(58)【調査した分野】(Int.Cl.,DB名)
外形が円形の第1回転子コアの周方向に一方の磁極の第1永久磁石が複数配置されて一方の極性を有する複数の第1磁石極が形成されるとともに、各第1磁石極間の前記第1回転子コアに形成された鉄心部がそれぞれ前記一方の極性と異なる他方の極性を有する他方の磁極として機能する第1鉄極とされた第1ロータ部と、外形が円形の第2回転子コアの周方向に前記第1永久磁石の一方の磁極と異なる極性の他方の磁極の第2永久磁石が複数配置されて前記一方の極性と異なる他方の極性を有する複数の第2磁石極が形成されるとともに、各第2磁石極間の前記第2回転子コアに形成された鉄心部がそれぞれ前記他方の極性と異なる一方の極性を有する一方の磁極として機能する第2鉄極とされた第2ロータ部とを備え、前記第1ロータ部と前記第2ロータ部とが、空隙を介して軸方向に重なり、かつ周方向に電気角180°ずらして配置された回転子であって、
前記第1回転子コアに形成された第1磁石極と第1鉄極及び前記第2回転子コアに形成された第2磁石極と第2鉄極が、それぞれ前記第1回転子コアの径方向外方及び前記第2回転子コアの径方向外方に対して突形状となるように、前記第1回転子コアに形成された第1磁石極と第1鉄極との間に前記第1回転子コアの外周面から凹む第1凹みを形成するとともに、前記第2回転子コアに形成された第2磁石極と第2鉄極との間に前記第2回転子コアの外周面から凹む第2凹みを形成し、
前記第1回転子コアに形成された第1凹みは、前記第1回転子コアに形成された第1磁石極側のd軸と平行な第1辺と、該第1辺に対して所定の極間角度で接続する前記第1回転子コアに形成された第1鉄極側の第2辺との2辺のみで構成されているとともに、前記第2回転子コアに形成された第2凹みも、前記第2回転子コアに形成された第2磁石極側のd軸と平行な第1辺と、該第1辺に対して所定の極間角度で接続する前記第2回転子コアに形成された第2鉄極側の第2辺との2辺のみで構成されていることを特徴とする回転子。
前記第1回転子コアに形成された前記第1凹み及び前記第2回転子コアに形成された前記第2凹みにおける前記極間角度は、該極間角度をA、極数をPとしたとき、下記(1)式で示される範囲内に設定されることを特徴とする請求項1に記載の回転子。
390/P≦A≦600/P …(1)
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
先ず、本発明の第1実施形態に係る回転子及び永久磁石式回転電機について、
図1乃至
図4を参照して説明する。
本発明の第1実施形態に係る回転子を備えた永久磁石式回転電機は、
図1に示されており、永久磁石式回転電機1は、6極36スロットの、いわゆるコンシクエントポール型の回転子を備えた埋込磁石型同期電動機である。なお、本発明は、極数やスロット数、その他の各部分の寸法などによって何ら制約を受けるものではない。
【0012】
図1に示す永久磁石式回転電機1は、固定子10と、固定子10の固定子コア11の内周側に回転自在に配置された回転子20とを備えている。
ここで、固定子10は、円筒状の固定子コア11を備えている。固定子コア11の内周面側には、円周方向に等間隔で形成された複数(本実施形態にあっては36個)のスロット12及び複数(本実施形態にあっては36個)の磁極ティース13が形成される。各スロット12には、複数の固定子巻線14が巻装されている。
【0013】
また、回転子20は、
図2に示すように、回転軸30に固定される第1ロータ部21A及び第2ロータ部21Bを備えている。
回転軸30は、その中心軸線が固定子コア11の中心軸線と一致するように配置され、回転軸30の軸線方向の両側(
図2における上側及び下側)がモータハウジングに図示しない軸受を介して回転可能に支持されている。従って、回転子20は、回転軸30の中心軸線を中心に回転可能となっている。
【0014】
第1ロータ部21Aは、回転軸30の一側(
図2における上側)に固定された第1回転子コア22aを備えている。
第1回転子コア22aは、円筒状(外形が円形)に形成され、積層鉄心で構成される。第1回転子コア22aの中心に形成された軸孔に回転軸30が挿入固定される。第1回転子コア22aの軸孔よりも径方向外側には、周方向に沿って複数(本実施形態にあっては、6極のコンシクエントポール型の回転子であるから、3個)の磁石スロット23aが所定間隔(3個であるから120°間隔)で形成されている。各磁石スロット23aは、周方向に細長く延びる矩形状に形成され、第1回転子コア22aの軸方向の両端間を貫通するように形成される。各磁石スロット23aには、一方の磁極(本実施形態にあってはN極)の矩形状の第1永久磁石24aが挿入されるとともに固定されている。各第1永久磁石24aは、第1回転子コア22aの軸方向の両端間を延びるように形成される。各磁石スロット23aに第1永久磁石24aが固定されることにより、第1回転子コア22aには、一方の極性(本実施形態にあってはN極)を有する複数(本実施形態にあっては3個)の第1磁石極25aが周方向に沿って所定間隔(3個であるから120°間隔)で形成される。
【0015】
また、各第1磁石極25a間の第1回転子コア22aに形成された鉄心部がそれぞれ前述の一方の極性(本実施形態にあってはN極)と異なる他方の極性(本実施形態にあってはS極)を有する他方の磁極として機能する第1鉄極26aとされる。この結果、第1回転子コア22aには、一方の極性(N極)を有する複数(3個)の第1磁石極25aと他方の極性(S極)を有する複数(3個)の第1鉄極26aとが周方向に沿って所定間隔(60°間隔)で交互に形成される。なお、この第1磁石極25aと極性の異なる第1鉄極26aの形成について述べると、後に述べる第1フラックスバリアとしての第1孔27aがq軸の近傍に形成されることで、磁気抵抗となる。各第1磁石極25aの磁束は、この第1孔27aを迂回するように第1回転子コア22aの内部から各鉄心部に流入する。そして、その磁束が径方向外側に向かって各鉄心部を通過することにより、各鉄心部は隣接する第1磁石極25aとは極性の異なる疑似的な磁極が形成され、これにより、各鉄心部が第1磁石極25aとは極性の異なる第1鉄極26aとされる。
【0016】
また、第2ロータ部21Bは、回転軸30の他側(
図2における下側)に固定された第2回転子コア22bを備えている。
第2回転子コア22bは、円筒状(外形が円形)に形成され、積層鉄心で構成される。第2回転子コア22bの中心に形成された軸孔に回転軸30が挿入固定される。第2回転子コア22bの軸孔よりも径方向外側には、
図4に示すように、周方向に沿って複数(本実施形態にあっては、6極のコンシクエントポール型の回転子であるから、3個)の磁石スロット23bが所定間隔(3個であるから120°間隔)で形成されている。各磁石スロット23bは、周方向に細長く延びる矩形状に形成され、第2回転子コア22bの軸方向の両端間を貫通するように形成される。各磁石スロット23bには、第1永久磁石24aの一方の磁極(N極)と異なる極性の他方の磁極(本実施形態にあってはS極)の矩形状の第2永久磁石24bが挿入されるとともに固定されている。各第2永久磁石24bは、第2回転子コア22bの軸方向の両端間を延びるように形成される。各磁石スロット23bに第2永久磁石24bが固定されることにより、第2回転子コア22bには、一方の極性(N極)と異なる他方の極性(本実施形態にあってはS極)を有する複数(本実施形態にあっては3個)の第2磁石極25bが周方向に沿って所定間隔(3個であるから120°間隔)で形成される。
【0017】
また、各第2磁石極25b間の第2回転子コア22bに形成された鉄心部がそれぞれ前述の他方の極性(S極)と異なる一方の極性(本実施形態にあってはN極)を有する一方の磁極として機能する第2鉄極26bとされる。この結果、第2回転子コア22bには、他方の極性(S極)を有する複数(3個)の第2磁石極25bと一方の極性(N極)を有する複数(3個)の第2鉄極26bとが周方向に沿って所定間隔(60°間隔)で交互に形成される。この第2磁石極25bと極性の異なる第2鉄極26bの形成について述べると、後に述べる第2フラックスバリアとしての第2孔27bがq軸の近傍に形成されることで、磁気抵抗となる。各第2磁石極25bの磁束は、この第2孔27bを迂回するように第2回転子コア22bの内部から各鉄心部に流入する。そして、その磁束が径方向外側に向かって各鉄心部を通過することにより、各鉄心部は隣接する第2磁石極25bとは極性の異なる疑似的な磁極が形成され、これにより、各鉄心部が第2磁石極25bとは極性の異なる第2鉄極26bとされる。
【0018】
そして、第1ロータ部21Aと第2ロータ部21Bとは、
図2及び
図3に示すように、空隙41を介して軸方向に重なり、かつ
図2乃至
図4に示すように周方向に電気角180°ずらして配置される。本実施形態の場合、第1ロータ部21A及び第2ロータ部21Bは、6極であるから極対数が3であり、周方向に機械角で60°ずらして配置される。従って、第1ロータ部21Aの第1磁石極25aと第2ロータ部21Bの第2鉄極26bとが同極性(N極)で軸方向に重なり、第1ロータ部21Aの第1鉄極26aと第2ロータ部21Bの第2磁石極25bとが同極性(S極)で軸方向に重なって配置される。
【0019】
ここで、空隙41には、
図2に示すように、回転軸30の軸方向に着磁された永久磁石42が配置されており、第1ロータ部21Aと第2ロータ部21Bとが永久磁石42を介して軸方向に重なって配置されている。永久磁石42は、回転軸30に固定される環状の板状に形成される。第1ロータ部21Aと第2ロータ部21Bとが永久磁石42を介して軸方向に重なるように配置されることにより、トルクを増大させることができる。
【0020】
そして、
図1乃至
図4に示すように、第1ロータ部21Aにおいて、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aとの境界にあるq軸の近傍には、第1回転子コア22aの外形を円形に維持した状態で第1フラックスバリアとしての第1孔27aが形成されている。具体的には、各第1磁石極25aの周方向両側のq軸近傍に一対の第1孔27aが形成されるとともに、各第1鉄極26aの周方向両側のq軸近傍に一対の第1孔27aが形成される。各第1孔27aは、
図4に示すように、径方向外側から径方向内側に向けて細くなる断面略三角形状に形成され、第1回転子コア22aの軸方向両端間を貫通するように形成される。
【0021】
また、同様に、
図2及び
図4に示すように、第2ロータ部21Bにおいて、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bとの境界にあるq軸の近傍には、第2回転子コア22bの外形を円形に維持した状態で第2フラックスバリアとしての第2孔27bが形成されている。具体的には、各第2磁石極25bの周方向両側のq軸近傍に一対の第2孔27bが形成されるとともに、各第2鉄極26bの周方向両側のq軸近傍に一対の第2孔27bが形成される。各第2孔27bは、
図4に示すように、径方向外側から径方向内側に向けて細くなる断面略三角形状に形成され、第1回転子コア22aの軸方向両端間を貫通するように形成される。
【0022】
このように、第1ロータ部21Aにおいて、q軸の近傍に第1フラックスバリアとしての第1孔27a設けられているので、前述したように、第1磁石極25a間の各鉄心部を第1磁石極25aとは極性の異なる第1鉄極26aとすることができる。また、同様に、第2ロータ部21Bにおいて、q軸の近傍に第2フラックスバリアとしての第2孔27b設けられているので、前述したように、第2磁石極25b間の各鉄心部を第2磁石極25bとは極性の異なる第2鉄極26bとすることができる。
【0023】
そして、第1及び第2フラックスバリアとしての第1孔27a、第2孔27bは、第1回転子コア22a及び第2回転子コア22bの外形を円形に維持した状態で形成されるので、固定子コア11の内周面と第1回転子コア22a及び第2回転子コア22bの外周面との間のギャップを周方向において均一にでき、ギャップ部における磁束密度変化を緩やかにし、トルクリップルを低減することができる。
次に、
図1乃至
図4に示す永久磁石式回転電機の変形例について、
図5及び
図6を参照して説明する。
【0024】
図5及び
図6に示す永久磁石式回転電機1は、基本構成は
図1乃至
図4に示す永久磁石式回転電機1と同様であるが、第1ロータ部21Aにおける、q軸の近傍に形成された第1フラックスバリアとしての第1孔27aの具体的配置及び第2ロータ部21Bにおける、q軸の近傍に形成された第2フラックスバリアとしての第2孔27bの具体的配置について、
図1乃至
図4に示す永久磁石式回転電機1と異なっている。
【0025】
即ち、第1ロータ部21Aにおいて、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aとの境界にあるq軸の近傍には、第1回転子コア22aの外形を円形に維持した状態で第1フラックスバリアとしての第1孔27aが形成されている点は、
図1乃至
図4に示す永久磁石式回転電機1と同様である。しかし、第1ロータ部21Aにおいて、各第1磁石極25aの周方向両側のq軸近傍に一対の第1孔27aが形成されているが、
図1乃至
図4に示す永久磁石式回転電機1と異なり、各第1鉄極26aの周方向両側のq軸近傍に一対の第1孔27aが形成されていない。
【0026】
また、第2ロータ部21Bにおいて、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bとの境界にあるq軸の近傍には、第2回転子コア22bの外形を円形に維持した状態で第2フラックスバリアとしての第2孔27bが形成されている点は、
図1乃至
図4に示す永久磁石式回転電機1と同様である。しかし、第2ロータ部21Bにおいて、各第2磁石極25bの周方向両側のq軸近傍に一対の第2孔27bが形成されているが、
図1乃至
図4に示す永久磁石式回転電機1と異なり、各第2鉄極26bの周方向両側のq軸近傍に一対の第2孔27bが形成されていない。
【0027】
この
図5及び
図6に示す変形例に係る永久磁石式回転電機1においても、第1ロータ部21Aにおいて、q軸の近傍に第1フラックスバリアとしての第1孔27a設けられているので、第1磁石極25a間の各鉄心部を第1磁石極25aとは極性の異なる第1鉄極26aとすることができる。また、同様に、第2ロータ部21Bにおいて、q軸の近傍に第2フラックスバリアとしての第2孔27b設けられているので、第2磁石極25b間の各鉄心部を第2磁石極25bとは極性の異なる第2鉄極26bとすることができる。但し、
図5及び
図6に示す変形例に係る永久磁石式回転電機1においては、
図1乃至
図4に示す永久磁石式回転電機1に対し、フラックスバリアとしての孔の数は少ないので、漏れ磁束が多く、トルクは小さくなる。
【0028】
そして、第1及び第2フラックスバリアとしての第1孔27a、第2孔27bは、第1回転子コア22a及び第2回転子コア22bの外形を円形に維持した状態で形成されるので、
図1乃至
図4に示す永久磁石式回転電機1と同様に、固定子コア11の内周面と第1回転子コア22a及び第2回転子コア22bの外周面との間のギャップを周方向において均一にでき、ギャップにおける磁束密度変化を緩やかにし、トルクリップルを低減することができる。
(第2実施形態)
次に、本発明の第2実施形態に係る回転子及び永久磁石式回転電機について、
図7乃至
図11を参照して説明する。
【0029】
本発明の第2実施形態に係る回転子を備えた永久磁石式回転電機は、
図7に示されており、永久磁石式回転電機1は、6極36スロットの、いわゆるコンシクエントポール型の回転子を備えた埋込磁石型同期電動機である。なお、本発明は、極数やスロット数、その他の各部分の寸法などによって何ら制約を受けるものではない。
図7に示す永久磁石式回転電機1は、固定子10と、固定子10の固定子コア11の内周側に回転自在に配置された回転子20とを備えている。
【0030】
ここで、固定子10は、円筒状の固定子コア11を備えている。固定子コア11の内周面側には、円周方向に等間隔で形成された複数(本実施形態にあっては36個)のスロット12及び複数(本実施形態にあっては36個)の磁極ティース13が形成される。各スロット12には、複数の固定子巻線14が巻装されている。
また、回転子20は、
図8に示すように、回転軸30に固定される第1ロータ部21A及び第2ロータ部21Bを備えている。
【0031】
回転軸30は、その中心軸線が固定子コア11の中心軸線と一致するように配置され、回転軸30の軸線方向の両側(
図8における上側及び下側)がモータハウジングに図示しない軸受を介して回転可能に支持されている。従って、回転子20は、回転軸30の中心軸線を中心に回転可能となっている。
第1ロータ部21Aは、回転軸30の一側(
図8における上側)に固定された第1回転子コア22aを備えている。
【0032】
第1回転子コア22aは、円筒状(外形が円形)に形成され、積層鉄心で構成される。第1回転子コア22aの中心に形成された軸孔に回転軸30が挿入固定される。第1回転子コア22aの軸孔よりも径方向外側には、周方向に沿って複数(本実施形態にあっては、6極のコンシクエントポール型の回転子であるから、3個)の磁石スロット23aが所定間隔(3個であるから120°間隔)で形成されている。各磁石スロット23aは、周方向に細長く延びる矩形状に形成され、第1回転子コア22aの軸方向の両端間を貫通するように形成される。各磁石スロット23aには、一方の磁極(本実施形態にあってはN極)の矩形状の第1永久磁石24aが挿入されるとともに固定されている。各第1永久磁石24aは、第1回転子コア22aの軸方向の両端間を延びるように形成される。各磁石スロット23aに第1永久磁石24aが固定されることにより、第1回転子コア22aには、一方の極性(本実施形態にあってはN極)を有する複数(本実施形態にあっては3個)の第1磁石極25aが周方向に沿って所定間隔(3個であるから120°間隔)で形成される。
【0033】
また、各第1磁石極25a間の第1回転子コア22aに形成された鉄心部がそれぞれ前述の一方の極性(本実施形態にあってはN極)と異なる他方の極性(本実施形態にあってはS極)を有する他方の磁極として機能する第1鉄極26aとされる。この結果、第1回転子コア22aには、一方の極性(N極)を有する複数(3個)の第1磁石極25aと他方の極性(S極)を有する複数(3個)の第1鉄極26aとが周方向に沿って所定間隔(60°間隔)で交互に形成される。なお、この第1磁石極25aと極性の異なる第1鉄極26aの形成について述べると、後に述べる第1凹み28aが第1磁石極25aと第1鉄極26aとの間に第1回転子コア22aの外周面から凹むように形成されることで、磁気抵抗となる。各第1磁石極25aの磁束は、この第1凹み28aを迂回するように第1回転子コア22aの内部から各鉄心部に流入する。そして、その磁束が径方向外側に向かって各鉄心部を通過することにより、各鉄心部は隣接する第1磁石極25aとは極性の異なる疑似的な磁極が形成され、これにより、各鉄心部が第1磁石極25aとは極性の異なる第1鉄極26aとされる。
【0034】
また、第2ロータ部21Bは、回転軸30の他側(
図8における下側)に固定された第2回転子コア22bを備えている。
第2回転子コア22bは、円筒状(外形が円形)に形成され、積層鉄心で構成される。第2回転子コア22bの中心に形成された軸孔に回転軸30が挿入固定される。第2回転子コア22bの軸孔よりも径方向外側には、
図10に示すように、周方向に沿って複数(本実施形態にあっては、6極のコンシクエントポール型の回転子であるから、3個)の磁石スロット23bが所定間隔(3個であるから120°間隔)で形成されている。各磁石スロット23bは、周方向に細長く延びる矩形状に形成され、第2回転子コア22bの軸方向の両端間を貫通するように形成される。各磁石スロット23bには、第1永久磁石24aの一方の磁極(N極)と異なる極性の他方の磁極(本実施形態にあってはS極)の矩形状の第2永久磁石24bが挿入されるとともに固定されている。各第2永久磁石24bは、第2回転子コア22bの軸方向の両端間を延びるように形成される。各磁石スロット23bに第2永久磁石24bが固定されることにより、第2回転子コア22bには、一方の極性(N極)と異なる他方の極性(本実施形態にあってはS極)を有する複数(本実施形態にあっては3個)の第2磁石極25bが周方向に沿って所定間隔(3個であるから120°間隔)で形成される。
【0035】
また、各第2磁石極25b間の第2回転子コア22bに形成された鉄心部がそれぞれ前述の他方の極性(S極)と異なる一方の極性(本実施形態にあってはN極)を有する一方の磁極として機能する第2鉄極26bとされる。この結果、第2回転子コア22bには、他方の極性(S極)を有する複数(3個)の第2磁石極25bと一方の極性(N極)を有する複数(3個)の第2鉄極26bとが周方向に沿って所定間隔(60°間隔)で交互に形成される。なお、この第2磁石極25bと極性の異なる第2鉄極26bの形成について述べると、後に述べる第2凹み28bが第2磁石極25bと第2鉄極26bとの間に第2回転子コア22bの外周面から凹むように形成されることで、磁気抵抗となる。各第2磁石極25bの磁束は、この第2凹み28bを迂回するように第2回転子コア22bの内部から各鉄心部に流入する。そして、その磁束が径方向外側に向かって各鉄心部を通過することにより、各鉄心部は隣接する第2磁石極25bとは極性の異なる疑似的な磁極が形成され、これにより、各鉄心部が第2磁石極25bとは極性の異なる第2鉄極26bとされる。
【0036】
そして、第1ロータ部21Aと第2ロータ部21Bとは、
図8及び
図9に示すように、空隙41を介して軸方向に重なり、かつ
図8乃至
図10に示すように周方向に電気角180°ずらして配置される。本実施形態の場合、第1ロータ部21A及び第2ロータ部21Bは、6極であるから極対数が3であり、周方向に機械角で60°ずらして配置される。従って、第1ロータ部21Aの第1磁石極25aと第2ロータ部21Bの第2鉄極26bとが同極性(N極)で軸方向に重なり、第1ロータ部21Aの第1鉄極26aと第2ロータ部21Bの第2磁石極25bとが同極性(S極)で軸方向に重なって配置される。
【0037】
ここで、空隙41には、
図9に示すように、回転軸30の軸方向に着磁された永久磁石42が配置されており、第1ロータ部21Aと第2ロータ部21Bとが永久磁石42を介して軸方向に重なって配置されている。永久磁石42は、回転軸30に固定される環状の板状に形成される。第1ロータ部21Aと第2ロータ部21Bとが永久磁石42を介して軸方向に重なるように配置されることにより、トルクを増大させることができる。
【0038】
そして、
図7乃至
図11に示すように、第1ロータ部21Aにおいて、第1実施形態の第1ロータ部21Aと異なり、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aが、第1回転子コア22aの径方向外方に対して突形状となるように、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aとの間に第1回転子コア22aの外周面から凹む複数(本実施形態にあっては6個)の第1凹み28aが形成されている。
また、同様に、
図8及び
図10に示すように、第2ロータ部21Bにおいて、第1実施形態の第2ロータ部21Bと異なり、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bが、第2回転子コア22bの径方向外方に対して突形状となるように、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bとの間に第2回転子コア22bの外周面から凹む複数(本実施形態にあっては6個)の第2凹み28bが形成されている。
このように、第1ロータ部21Aにおいて、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aとの間に第1回転子コア22aの外周面から凹む複数の第1凹み28aが形成されているので、第1磁石極25a間の各鉄心部を第1磁石極25aとは極性の異なる第1鉄極26aとすることができる。また、同様に、第2ロータ部21Bにおいて、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bとの間に第2回転子コア22bの外周面から凹む複数の第2凹み28bが形成されているので、前述したように、第2磁石極25b間の各鉄心部を第2磁石極25bとは極性の異なる第2鉄極26bとすることができる。
【0039】
そして、第1回転子コア22aに形成された第1凹み28aは、
図11に示すように、第1回転子コア22aに形成された第1磁石極25a側のd軸と平行な第1辺L1と、第1辺l1に対して所定の極間角度Aで接続する第1回転子コア22aに形成された第1鉄極26a側の第2辺L2との2辺のみで構成されている。同様に、第2回転子コア22bに形成された第2凹み28bは、
図10に示すように、第2回転子コア22bに形成された第2磁石極25b側のd軸と平行な第1辺L1と、第1辺L1に対して所定の極間角度Aで接続する第2回転子コア22bに形成された第2鉄極26b側の第2辺L2との2辺のみで構成されている。
【0040】
これにより、固定子コア11の内周面と第1回転子コア22a及び第2回転子コア22bの外周面との間のギャップにおける磁束密度変化を緩やかにし、トルクリップルを低減することができる。
以下、第2実施形態に係る永久磁石式回転電機1におけるトルクリップル低減効果について、
図12乃至
図14に示す参考例に係る永久磁石式回転電機と比較して説明する。
【0041】
図12乃至
図14に示す参考例に係る永久磁石式回転電機1は、
図7乃至
図11に示す第2実施形態に係る永久磁石式回転電機1と基本構成は同様であるが、第1ロータ部21Aにおいて、第1回転子コア22aに形成された第1磁石極25aと第1鉄極26aとの間に形成される第1凹み29aの形状が、
図7乃至
図11に示す第2実施形態に係る永久磁石式回転電機1における第1凹み28aの形状と異なっている。また、第2ロータ部21Bにおいて、第2回転子コア22bに形成された第2磁石極25bと第2鉄極26bとの間に形成される第2凹み29bの形状が、
図7乃至
図11に示す第2実施形態に係る永久磁石式回転電機1における第2凹み28bの形状と異なっている。
【0042】
先ず、第1回転子コア22aには、第1磁石極25aと第1鉄極26aとの間に第1回転子コア22aの外周面から凹む複数の第1凹み29aが形成されている。各第1凹み29aは、
図14に示すように、第1回転子コア22aに形成された第1磁石極25a側のd軸と平行な第1辺L11と、第1回転子コア22aに形成された第1鉄極26a側のd軸と平行な第2辺L12と、第1辺L11及び第2辺L12と第1回転子コア22aの径方向内側で接続する第3辺L13とで構成されている。第1辺L11と第3辺L13とは第1実施形態に係る永久磁石式回転電機1と同様の極間角度Aで接続されている。
また、第2回転子コア22bには、第2磁石極25bと第2鉄極26bとの間に第2回転子コア22bの外周面から凹む複数の第2凹み29bが形成されている。各第2凹み29bは、
図14に示すように、第2回転子コア22bに形成された第2磁石極25b側のd軸と平行な第1辺L11と、第2回転子コア22bに形成された第2鉄極26b側のd軸と平行な第2辺L12、第1辺L11及び第2辺L12と第2回転子コア22bの径方向内側で接続する第3辺L13とで構成されている。第1辺L11と第3辺L13とは第1実施形態に係る永久磁石式回転電機1と同様の極間角度Aで接続されている。
【0043】
この場合、第1凹み29a及び第2凹み29bが3辺で構成されて第2辺L12が存在することにより、突極比が大きくなって、固定子コア11の内周面と第1回転子コア22a及び第2回転子コア22bの外周面との間のギャップにおける磁束密度変化が大きく、トルクリップルが増大し、モータ制御性能を悪化させてしまう。
【0044】
これに対して、第2実施形態に係る永久磁石式回転電機1においては、第1回転子コア22aに形成された第1凹み28aは、前述したように、第1回転子コア22aに形成された第1磁石極25a側のd軸と平行な第1辺L1と、第1辺l1に対して所定の極間角度Aで接続する第1回転子コア22aに形成された第1鉄極26a側の第2辺L2との2辺のみで構成され、固定子コア11の内周面と第1回転子コア22aの外周面との間のギャップにおける磁束密度変化を緩やかにし、高調波成分が減り、トルクリップルを低減することができる。同様に、第2回転子コア22bに形成された第2凹み28bは、前述したように、第2回転子コア22bに形成された第2磁石極25b側のd軸と平行な第1辺L1と、第1辺L1に対して所定の極間角度Aで接続する第2回転子コア22bに形成された第2鉄極26b側の第2辺L2との2辺のみで構成され、固定子コア11の内周面と第2回転子コア22bの外周面との間のギャップにおける磁束密度変化を緩やかにし、高調波成分が減り、トルクリップルを低減することができる。
【0045】
図15には、第2実施形態に係る永久磁石式回転電機1において、第1辺L1と第2辺L2とがなす極間角度Aと極数Pとの積に対するトルクリップルの変化の状態が示されている。ここで、トルクリップルは、
図12乃至
図14に示す参考例に係る永久磁石式回転電機1において、第1辺L11と第3辺L13とがなす極間角度Aと極数Pとの積に対するトルクリップルを1とした場合の比で示される。
【0046】
図15に示すように、第2実施形態に係る永久磁石式回転電機1において、第1辺L1と第2辺L2とがなす極間角度Aと極数Pとの積(極数Pを一定とした場合、極間角度A)をいかにしても、参考例に係る永久磁石式回転電機1よりもトルクリップルが低減されている。
次に、第1回転子コア22aに形成された第1凹み28a及び第2回転子コア22bに形成された第2凹み28bにおける極間角度Aは、極数をPとした場合、下記(1)式で示される範囲内に設定されることが好ましい。
390/P≦A≦600/P …(1)
【0047】
前記極間角度Aを、(1)式で示される範囲内に設定することにより、トルクリップルを低減しつつ、参考例に係る永久磁石式回転電機1よりも十分に大きなトルクを維持することができる。
トルクは、マグネットトルクとリラクタンストルクとの足し合わせであり、極間角度Aを、A< 390/Pとすると、q軸インダクタンスは増加し、リラクタンストルクは増加するものの、それ以上に磁束短絡が増え、マグネットトルクが低下し、参考例に係る永久磁石式回転電機1よりもトルクが低下する。一方、極間角度Aを、A>600/Pとすると、q軸インダクタンスが低下し、リラクタンストルクが低下するとともに、回転子20と固定子10との対向面積が小さくなり、鎖交磁束数が減少しマグネットトルクが低下し、考例に係る永久磁石式回転電機1よりもトルクが低下する。
【0048】
図16には、第2実施形態に係る永久磁石式回転電機1において、第1辺L1と第2辺L2とがなす極間角度Aと極数Pとの積に対するトルクの変化の状態が示されている。ここで、トルクは、参考例に係る永久磁石式回転電機1において、第1辺L11と第3辺L13とがなす極間角度Aと極数Pとの積に対するトルクを1とした場合の比で示される。
図16に示すように、第2実施形態に係る永久磁石式回転電機1において、極間角度Aが(1)式で示される範囲内に設定される場合には、参考例に係る永久磁石式回転電機1よりも十分に大きなトルクを維持できている。
【0049】
以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、第1実施形態に係る永久磁石式回転電機1において、第1及び第2フラックスバリアは、第1孔27a、第2孔27bで形成される必要は必ずしもなく、孔内に磁気抵抗部材を充填するようにしてもよい。
【0050】
また、第2実施形態に係る永久磁石式回転電機1において、第1回転子コア22aに形成された第1凹み28a及び第2回転子コア22bに形成された第2凹み28bにおける極間角度Aは、前述した(1)式で示される範囲内に設定される必要は必ずしもない。
更に、第1実施形態及び第2実施形態に係る永久磁石式回転電機1において、空隙41に、軸方向に着磁された永久磁石42を配置する必要は必ずしもない。