終了する。また、総和(F11+F12)が1未満であれば、演算処理部30は仮判定フラグF10の値を0にして(S22)、第1判定処理を終了する。
【0056】
つまり、心拍測定データが判定値TH1よりも大きいという条件と、呼吸測定データが判定値TH2よりも大きいという条件との少なくとも一方が成立すれば、演算処理部30は仮判定フラグF10の値を1にする。一方、心拍測定データが判定値TH1以下であり、かつ、呼吸測定データが判定値TH2以下であると、演算処理部30は仮判定フラグF10の値を0にする。
【0057】
本実施形態では、設定部としての演算処理部30が、所定期間における測定データ(心拍測定データ、呼吸測定データ)の大きさに応じて、判定値TH1,TH2を設定する設定処理を行っている。したがって、検知対象の人や測定部2の感度などの条件に応じて判定値を変更でき、人が存在するか否かを判定する判定精度を向上することができる。なお、演算処理部30が、第1判定処理を行うごとに判定値の設定処理を行うことは必須ではない。演算処理部30は、過去の一定期間(所定期間)における測定データの大きさに応じて判定値を設定し、この判定値を用いて第1判定処理を行ってもよい。また、演算処理部30は、所定の更新タイミングで、直前の一定期間(所定期間)における測定データの大きさに応じて判定値を設定してもよい。
【0058】
(2.2.3)第2判定処理の説明
演算処理部30が行う第2判定処理について
図5を参照して説明する。
【0059】
第2判定処理では、演算処理部30は、取得処理(S1)で取得した体動測定データに基づき、時系列分析の分析モデルを求める時系列分析処理を行うことによって、対象領域100における人の在不在を判定する。ここで、演算処理部30は、体動測定データに代えて、心拍測定データに基づいて時系列分析処理を行ってもよいし、呼吸測定データに基づいて時系列分析処理を行ってもよい。
【0060】
演算処理部30の時系列分析部301は、取得部31が今回取得した体動の測定データを、過去に取得された複数個(例えば30個)の測定データで表す時系列分析の分析モデルを求める時系列分析処理を行う(S31)。本実施形態の時系列分析部301は、例えば、自己回帰モデルを用いて分析モデルを求めている。例えば、時系列分析部301は、下記の自己回帰モデルの関係式を求める。ここで、今回取得した体動の測定データをX(0)、n回前に取得した体動の測定データをX(n)、n次の係数をAnとする。
【0061】
X(0)=A1・X(1)+A2・X(2)+・・・+A30・X(30)
演算処理部30は、第1判定処理による在不在の判定結果に基づいて、自己回帰モデルの1次係数A1をもとに在不在を判定するためのしきい値TH11を算出する(S32)。
【0062】
ここで、
図6のA1は、第1判定処理で人が存在する(以下、この状態を在状態ともいう)と判定された場合の1次係数A1の分布曲線である。また、
図6のA2は、第1判定処理で人が存在しない(以下、この状態を不在状態ともいう)と判定された場合の1次係数A1の分布曲線である。
図6の結果をもとに、本出願の発明者らは、自己回帰モデルの1次係数A1に、対象領域100に人が存在する場合と、対象領域100に人が存在しない場合とで有意な差が発生するという知見を得た。そこで、演算処理部30は、自己回帰モデルの1次係数A1について、対象領域100に人が存在する場合と、対象領域100に人が存在しない場合とを判別するためのしきい値TH11を設定する。
【0063】
ここで、演算処理部30は、過去の所定期間において、第1判定処理で在状態と判定された場合の1次係数A1の平均値と標準偏差とを求める。また、演算処理部30は、過去の所定期間において、第1判定処理で不在状態と判定された場合の1次係数A1の平均値と標準偏差とを求める。演算処理部30は、第1判定処理で在と判定された場合の1次係数A1の平均値及び標準偏差と、第1判定処理で不在と判定された場合の1次係数A1の平均値及び標準偏差とに基づいて、しきい値TH11に設定する。
【0064】
そして、演算処理部30の判定部302は、ステップS31で求めた自己回帰モデルの1次係数A1としきい値TH11との大小を比較する(S33)。判定部302は、自己回帰モデルの1次係数A1がしきい値TH11よりも大きければ(S33:Yes)、対象領域100に人が存在すると判定し、仮判定フラグF21を1に設定し(S34)、仮判定フラグF21の値を記憶部32に記憶させる。判定部302は、自己回帰モデルの1次係数A1がしきい値TH11以下であれば(S33:No)、対象領域100に人が存在しないと判定し、仮判定フラグF21を0に設定し(S35)、仮判定フラグF21の値を記憶部32に記憶させる。
【0065】
演算処理部30は、仮判定フラグF21を算出すると、現在までの所定回数の仮判定フラグF21の加重移動平均を算出する(S36)。例えば、演算処理部30は、現在までの5回分の仮判定フラグF21の加重移動平均を求める。
【0066】
また、演算処理部30は、過去の所定期間において、第1判定処理で不在状態と判定された場合に得られた仮判定フラグF21を記憶部32から抽出し、これらの仮判定フラグF21の値を用いてしきい値TH12を算出する(S37)。例えば、演算処理部30は、第1判定処理で不在状態と判定された場合に得られた仮判定フラグF21の平均値を求め、この平均値をしきい値TH12に設定する。
【0067】
判定部302は、ステップS36で求めた加重移動平均の値と、しきい値TH12との大小を比較する(S38)。判定部302は、加重移動平均の値がしきい値TH12よりも大きければ(S38:Yes)、対象領域100に人が存在すると判定し、仮判定フラグF20を1に設定し(S39)、第2判定処理を終了する。判定部302は、加重移動平均の値がしきい値TH12以下であれば、対象領域100に人が存在しないと判定し、仮判定フラグF20を0に設定し(S40)、第2判定処理を終了する。
【0068】
このように、第2判定処理では、判定部302が、時系列分析部301が求めた分析モデルの係数に関する条件(例えば、係数が所定のしきい値を超えるという条件)を含む判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定部302は、測定データの一時的な変動等の影響を受けにくくなり、判定部302による判定精度の向上を図ることができる。
【0069】
図7は体動測定データD1の測定結果の一例を示し、
図7のC1は本実施形態の判定結果、
図7のC2は体動測定データD1の大きさに基づいて在/不在を判定した判定結果を示している。対象領域100に人が存在する場合でも、就寝時、テレビなどの視聴時、読書中に人が安静にしていると、体動測定データの大きさが低下する。そのため、体動測定データの大きさに基づいて在/不在を判定する場合、在状態を不在状態と誤判定しやすくなるが、本実施形態では時系列分析を用いて在/不在を判定しているので、判定精度を向上させることができる。
【0070】
(3)変形例
上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、センサ処理システム3及びセンサシステム1と同様の機能は、在不在判定方法、コンピュータプログラム又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係る在不在判定方法は、取得処理(
図3のステップS1)と、時系列分析処理(
図5のステップS31)と、判定処理(
図5のステップS38)と、を含む。取得処理では、対象領域100における人の存否に応じて値が変化する物理量を測定する測定部2から測定データを取得する。時系列分析処理では、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める。判定処理では、分析モデルの係数に関する判定条件に基づいて所定のタイミングにおける人の存否を判定する。一態様に係る(コンピュータ)プログラムは、コンピュータシステムに、取得処理と、時系列分析処理と、判定処理と、を実行させるためのプログラムである。
【0071】
以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
【0072】
本開示におけるセンサ処理システム3、センサシステム1、又は在不在判定方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示におけるセンサ処理システム3、センサシステム1、又は在不在判定方法の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されていてもよいが、電気通信回線を通じて提供されてもよいし、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1乃至複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。
【0073】
また、実施形態1では、センサ処理システム3は、1つのシステムで実現されているが、この構成に限らず、例えば、2以上のシステムで実現されてもよい。例えば、取得部31、時系列分析部301、及び判定部302の機能が1つの筐体に収まる1つの装置にて実現されてもよいが、取得部31、時系列分析部301、及び判定部302のうちの少なくとも1つの機能が2つ以上のシステムに分散して設けられてもよい。また、取得部31、時系列分析部301、及び判定部302の各々の機能が、複数の装置に分散して設けられていてもよい。例えば、時系列分析部301、又は判定部302の機能が2つ以上のシステムに分散して設けられてもよい。センサ処理システム3の少なくとも一部の機能は、例えば、クラウド(クラウドコンピューティング)によって実現されてもよい。
【0074】
第1判定処理において、演算処理部30は、心拍測定データの大きさと呼吸測定データの大きさとに基づいて在/不在を判定しているが、心拍測定データの大きさと呼吸測定データの大きさとのいずれかに基づいて在/不在を判定してもよい。
【0075】
時系列分析部301は、所定のタイミングで取得された体動測定データを、過去に取得された30個の体動測定データで表す時系列分析の分析モデルを求めているが、時系列分析に用いる体動測定データの個数は30個に限定されず、適宜変更が可能である。
【0076】
また、判定部302は、分析モデルの1次係数に着目し、1次係数の大きさい基づいて人の存否を判定しているが、分析モデルの係数は1次係数に限定されない。人が存在する状態と人が存在しない状態とで有意な差が発生するのであれば、判定部302は、1次以外の次数の係数に基づいて人の存否を判定してもよいし、所定の次数の複数の係数に基づいて人の存否を判定してもよい。
【0077】
判定部302は、時系列解析の分析モデルの係数が所定のしきい値を超える、又は測定データの大きさが所定の判定値を超える、という判定条件に基づいて、対象領域100における人の在/不在を判定していたが、判定条件はこれに限定されない。判定部302は、時系列解析の分析モデルの係数が所定のしきい値を超えるという判定条件に基づいて、対象領域100における人の在/不在を判定してもよく、計算コストを低減できる。
【0078】
実施形態1において、測定データなどの2値の比較において、「より大きい」としているところは、2値が等しい場合、及び2値の一方が他方を超えている場合との両方を含む「以上」であってもよい。つまり、2値が等しい場合を含むか否かは、基準値等の設定次第で任意に変更できるので、「より大きい」か「以上」かに技術上の差異はない。同様に、「以下」としているところは「未満」であってもよい。
【0079】
(まとめ)
以上説明したように、第1の態様の在不在判定方法は、取得処理と、時系列分析処理と、判定処理と、を含む。取得処理では、対象領域(100)における人の存否に応じて値が変化する物理量を測定する測定部(2)から測定データを取得する。時系列分析処理では、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める。判定処理では、分析モデルの係数(A1)に関する判定条件に基づいて所定のタイミングにおける人の存否を判定する。
【0080】
この態様によれば、判定処理において、時系列分析処理によって求められた分析モデルの係数(A1)に関する判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定処理において、測定データの一時的な変動等の影響を受けにくくなり、判定精度を向上させることができる。
【0081】
第2の態様の在不在判定方法では、第1の態様において、分析モデルは自己回帰モデルと拡張カルマンモデルとのいずれかである。
【0082】
この態様によれば、自己回帰モデル又は拡張カルマンモデルを用いて時系列分析を行うことができる。
【0083】
第3の態様の在不在判定方法では、第1又は第2の態様において、判定条件は、係数(A1)が所定のしきい値(TH11)を超えるという条件である。
【0084】
この態様によれば、時系列分析の分析モデルの係数(A1)としきい値(TH11)との大小を比較することで、人の存否を判定することができる。
【0085】
第4の態様の在不在判定方法では、第1又は第2の態様において、判定条件は、係数(A1)が所定のしきい値(TH11)を超える、又は測定データの大きさが所定の判定値(TH1,TH2)を超える、という条件である。
【0086】
この態様によれば、時系列分析の分析モデルの係数(A1)としきい値(TH11)との大小を比較することで人の存否を判定でき、さらに測定データが判定値(TH1,TH2)を超えることで人の存否を判定できるので、判定精度の向上を図ることができる。
【0087】
第5の態様の在不在判定方法では、第4の態様において、物理量は、心拍によって発生する体動の大きさと、呼吸によって発生する体動の大きさとの少なくとも1つを含む。在不在判定方法は、所定期間における測定データの大きさに応じて判定値(TH1,TH2)を設定する設定処理を、更に含む。
【0088】
この態様によれば、心拍によって発生する体動の大きさ、又は呼吸によって発生する体動の大きさに応じた値に、人の存否を判定するための判定値(TH1,TH2)を設定することができる。したがって、検知対象の人、測定部(2)の測定感度などの条件に応じて判定値(TH1,TH2)を設定することができ、判定精度を向上させることができる。
【0089】
第6の態様のプログラムは、コンピュータシステムに、取得処理と、時系列分析処理と、判定処理と、を実行させるためのプログラムである。取得処理では、対象領域(100)における人の存否に応じて値が変化する物理量を測定する測定部(2)から測定データを取得する。時系列分析処理では、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める。判定処理では、分析モデルの係数に関する判定条件に基づいて所定のタイミングにおける人の存否を判定する。
【0090】
この態様によれば、判定処理において、時系列分析処理によって求められた分析モデルの係数に関する判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定処理において、測定データの一時的な変動等の影響を受けにくくなり、判定精度を向上させることができる。
【0091】
第7の態様のセンサ処理システム(3)は、取得部(31)と、時系列分析部(301)と、判定部(302)と、を備える。取得部(31)は、対象領域(100)における人の存否に応じて値が変化する物理量を測定する測定部(2)から測定データを取得する。時系列分析部(301)は、所定のタイミングで取得された測定データを、所定のタイミングよりも前に取得された複数個の測定データで表す時系列分析の分析モデルを求める。判定部(302)は、分析モデルの係数に関する判定条件に基づいて所定のタイミングにおける人の存否を判定する。
【0092】
この態様によれば、判定部(302)において、時系列分析部(301)によって求められた分析モデルの係数に関する判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定部(302)において、測定データの一時的な変動等の影響を受けにくくなり、判定精度を向上させることができる。
【0093】
第8の態様のセンサシステム(1)は、第7の態様のセンサ処理システム(3)と、対象領域(100)における人の存否に応じて値が変化する物理量を測定する測定部(2)と、を備える。取得部(31)は、測定部(2)から測定データを取得する。
【0094】
この態様によれば、判定部(302)において、時系列分析部(301)によって求められた分析モデルの係数に関する判定条件に基づいて、所定のタイミングにおける人の存否を判定している。したがって、判定部(302)において、測定データの一時的な変動等の影響を受けにくくなり、判定精度を向上させることができる。
【0095】
第9の態様のセンサシステム(1)は、第8の態様において、測定部(2)は、対象領域(100)に存在する人の体動を非接触で測定する。
【0096】
この態様によれば、測定部(2)が人の体動を非接触で測定しているので、人の動きを妨げることがない、という利点がある。
【0097】
上記態様に限らず、実施形態1に係る在不在判定方法の種々の特徴(変形例を含む)は、センサ処理システム、センサシステム、(コンピュータ)プログラム又はプログラムを記録した非一時的記録媒体等で具現化可能である。
【0098】
第2〜第5の態様に係る構成については、在不在判定方法に必須の構成ではなく、適宜省略可能である。