(58)【調査した分野】(Int.Cl.,DB名)
前記カーボンブラックAの含有量aと前記カーボンブラックBの含有量bとの合計量が前記ゴム成分100質量部に対して30〜80質量部である請求項1又は2に記載のランフラットタイヤ用サイド補強ゴム組成物。
前記架硫剤が硫黄であり、前記加硫促進剤がチウラム系加硫促進剤であり、前記チウラム系加硫促進剤の含有量tに対する前記硫黄の含有量sの比(s/t)が1〜10である請求項1〜3のいずれか1項に記載のランフラットタイヤ用サイド補強ゴム組成物。
加硫ゴム特性として、25℃における50%モジュラス値が4.0〜6.0MPaである請求項1〜4のいずれか1項に記載のランフラットタイヤ用サイド補強ゴム組成物。
請求項1〜5のいずれか1項に記載のランフラットタイヤ用サイド補強ゴム組成物を用いた25℃における50%モジュラス値が4.0〜6.0MPaのランフラットタイヤ用サイド補強ゴム。
【発明を実施するための形態】
【0011】
<ランフラットタイヤ用サイド補強ゴム組成物>
本発明のランフラットタイヤ用サイド補強ゴム組成物は、ゴム成分と、窒素吸着法比表面積が20〜60m
2/gのカーボンブラックA及び窒素吸着法比表面積が100〜150m
2/gのカーボンブラックBを含み、前記カーボンブラックAの含有量aと前記カーボンブラックBの含有量bとの比(a/b)が2.7〜10である充填材と、架硫剤と、加硫促進剤とを含む。
以下、ランフラットタイヤ用サイド補強ゴム組成物を、単に「ゴム組成物」と;ランフラットタイヤ用サイド補強ゴムを、単に「サイド補強ゴム」と;ランフラットタイヤを、単に「タイヤ」と、それぞれ称することがある。
【0012】
カーボンブラックは、ゴム成分との相互作用が大きいため、カーボンブラック粒子の周囲にゴム成分が吸着し易いと考えられる。カーボンブラック粒子に吸着したゴム成分同士が互いに相互作用し易くなることで、ゴム成分とカーボンブラックとのネットワークが充実し、ゴム成分の補強性が向上すると考えられる。
既述の特許文献1及び2に示されているように、従来は、ランフラットタイヤ用サイド補強ゴム組成物には、1種のカーボンブラックのみ用いられ、カーボンブラック粒子間に隙間が生じ、ゴム成分とカーボンブラックとのネットワークが不十分であったと考えられる。
【0013】
これに対し、本発明のランフラットタイヤ用サイド補強ゴム組成物は、窒素吸着法比表面積が20〜60m
2/gである大粒径のカーボンブラックA、窒素吸着法比表面積が100〜150m
2/gである小粒径のカーボンブラックBを含有する。そのため、大粒径のカーボンブラックA粒子間に生じる隙間に小粒径のカーボンブラックBが介在することができる。更に、カーボンブラックA、Bを特定の量比で含有することで、ゴム成分とカーボンブラックとのネットワークを充実させることができるため、タイヤトレッドゴムよりも剛性の高いランフラットタイヤ用サイド補強ゴムを製造することができると考えられる。
その結果、本発明のゴム組成物によれば、ランフラット耐久性を向上することができるランフラットタイヤ用サイド補強ゴムを製造することができ、また、当該ランフラットタイヤ用サイド補強ゴムを供えたランフラットタイヤは、ランフラット耐久性に優れると考えられる。
以下、本発明のゴム組成物、サイド補強ゴム、及びタイヤについて詳細に説明する。
【0014】
〔ゴム成分〕
本発明のランフラットタイヤ用サイド補強ゴム組成物は、少なくともゴム成分を含有する。
ゴム成分は、ジエン系ゴムを含むことが好ましいが、本発明の効果を損なわない限度において非ジエン系ゴムを含んでいてもよい。
ジエン系ゴムは、天然ゴム(NR)及び合成ジエン系ゴムからなる群より選択される少なくとも1種が用いられる。
合成ジエン系ゴムとして、具体的には、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、ブタジエン−イソプレン共重合体ゴム(BIR)、スチレン−イソプレン共重合体ゴム(SIR)、スチレン−ブタジエン−イソプレン共重合体ゴム(SBIR)等が挙げられる。
ジエン系ゴムは、天然ゴム、ポリイソプレンゴム、スチレン−ブタジエン共重合体ゴム、ポリブタジエンゴム、及びイソブチレンイソプレンゴムが好ましく、天然ゴム及びポリブタジエンゴムがより好ましい。ジエン系ゴムは、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。
【0015】
ジエン系ゴムは、天然ゴムと合成ジエン系ゴムのいずれか一方のみ用いてもよいし、両方を用いてもよいが、ランフラット耐久性をより向上する観点から、天然ゴムと合成ジエン系ゴムを併用することが好ましい。
同様の観点から、ゴム成分中の天然ゴムの含有量が10〜50質量%であり、合成ジエン系ゴムが50〜90質量%であることが好ましく、天然ゴムの含有量が20〜40質量%であり、合成ジエン系ゴムが60〜80質量%であることがより好ましい。
【0016】
合成ジエン系ゴムは、ランフラット耐久性を向上する観点から、変性ゴムを含むことが好ましく、アミン変性したアミン変性共役ジエン系重合体を含むことがより好ましい。
アミン変性共役ジエン系重合体としては、分子内に、変性用アミン系官能基として、脱離可能基で保護された第1級アミノ基又は脱離可能基で保護された第2級アミノ基を導入したものが好ましく、さらにケイ素原子を含む官能基を導入したものが好ましく挙げられる。
脱離可能基で保護された第1級アミノ基(保護化第1級アミノ基ともいう。)の例としては、N,N−ビス(トリメチルシリル)アミノ基を挙げることができ、脱離可能基で保護された第2級アミノ基の例としてはN,N−(トリメチルシリル)アルキルアミノ基を挙げることができる。このN,N−(トリメチルシリル)アルキルアミノ基含有基としては、非環状残基、及び環状残基のいずれであってもよい。
上記のアミン変性共役ジエン系重合体のうち、保護化第1級アミノ基で変性された第1級アミン変性共役ジエン系重合体が更に好適である。
【0017】
前記ケイ素原子を含む官能基としては、ケイ素原子にヒドロカルビルオキシ基及び/又はヒドロキシ基が結合してなるヒドロカルビルオキシシリル基及び/又はシラノール基を挙げることができる。
このような変性用官能基は、共役ジエン系重合体の重合開始末端、側鎖及び重合活性末端のいずれかに存在すればよいが、本発明においては、好ましくは重合末端、より好ましくは同一重合活性末端に、脱離可能基で保護されたアミノ基と、ヒドロカルビルオキシ基及びヒドロキシ基が結合したケイ素原子を1以上(例えば、1又は2)とを有するものである。
【0018】
(共役ジエン系重合体)
変性ゴムの変性に用いる共役ジエン系重合体は、共役ジエン化合物単独重合体又は2種以上の共役ジエン化合物の共重合体であってもよく、共役ジエン化合物と芳香族ビニル化合物との共重合体であってもよい。
前記共役ジエン化合物としては、例えば1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエン等が挙げられる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよいが、これらの中で、1,3−ブタジエンが特に好ましい。
また、共役ジエン化合物との共重合に用いられる芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロへキシルスチレン、2,4,6−トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、スチレンが特に好ましい。
前記共役ジエン系重合体としては、ポリブタジエン、ポリイソプレン、イソプレン−ブタジエン共重合体、エチレン−ブタジエン共重合体、プロピレン−ブタジエン共重合体及びスチレン−ブタジエン共重合体から選ばれる少なくとも1種の共役ジエン系重合体が好ましく、ポリブタジエンが特に好ましい。
【0019】
共役ジエン系重合体の活性末端に、保護化第1級アミンを反応させて変性させるには、該共役ジエン系重合体は、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤とし、有機溶媒中で共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とをアニオン重合させる反応か、あるいは有機溶媒中でランタン系列希土類元素化合物を含む触媒による共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とを配位アニオン重合させる反応が挙げられる。前者は、後者に比較して共役ジエン部分のビニル結合含有量の高いものを得ることができるので好ましい。ビニル結合量を高くすることによって耐熱性を向上させることができる。
【0020】
上述のアニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。
【0021】
前記ヒドロカルビルリチウムとしては、炭素数2〜20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチルフェニルリチウム、4−フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等が挙げられるが、これらの中で、特にn−ブチルリチウムが好適である。
【0022】
一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド等の環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
これらのリチウムアミド化合物は、一般に、第2級アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in−Situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2〜20ミリモルの範囲で選定される。
【0023】
前記有機リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有する共役ジエン系重合体が得られる。
また、有機リチウム化合物を重合開始剤として用いた場合には、前述のランタン系列希土類元素化合物を含む触媒を用いた場合に比べ、活性末端を有する共役ジエン系重合体のみならず、活性末端を有する共役ジエン化合物と芳香族ビニル化合物の共重合体も効率よく得ることができる。
【0024】
前記炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−へキセン、2−へキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
また、溶媒中の単量体濃度は、好ましくは5〜50質量%、より好ましくは10〜30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は55質量%以下の範囲が好ましい。
【0025】
また、所望により用いられるランダマイザーとは共役ジエン系重合体のミクロ構造の制御、例えばブタジエン−スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加等、あるいは共役ジエン化合物一芳香族ビニル化合物共重合体における単量体単位の組成分布の制御、例えばブタジエンースチレン共重合体におけるブタジエン単位、スチレン単位のランダム化等の作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、オキソラニルプロパンオリゴマー類[特に2,2−ビス(2−テトラヒドロフリル)−プロパンを含む物等]、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピぺリジノエタン等のエーテル類及び第3級アミン類等を挙げることができる。また、カリウムtert−アミレート、カリウムtert−ブトキシド等のカリウム塩類、ナトリウムtert−アミレート等のナトリウム塩類も用いることができる。
【0026】
これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01〜1000モル当量の範囲で選択される。
この重合反応における温度は、好ましくは0〜150℃、より好ましくは20〜130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
【0027】
(変性剤)
本発明においては、上記のようにして得られた活性末端を有する共役ジエン系重合体の活性末端に、変性剤として、保護化第1級アミン化合物を反応させることにより、第1級アミン変性共役ジエン系重合体を製造することができ、保護化第2級アミン化合物を反応させることにより、第2級アミン変性共役ジエン系重合体を製造することができる。上記保護化第1級アミン化合物としては、保護化第1級アミノ基を有するアルコキシシラン化合物が好適であり、保護化第2級アミン化合物としては、保護化第2級アミノ基を有するアルコキシシラン化合物が好適である。
【0028】
当該変性剤として用いられる保護化第1級アミノ基を有するアルコキシシラン化合物としては、例えばN,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、1−トリメチルシリル−2,2−ジメトキシ−1−アザ−2−シラシクロペンタン、N,N−ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルトリエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン及びN,N−ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン等を挙げることができ、好ましくは、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン又は1−トリメチルシリル−2,2−ジメトキシ−1−アザ−2−シラシクロペンタンである。
【0029】
また、変性剤としては、N−メチル−N−トリメチルシリルアミノプロピル(メチル)ジメトキシシラン、N−メチル−N−トリメチルシリルアミノプロピル(メチル)ジエトキシシラン、N−トリメチルシリル(ヘキサメチレンイミン−2−イル)プロピル(メチル)ジメトキシシラン、N−トリメチルシリル(ヘキサメチレンイミン−2−イル)プロピル(メチル)ジエトキシシラン、N−トリメチルシリル(ピロリジン−2−イル)プロピル(メチル)ジメトキシシラン、N−トリメチルシリル(ピロリジン−2−イル)プロピル(メチル)ジエトキシシラン、N−トリメチルシリル(ピペリジン−2−イル)プロピル(メチル)ジメトキシシラン、N−トリメチルシリル(ピペリジン−2−イル)プロピル(メチル)ジエトキシシラン、N−トリメチルシリル(イミダゾール−2−イル)プロピル(メチル)ジメトキシシラン、N−トリメチルシリル(イミダゾール−2−イル)プロピル(メチル)ジエトキシシラン、N−トリメチルシリル(4,5−ジヒドロイミダゾール−5−イル)プロピル(メチル)ジメトキシシラン、N−トリメチルシリル(4,5−ジヒドロイミダゾール−5−イル)プロピル(メチル)ジエトキシシランなどの保護化第2級アミノ基を有するアルコキシシラン化合物;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−エチリデン−3−(トリエトキシシリル)−1−プロパンアミン、N−(1−メチルプロピリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(4−N,N−ジメチルアミノベンジリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(シクロヘキシリデン)−3−(トリエトキシシリル)−1−プロパンアミンなどのイミノ基を有するアルコキシシラン化合物;3−ジメチルアミノプロピル(トリエトキシ)シラン、3−ジメチルアミノプロピル(トリメトキシ)シラン、3−ジエチルアミノプロピル(トリエトキシ)シラン、3−ジエチルアミノプロピル(トリメトキシ)シラン、2−ジメチルアミノエチル(トリエトキシ)シラン、2−ジメチルアミノエチル(トリメトキシ)シラン、3−ジメチルアミノプロピル(ジエトキシ)メチルシラン、3−ジブチルアミノプロピル(トリエトキシ)シランなどのアミノ基を有するアルコキシシラン化合物なども挙げられる。
これらの変性剤は、一種単独で用いてもよく、二種以上組み合わせて用いてもよい。またこの変性剤は部分縮合物であってもよい。
ここで、部分縮合物とは、変性剤のSiORの一部(全部ではない)が縮合によりSiOSi結合したものをいう。なお、Rはアルキル基等の炭化水素基を表す。
【0030】
前記変性剤による変性反応において、該変性剤の使用量は、好ましくは0.5〜200mmol/kg・共役ジエン系重合体である。同使用量は、さらに好ましくは1〜100mmol/kg・共役ジエン系重合体であり、特に好ましくは2〜50mmol/kg・共役ジエン系重合体である。ここで、共役ジエン系重合体とは、製造時又は製造後、添加される老化防止剤等の添加剤を含まないポリマーのみの質量を意味する。変性剤の使用量を前記範囲にすることによって、充填材、特にカーボンブラックの分散性に優れ、加硫後の耐破壊特性、低発熱性が改良される。
なお、前記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法等が挙げられるが、一括して添加する方法が好ましい。
また、変性剤は、重合開始末端や重合終了末端以外に重合体主鎖や側鎖のいずれに結合させることもできるが、重合体末端からエネルギー消失を抑制して低発熱性を改良しうる点から、重合開始末端あるいは重合終了末端に導入されていることが好ましい。
【0031】
(縮合促進剤)
本発明では、前記した変性剤として用いる保護化第1級アミノ基を有するアルコキシシラン化合物が関与する縮合反応を促進するために、縮合促進剤を用いることが好ましい。
このような縮合促進剤としては、第三アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかの属する元素を一種以上含有する有機化合物を用いることができる。さらに縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)、及びスズ(Sn)からなる群から選択される少なくとも一種以上の金属を含有する、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
ここで用いる縮合促進剤は、前記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端に保護された第一アミノ基を有するヒドロカルビロキシ基が導入されない場合がある。
縮合促進剤の添加時期としては、通常、変性反応開始5分〜5時間後、好ましくは変性反応開始15分〜1時間後である。
【0032】
縮合促進剤としては、具体的には、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラ−n−プロポキシチタニウム、テトライソプロポキシチタニウム、テトラ−n−ブトキシチタニウム、テトラ−n−ブトキシチタニウムオリゴマー、テトラ−sec−ブトキシチタニウム、テトラ−tert−ブトキシチタニウム、テトラ(2−エチルヘキシル)チタニウム、ビス(オクタンジオレート)ビス(2−エチルヘキシル)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムエチルヘキシルジオレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテネート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2−エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテネート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム等のチタニウムを含む化合物を挙げることができる。
【0033】
また、縮合促進剤としては、例えば、トリス(2−エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム、テトラ(2−エチルヘキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2−エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等を挙げることができる。
【0034】
また、トリエトキシアルミニウム、トリ−n−プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−sec−ブトキシアルミニウム、トリ−tert−ブトキシアルミニウム、トリ(2−1エチルヘキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2−エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等を挙げることができる。
【0035】
上述の縮合促進剤の内、チタン化合物が好ましく、チタン金属のアルコキシド、チタン金属のカルボン酸塩、又はチタン金属のアセチルアセトナート錯塩が特に好ましい。
この縮合促進剤の使用量としては、前記化合物のモル数が、反応系内に存在するヒドロカルビロキシ基総量に対するモル比として、0.1〜10となることが好ましく、0.5〜5が特に好ましい。縮合促進剤の使用量を前記範囲にすることによって縮合反応が効率よく進行する。
なお、縮合反応時間は、通常、5分〜10時間、好ましくは15分〜5時間程度である。縮合反応時間を前記範囲にすることによって縮合反応を円滑に完結することができる。
また、縮合反応時の反応系の圧力は、通常、0.01〜20MPa、好ましくは0.05〜10MPaである。
【0036】
また、変性ゴムは、数平均分子量(Mn)が100,000〜500,000であることが好ましく、150,000〜300,000であることがさらに好ましい。変性ゴムの数平均分子量を前記範囲内にすることによって、ランフラット耐久性をより向上することができるとともに、変性ゴムを含むゴム組成物の優れた混練作業性が得られる。
変性ゴムは、サイド補強ゴムの低発熱性向上の観点から、アミン変性ポリブタジエンであることが好ましく、第1級アミン変性アミン変性ポリブタジエン又は第2級アミン変性アミン変性ポリブタジエンであることが更に好ましく、第1級アミン変性ポリブタジエンであることが特に好ましい。
変性ゴムは、ブタジエン部分のビニル結合量として10〜60質量%が好ましく、12〜60質量%が更に好ましく、Mwとして100,000〜500,000が好ましく、Mw/Mnとして2以下が好ましく、第1級アミノ基含有量として2.0〜10.0mmol/kgが好ましい。
【0037】
〔充填材〕
(カーボンブラック)
本発明のゴム組成物は、窒素吸着法比表面積が20〜60m
2/gのカーボンブラックA及び窒素吸着法比表面積が100〜150m
2/gのカーボンブラックBを含み、前記カーボンブラックAの含有量aと前記カーボンブラックBの含有量bとの比(a/b)が2.7〜10である充填材を含む。
充填材が、窒素吸着法比表面積の異なる2種のカーボンブラックを特定の量比で含むことにより、本発明のゴム組成物の加硫ゴムであるサイド補強ゴムの剛性が高まり、ランフラット耐久性に優れたランフラットタイヤを製造することができる。
充填材は、本発明の効果を損なわない限度において、カーボンブラックA及びB以外のカーボンブラックを更に含んでいてもよい。
【0038】
カーボンブラックAの窒素吸着法比表面積が20m
2/g未満であると、カーボンブラックAの粒子間の隙間が大きくなり、ゴム成分とカーボンブラックとのネットワークを阻害し易くなり、ランフラット耐久性に優れない。
カーボンブラックAの窒素吸着法比表面積が60m
2/gを超えると、カーボンブラックBとのサイズの大小差を利用した効果が得られにくくなる。
カーボンブラックAの窒素吸着法比表面積は、30〜50m
2/gであることが好ましい。
【0039】
カーボンブラックBの窒素吸着法比表面積が100m
2/g未満であると、カーボンブラックAとのサイズの大小差を利用した効果が得られにくくなる。
カーボンブラックBの窒素吸着法比表面積が150m
2/gを超えると、カーボンブラックAの粒子間の隙間が大きくなり、ゴム成分とカーボンブラックとのネットワークを阻害し易くなり、ランフラット耐久性に優れない。
カーボンブラックBの窒素吸着法比表面積は、110〜130m
2/gであることが好ましい。
【0040】
カーボンブラックAの含有量aとカーボンブラックBの含有量bとの比(a/b)は、2.7〜10である。当該範囲外となると、カーボンブラックAまたはカーボンブラックBが過多となり、ゴム成分とカーボンブラックとのネットワークを阻害するため、ランフラット耐久性を向上することができない。
比a/bは、2.8〜10であることが好ましく、3.1〜10であることがより好ましい。
【0041】
カーボンブラックAの含有量aとカーボンブラックBの含有量bとの合計量(a+b)は、ゴム組成物の補強性を高めて、タイヤのランフラット耐久性をより向上する観点から、ゴム成分100質量部に対し、30〜80質量部であることが好ましく、40〜70質量部であることがより好ましく、45〜60質量部であることが更に好ましい。
また、ゴム組成物中のカーボンブラックAの含有量a及びカーボンブラックBの含有量bは、ゴム成分とカーボンブラックとのネットワークをより充実し、タイヤのランフラット耐久性をより向上する観点から、含有量aがゴム成分100質量部に対して23〜73質量部であることが好ましく、30〜60質量部であることがより好ましく、40〜55質量部であることが更に好ましい。また、同様の観点から、含有量bがゴム成分100質量部に対して3〜22質量部であることが好ましく、3〜18質量部であることがより好ましく、3〜15質量部であることが更に好ましい。
【0042】
本発明のゴム組成物は、ランフラットタイヤ用サイド補強ゴムの剛性を高めるため、カーボンブラック以外の充填材、例えば、シリカ等の補強性充填材を含有していてもよい。
【0043】
〔加硫剤〕
本発明のゴム組成物は、加硫剤を含む。
加硫剤は、特に制限はなく、通常、硫黄を用い、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等を挙げることができる。
加硫剤の含有量は、ゴム成分100質量部に対して、1〜10質量部が好ましい。この含有量が1質量部以上であることで加硫を充分に進行させることができ、10質量部以下をとすることで、ランフラットタイヤ用サイド補強ゴムの耐老化性を抑制することができる。
ゴム組成物中の加硫剤の含有量はゴム成分100質量部に対して、2〜8質量部であることがより好ましい。
【0044】
〔加硫促進剤〕
ゴム組成物は、加硫促進剤を含有する。
加硫促進剤としては、例えば、スルフェンアミド系加硫促進剤、チアゾール系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤、キサントゲン酸塩系加硫促進剤、チウラム系加硫促進剤等が挙げられる。
ゴム組成物が加硫促進剤を含有することで、ランフラット耐久性に優れたランフラットタイヤを得ることができる。
【0045】
スルフェンアミド系加硫促進剤としては、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミド、N−メチル−2−ベンゾチアゾリルスルフェンアミド、N−エチル−2−ベンゾチアゾリルスルフェンアミド、N−プロピル−2−ベンゾチアゾリルスルフェンアミド、N−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−ヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−オクチル−2−ベンゾチアゾリルスルフェンアミド、N−2−エチルヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N−ドデシル−2−ベンゾチアゾリルスルフェンアミド、N−ステアリル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジメチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジエチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジプロピル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジブチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジペンチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジペンチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジオクチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジ−2−エチルヘキシルベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジドデシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジステアリル−2−ベンゾチアゾリルスルフェンアミド等が挙げられ、反応性が高いためN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド及びN−tert−ブチル−2−ベンゾチアゾリルスルフェンアミドが好ましい。
【0046】
チアゾール系加硫促進剤としては2−メルカプトベンゾチアゾール、ジ−2−ベンゾチアゾリルジスルフィド、2−メルカプトベンゾチアゾールの亜鉛塩、2−メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾール、2−(4’−モルホリノジチオ)ベンゾチアゾール、4−メチル−2−メルカプトベンゾチアゾール、ジ−(4−メチル−2−ベンゾチアゾリル)ジスルフィド、5−クロロ−2−メルカプトベンゾチアゾール、2−メルカプトベンゾチアゾールナトリウム、2−メルカプト−6−ニトロベンゾチアゾール、2−メルカプト−ナフト[1,2−d]チアゾール、2−メルカプト−5−メトキシベンゾチアゾール、6−アミノ−2−メルカプトベンゾチアゾール等が挙げられ、反応性が高いため2−メルカプトベンゾチアゾール及びジ−2−ベンゾチアゾリルジスルフィドが好ましい。
【0047】
ジチオカルバミン酸塩系加硫促進剤としては、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、N−ペンタメチレンジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等が例示される。
【0048】
キサントゲン酸塩系加硫促進剤としては、例えば、メチルキサントゲン酸亜鉛、エチルキサントゲン酸亜鉛、プロピルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛、ペンチルキサントゲン酸亜鉛、ヘキシルキサントゲン酸亜鉛、ヘプチルキサントゲン酸亜鉛、オクチルキサントゲン酸亜鉛、2−エチルヘキシルキサントゲン酸亜鉛、デシルキサントゲン酸亜鉛、ドデシルキサントゲン酸亜鉛、メチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2−エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2−エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。
【0049】
チウラム系加硫促進剤は、側鎖炭素数が4以上であるチウラム系化合物が好ましい。チウラム系化合物の側鎖炭素数は6以上であることがより好ましく、8以上であることが更に好ましい。チウラム系化合物の側鎖炭素数が4以上であることで、ゴム組成物中でのチウラム化合物の分散が優れ、均一な架橋網目が構成され易く、サイド補強ゴムの剛性を高め易く、タイヤのランフラット耐久性を向上し易い。
【0050】
側鎖炭素数が4以上のチウラム化合物としては、例えば、テトラキス(2−エチルヘキシル)チウラムジスルフィド、テトラキス(n−ドデシル)チウラムジスルフィド、テトラキス(ベンジル)チウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、テトラベンジルチウラムジスルフィド等が挙げられ、中でも、テトラキス(2−エチルヘキシル)チウラムジスルフィドが好ましい。
【0051】
加硫促進剤は、以上の中でも、チウラム系加硫促進剤、チアゾール系加硫促進剤、及びスルフェンアミド系加硫促進剤が好ましい。加硫促進剤は、1種のみ用いても、2種以上を用いてもよい。
タイヤのランフラット耐久性をより向上する観点から、加硫促進剤は、少なくともチウラム系加硫促進剤を含むことが好ましく、チウラム系加硫促進剤とスルフェンアミド系加硫促進剤とを併用することが好ましい。
更に、タイヤのランフラット耐久性をより向上する観点から、加硫剤として硫黄を用い、加硫促進剤としてチウラム系加硫促進剤を用いたとき、チウラム系加硫促進剤の含有量tに対する硫黄の含有量sの比(s/t)は、1〜10であることが好ましい。比s/tが1以上であることで、補強ゴムとして求められる十分な硬さにすることができ、また、10以下であることで、高温時での強固な架橋構造を形成することができる。比s/tは1〜4 であることがより好ましい。
【0052】
本発明のゴム組成物には、上記成分と共に、通常のゴム組成物に配合され使用される配合剤を含有させることができる。例えば、シランカップリング剤、加硫促進助剤、加硫遅延剤、各種プロセスオイル等の軟化剤、亜鉛華、ステアリン酸、ワックス、老化防止剤、相容化剤、作業性改善剤、滑剤、粘着付与剤、石油系樹脂、紫外線吸収剤、分散剤、均質化剤などの一般的に配合される各種配合剤を挙げることができる。
【0053】
老化防止剤としては、公知のものを用いることができ、特に制限されないが、フェノール系老化防止剤、イミダゾール系老化防止剤、アミン系老化防止剤などを挙げることができる。これら老化防止剤の配合量は、ゴム成分100質量部に対し、通常0.1〜5質量部、好ましくは0.5〜3質量部である。
【0054】
ゴム組成物を得る際、上記各成分の配合方法に特に制限はなく、全ての成分原料を一度に配合して混練しても良いし、2段階あるいは3段階に分けて各成分を配合して混練を行ってもよい。なお、混練に際してはロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。更に、シート状や帯状等に成形する際には、押出成形機、プレス機等の公知の成形機を用いればよい。
上記のようにして得られるゴム組成物の加硫ゴムは、25℃における50%モジュラス値が4.0〜6.0MPaとなる特性を有し易く、剛性に優れる。
加硫ゴムの25℃における50%モジュラス値は、JIS K 6251(2017年)に基づいて、加硫ゴムを25℃の温度下で、50%伸長した時のモジュラス引張弾性率として測定される。
【0055】
<ランフラットタイヤ用サイド補強ゴム、ランフラットタイヤ>
本発明のランフラットタイヤ用サイド補強ゴムは、本発明のランフラットタイヤ用サイド補強ゴム組成物を用いてなり、25℃における50%モジュラス値が4.0〜6.0MPaである。
本発明のランフラットタイヤは、このような弾性率の高い本発明のランフラットタイヤ用サイド補強ゴムを用いてなることから、ランフラット耐久性に優れる。
以下、サイド補強ゴム層を有するランフラットタイヤの構造の一例について、
図1を用いて説明する。
図1は、本発明のランフラットタイヤ(以下、単にタイヤと称することがある)の一実施態様の断面を示す模式図であり、本発明のランフラットタイヤを構成するサイド補強ゴム層8等の各部材の配置を説明するものである。
【0056】
図1において、本発明のランフラットタイヤの好適な実施態様は、一対のビードコア1、1’(1’は図示せず)間にわたってトロイド状に連なり、両端部が該ビードコア1をタイヤ内側から外側へ巻き上げられる少なくとも1枚のラジアルカーカスプライからなるカーカス層2と、該カーカス層2のサイド領域のタイヤ軸方向外側に配置されて外側部を形成するサイドゴム層3と、該カーカス層2のクラウン領域のタイヤ径方向外側に配置されて接地部を形成するトレッドゴム層4と、該トレッドゴム層4と該カーカス層2のクラウン領域の間に配置されて補強ベルトを形成するベルト層5と、該カーカス層2のタイヤ内方全面に配置されて気密膜を形成するインナーライナー6と、一方の該ビードコア1から他方の該ビードコア1’へ延びる該カーカス層2本体部分と該ビードコア1に巻き上げられる巻上部分との間に配置されるビードフィラー7と、該カーカス層のサイド領域の該ビードフィラー7側部からショルダー区域10にかけて、該カーカス層2と該インナーライナー6との間に、少なくとも1枚の、タイヤ回転軸に沿った断面形状が略三日月形のサイド補強ゴム層8と、を具えるタイヤである。
このタイヤのサイド補強ゴム層8に本発明のランフラットタイヤ用サイド補強ゴムを用いた本発明のランフラットタイヤは、ランフラット耐久性に優れる。
【0057】
本発明のランフラットタイヤのカーカス層2は少なくとも1枚のカーカスプライからなっているが、カーカスプライは2枚以上であってもよい。また、カーカスプライの補強コードは、タイヤ周方向に対し実質的に90°をなす角度で配置することができ、補強コードの打ち込み数は、35〜65本/50mmとすることができる。また、カーカスのクラウン領域のタイヤ径方向外側に配設されるベルト層5は、例えば、2層の、第1ベルト層と第2ベルト層とからなっていてもよい。ベルト層5の枚数は、これに限られるものではない。なお、第1ベルト層と第2ベルト層は、撚り合わされることなくタイヤ幅方向に並列に引き揃えられた複数本のスチールコードがゴム中に埋設されてなるものを用いることができる。例えば、第1ベルト層と第2ベルト層は、層間で互いに交差するように配置されて、交差ベルトを形成してもよい。
【0058】
さらに、本発明のランフラットタイヤは、ベルト層5のタイヤ径方向外側には、ベルト補強層(図示しない)が配置されていてもよい。ベルト補強層の補強コードは、タイヤ周方向における引張剛性の確保が目的であるので、高弾性の有機繊維からなるコードを用いることが好ましい。有機繊維コードとしては、芳香族ポリアミド(アラミド)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート、レーヨン、ザイロン(登録商標)(ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維)、脂肪族ポリアミド(ナイロン)等の有機繊維コード等を用いることができる。
【0059】
さらにまた、本発明のランフラットタイヤにおいては、サイド補強層の外、図示はしないが、インサート、フリッパー等の補強部材を配置してもよい。ここで、インサートとは、ビード部からサイド部にかけて、タイヤ周方向に配置される、複数本の高弾性の有機繊維コードを並べてゴムコーティングした補強材である(図示せず)。フリッパーとは、カーカスプライの、ビードコア1又は1’間に延在する本体部と、ビードコア1又は1’の周りに折り返された折り返し部との間に配設され、ビードコア1又は1’およびそのタイヤ径方向外側に配置されるビードフィラー7の少なくとも一部を内包する、複数本の高弾性の有機繊維コードを並べてゴムコーティングした補強材である。インサートおよびフリッパーの角度は、好ましくは周方向に対して30〜60°である。
【0060】
一対のビード部にはそれぞれビードコア1、1’が埋設され、カーカス層2はこのビードコア1、1’の周りにタイヤ内側から外側に折り返して係止されているが、カーカス層2の係止方法についても、これに限られるものでもない。例えば、カーカス層2を構成するカーカスプライのうち、少なくとも1枚のカーカスプライは、ビードコア1、1’の周りにタイヤ幅方向内側から外側に向かって折り返されて、その折返し端がベルト層5とカーカス層2のクラウン部との間に位置する、いわゆるエンベロープ構造としてもよい。さらにまた、トレッドゴム層4の表面には適宜トレッドパターンが形成されていてもよく、最内層にはインナーライナー6が形成されていてもよい。本発明のランフラットタイヤにおいて、タイヤ内に充填する気体としては、通常のまたは酸素分圧を変えた空気、もしくは窒素等の不活性ガスを用いることができる。
【0061】
(ランフラットタイヤ用サイド補強ゴム及びランフラットタイヤの作製)
本発明のランフラットタイヤ用サイド補強ゴム組成物をサイド補強ゴム層8に用いて、通常のランフラットタイヤの製造方法の手順を踏むことで、ランフラットタイヤ用サイド補強ゴムを供えたランフラットタイヤが得られる。
すなわち、各種薬品を含有させたゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、ランフラットタイヤ用サイド補強ゴム及びランフラットタイヤが得られる。
【実施例】
【0062】
<実施例1〜3、比較例1〜5>
〔ゴム組成物の調製〕
下記表1に示す配合組成で各成分を混練し、ゴム組成物を調製した。
なお、ゴム組成物の調製に用いた変性ブタジエンゴム(変性BR)は、次の方法により製造した。
【0063】
〔第1級アミン変性ブタジエンゴム(変性BR)の製造〕
(1)未変性ポリブタジエンの製造
窒素置換された5Lオートクレーブに、窒素下、シクロヘキサン1.4kg、1,3−ブタジエン250g、2,2−ジテトラヒドロフリルプロパン(0.285mmol)シクロヘキサン溶液として注入し、これに2.85mmolのn−ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行なった。1,3−ブタジエンの反応転化率は、ほぼ100%であった。この重合体溶液の一部を、2,6−ジ−tert−ブチル−p−クレゾール1.3gを含むメタノール溶液に抜き取り重合を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、変性前のポリブタジエンを得た。
得られた変性前のポリブタジエンゴムについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を測定した。その結果、ビニル結合量は30質量%、Mwは150,000、Mw/Mnは1.1であった。
【0064】
(2)第1級アミン変性ポリブタジエンゴムの製造
上記(1)で得られた重合体溶液を、重合触媒を失活させることなく、温度50℃に保ち、第1級アミノ基が保護されたN,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1129mg(3.364mmol)を加えて、変性反応を15分間行った。この後、縮合促進剤であるテトラキス(2−エチル−1,3−ヘキサンジオラト)チタン8.11gを加え、更に15分間攪拌した。最後に反応後の重合体溶液に、金属ハロゲン化合物として四塩化ケイ素242mgを添加し、2,6−ジ−tert−ブチル−p−クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒及び保護された第1級アミノ基の脱保護を行い、110℃に調温された熟ロールによりゴムを乾燥し、第1級アミン変性ポリブタジエン(変性BR)を得た。
得られた変性ポリブタジエンゴムについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)、分子量分布(Mw/Mn)及び第1級アミノ基含有量を測定した。その結果、ビニル結合量は30質量%、Mwは150,000、Mw/Mnは1.2、第1級アミノ基含有量は4.0mmol/kgであった。
【0065】
変性前のポリブタジエンゴム及び変性ポリブタジエンゴムのミクロ構造(ビニル結合量)は、赤外法(モレロ法)により、ブタジエン部分のビニル結合含有量(質量%)として求めた。
変性前のポリブタジエンゴム及び変性ポリブタジエンゴムの重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、GPC[東ソー株式会社製、HLC−8020]により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示した。なお、カラムはGMHXL[東ソー株式会社製]で、溶離液はテトラヒドロフランである。
【0066】
また、変性ポリブタジエンゴムの第1級アミノ基含有量(mmol/kg)は、次のようにして求めた。
先ず、重合体をトルエンに溶解した後、大量のメタノール中で沈殿させることにより重合体に結合していないアミノ基含有化合物をゴムから分離した後、乾燥した。本処理を施した重合体を試料として、JIS K7237:1995に記載された「全アミン価試験方法」により全アミノ基含有量を定量した。続けて、前記処理を施した重合体を試料として「アセチルアセトンブロックド法」により第2級アミノ基及び第3級アミノ基の含有量を定量した。試料を溶解させる溶媒には、o−ニトロトルエンを使用、アセチルアセトンを添加し、過塩素酢酸溶液で電位差滴定を行った。全アミノ基含有量から第2級アミノ基及び第3級アミノ基の含有量を引いて第1級アミノ基含有量(mmol)を求め、分析に使用したポリマー質量で割ることにより重合体に結合した第1級アミノ基含有量(mmol/kg)を求めた。
【0067】
また、ゴム組成物の調製に用いた変性ポリブタジエンゴム(第1級アミン変性ポリブタジエンゴム)以外の各成分の詳細は以下のとおりである。
(1)NR:天然ゴム、RSS#1
(2)カーボンブラックA:東海カーボン株式会社製、商品名「シーストF」〔窒素吸着法比表面積=42m
2/g〕
(3)カーボンブラックB:Cabot社製、商品名「Vulcan7H」〔窒素吸着法比表面積=117m
2/g〕
(4)カーボンブラックC:Cabot社製、商品名「Vulcun3」〔窒素吸着法比表面積=76m
2/g〕
【0068】
(5)チウラム系促進剤TOT:テトラキス(2−エチルヘキシル)チウラムジスルフィド、大内新興化学工業株式会社製、商品名「ノクセラー TOT−N」
(6)スルフェンアミド系促進剤NS:N−(tert−ブチル)−2−ベンゾチアゾリルスルフェンアミド、三新化学工業株式会社製、商品名「サンセラーNS−G」
(7)老化防止剤(6C):N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン、大内新興化学工業株式会社製、商品名「ノクラック 6C」
【0069】
〔ランフラットタイヤの製造及び評価〕
次いで、得られたゴム組成物を、
図1に示すサイド補強ゴム層8に配設し、タイヤサイズ205/65 R16の乗用車用ラジアルランフラットタイヤを定法に従って製造した。なお、タイヤのサイド補強ゴム層の最大厚みは12mmとした。
製造したランフラットタイヤと同じ加硫条件で、ゴム組成物を加硫して加硫ゴム試験片を作成し、加硫ゴム物性として、25℃における50%モジュラス値M50を測定し、製造したランフラットタイヤを用いて、ランフラット耐久性を評価した。それらの結果を表1に示す。
【0070】
1.加硫ゴム特性
加硫ゴム試験片をダンベル状8号形の試験片に加工し、JIS K 6251(2017年)に基づき、測定温度25℃で50%伸長した時のモジュラス引張弾性率を求めた。
【0071】
2.ランフラット耐久性
内圧非充填状態でドラム走行(速度80km/h)させ、タイヤが走行不能になるまでのドラム走行距離をランフラット走行距離とした。比較例1のランフラットタイヤのランフラット走行距離を100とした指数で表わした。指数が大きいほど、サイド補強ゴム及びそれを備えたランフラットタイヤの耐久性が優れることを示す。
【0072】
【表1】
【0073】
表1中、a/bは、カーボンブラックAの含有量a(質量部)とカーボンブラックBの含有量b(質量部)との比(a/b)を表し、s/tは、チウラム系加硫促進剤(チウラム系促進剤TOT)の含有量t(質量部)に対する硫黄の含有量s(質量部)の比(s/t)を表す。
【0074】
表1から、特定の大小2種以上のカーボンブラックを用いない比較例1、4及び5、並びに、特定の大小2種以上のカーボンブラックを用いていても、特定の量比で用いていない比較例2及び3のゴム組成物から得られたサイド補強ゴムを有するランフラットタイヤは、ランフラット走行距離を延ばすことができず、ランフラット耐久性に優れないことがわかる。
一方、特定の大小2種以上のカーボンブラックを特定の量比で用いている実施例1〜3のゴム組成物から得られたサイド補強ゴムを有するランフラットタイヤは、ランフラット走行距離を延ばすことができ、ランフラット耐久性に優れることがわかる。