特許第6948227号(P6948227)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越ポリマー株式会社の特許一覧

<>
  • 特許6948227-キャパシタ及びその製造方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6948227
(24)【登録日】2021年9月22日
(45)【発行日】2021年10月13日
(54)【発明の名称】キャパシタ及びその製造方法
(51)【国際特許分類】
   H01G 9/028 20060101AFI20210930BHJP
   C08L 65/00 20060101ALI20210930BHJP
   C08K 5/3445 20060101ALI20210930BHJP
   H01G 9/00 20060101ALI20210930BHJP
【FI】
   H01G9/028 G
   C08L65/00
   C08K5/3445
   H01G9/00 290H
【請求項の数】12
【全頁数】20
(21)【出願番号】特願2017-214109(P2017-214109)
(22)【出願日】2017年11月6日
(65)【公開番号】特開2019-87615(P2019-87615A)
(43)【公開日】2019年6月6日
【審査請求日】2020年4月14日
(73)【特許権者】
【識別番号】000190116
【氏名又は名称】信越ポリマー株式会社
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100152272
【弁理士】
【氏名又は名称】川越 雄一郎
(74)【代理人】
【識別番号】100152146
【弁理士】
【氏名又は名称】伏見 俊介
(72)【発明者】
【氏名】鈴木 健一
【審査官】 田中 晃洋
(56)【参考文献】
【文献】 特開2006−096975(JP,A)
【文献】 特開2017−174915(JP,A)
【文献】 米国特許出願公開第2018/0334577(US,A1)
【文献】 特開2012−201837(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 9/028
C08L 65/00
C08K 5/3445
H01G 9/00
(57)【特許請求の範囲】
【請求項1】
弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、1−イソブチル−2−メチルイミダゾールと、を有し、
前記導電性複合体100質量部に対する1−イソブチル−2−メチルイミダゾールの含有量が、25.0質量部以上80.0質量部以下である、キャパシタ。
【請求項2】
弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、2−エチル−4−メチルイミダゾールと、を有し、
前記導電性複合体100質量部に対する2−エチル−4−メチルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である、キャパシタ。
【請求項3】
弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、1−プロピルイミダゾールと、を有し、
前記導電性複合体100質量部に対する1−プロピルイミダゾールの含有量が、20.0質量部以上60.0質量部以下である、キャパシタ。
【請求項4】
弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、1−アリルイミダゾールと、を有し、
前記導電性複合体100質量部に対する1−アリルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である、キャパシタ。
【請求項5】
弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、
前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、1−ブチルイミダゾールと、を有し、
前記導電性複合体100質量部に対する1−ブチルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である、キャパシタ。
【請求項6】
前記π共役系導電性高分子がポリ(3,4−エチレンジオキシチオフェン)である、請求項からのいずれか一項に記載のキャパシタ。
【請求項7】
前記ポリアニオンがポリスチレンスルホン酸である、請求項からのいずれか一項に記載のキャパシタ。
【請求項8】
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を形成する工程と、
前記誘電体層の表面に下記の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
<導電性高分子分散液>
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、分散媒と、1−イソブチル−2−メチルイミダゾールと、を含有する導電性高分子分散液であり、
前記導電性複合体100質量部に対する1−イソブチル−2−メチルイミダゾールの含有量が、25.0質量部以上80.0質量部以下である。
【請求項9】
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を形成する工程と、
前記誘電体層の表面に下記の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
<導電性高分子分散液>
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、分散媒と、2−エチル−4−メチルイミダゾールと、を含有する導電性高分子分散液であり、
前記導電性複合体100質量部に対する2−エチル−4−メチルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である。
【請求項10】
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を形成する工程と、
前記誘電体層の表面に下記の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
<導電性高分子分散液>
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、分散媒と、1−プロピルイミダゾールと、を含有する導電性高分子分散液であり、
前記導電性複合体100質量部に対する1−プロピルイミダゾールの含有量が、20.0質量部以上60.0質量部以下である。
【請求項11】
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を形成する工程と、
前記誘電体層の表面に下記の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
<導電性高分子分散液>
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、分散媒と、1−アリルイミダゾールと、を含有する導電性高分子分散液であり、
前記導電性複合体100質量部に対する1−アリルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である。
【請求項12】
弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、
前記誘電体層に対向する位置に陰極を形成する工程と、
前記誘電体層の表面に下記の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
<導電性高分子分散液>
π共役系導電性高分子及びポリアニオンを含む導電性複合体と、分散媒と、1−ブチルイミダゾールと、を含有する導電性高分子分散液であり、
前記導電性複合体100質量部に対する1−ブチルイミダゾールの含有量が、20.0質量部以上80.0質量部以下である。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、π共役系導電性高分子を含む固体電解質層を備えたキャパシタ及びその製造方法、並びに導電性高分子分散液に関する。
【背景技術】
【0002】
キャパシタの等価直列抵抗を低下させる目的で、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸を含む導電性高分子分散液から形成された固体電解質層を、誘電体層と陰極との間に配置したキャパシタが知られている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2014−67949号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
導電性高分子分散液を用いて製造された従来のキャパシタには、その等価直列抵抗をさらに小さくすることが求められている。
本発明は、等価直列抵抗が従来よりも小さいキャパシタ及びその製造方法、並びにそのキャパシタの製造に適した導電性高分子分散液を提供する。
【課題を解決するための手段】
【0005】
[1] π共役系導電性高分子及びポリアニオンを含む導電性複合体と、下記化学式(1)で表される窒素含有芳香族性化合物と、分散媒とを含有する、導電性高分子分散液。
[2] 下記化学式(1)の任意の有機基がアルキル基、アルケニル基、又はアルキニル基である[1]に記載の導電性高分子分散液。
[3] 下記化学式(1)で表される窒素含有芳香族性化合物が1−イソブチル−2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−プロピルイミダゾール、1−アリルイミダゾール、及び1−ブチルイミダゾールから選ばれる少なくとも1つである、[1]に記載の導電性高分子分散液。
[4] 前記π共役系導電性高分子がポリ(3,4−エチレンジオキシチオフェン)である、[1]から[3]のいずれか一項に記載の導電性高分子分散液。
[5] 前記ポリアニオンがポリスチレンスルホン酸である、[1]から[4]のいずれか一項に記載の導電性高分子分散液。
[6] 前記分散媒が水である、[1]から[5]のいずれか一項に記載の導電性高分子分散液。
[7] 25℃におけるpHが2.00以上8.00以下である、[1]から[6]のいずれか一項に記載の導電性高分子分散液。
[8] 弁金属の多孔質体からなる陽極と、前記弁金属の酸化物からなる誘電体層と、該誘電体層の、前記陽極と反対側に設けられた導電物質製の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備し、前記固体電解質層が、π共役系導電性高分子及びポリアニオンを含む導電性複合体と、下記化学式(1)で表される窒素含有芳香族性化合物と、を有する、キャパシタ。
[9] 下記化学式(1)の任意の有機基がそれぞれ独立にアルキル基、アルケニル基、又はアルキニル基である[8]に記載のキャパシタ。
[10] 下記化学式(1)で表される窒素含有芳香族性化合物が1−イソブチル−2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−プロピルイミダゾール、1−アリルイミダゾール、及び1−ブチルイミダゾールから選ばれる少なくとも1つである、[8]に記載のキャパシタ。
[11] 前記π共役系導電性高分子がポリ(3,4−エチレンジオキシチオフェン)である、[8]から[10]のいずれか一項に記載のキャパシタ。
[12] 前記ポリアニオンがポリスチレンスルホン酸である、[8]から[11]のいずれか一項に記載のキャパシタ。
[13] 弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、前記誘電体層に対向する位置に陰極を形成する工程と、前記誘電体層の表面に[1]から[7]のいずれか一項に記載の導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程とを有する、キャパシタの製造方法。
【0006】
【化1】

[式中、X及びXのうち少なくとも一方が窒素原子であり、窒素原子でない場合のX,Xは炭素原子であり、
は、Xが窒素原子である場合は存在せず、
は、Xが窒素原子である場合は存在せず、
,R,R,R及びRのうち少なくとも1つは任意の有機基であり、
,R,R,R及びRの炭素数の合計が3以上であり、
前記任意の有機基でないR,R,R,R,Rは水素原子である。]
【発明の効果】
【0007】
本発明のキャパシタは、等価直列抵抗が従来よりも小さいので、電子機器の高性能化に資する。
本発明のキャパシタの製造方法によれば、等価直列抵抗が小さいキャパシタを容易に製造することができる。
本発明の導電性高分子分散液は、等価直列抵抗が小さいキャパシタの固体電解質層の形成に好適である。
【図面の簡単な説明】
【0008】
図1】本発明のキャパシタの一実施形態を示す断面図である。
【発明を実施するための形態】
【0009】
《キャパシタ》
本発明のキャパシタの一実施形態について説明する。図1に示すように、本実施形態のキャパシタ10は、弁金属の多孔質体からなる陽極11と、弁金属の酸化物からなる誘電体層12と、誘電体層12の表面に形成された固体電解質層14と、最も表側に設けられた陰極13とを具備する。
【0010】
陽極11を構成する弁金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられる。これらのうち、アルミニウム、タンタル、ニオブが好適である。
陽極11の具体例としては、アルミニウム箔をエッチングして表面積を増加させた後、その表面を酸化処理したものや、タンタル粒子やニオブ粒子の焼結体表面を酸化処理してペレットにしたものが挙げられる。このように処理されたものは表面に凹凸が形成された多孔質体となる。
【0011】
本実施形態における誘電体層12は、陽極11の表面が酸化されて形成された層であり、例えば、アジピン酸アンモニウム水溶液などの電解液中にて、金属体の陽極11の表面を陽極酸化することで形成されたものである。よって、図1に示すように、陽極11と同様に誘電体層12にも凹凸が形成されている。
【0012】
本実施形態における陰極13としては、導電性ペーストから形成した導電層やアルミニウム箔など、導電物質製の金属層を使用することができる。
【0013】
本実施形態における固体電解質層14は、誘電体層12の表面に形成されている。固体電解質層14は、誘電体層12の表面の少なくとも一部を覆っており、誘電体層12の表面の全部を覆っていてもよい。
固体電解質層14の厚さは、一定でもよいし、一定でなくてもよく、例えば、1μm以上100μm以下の厚さが挙げられる。
【0014】
固体電解質層14は、下記化学式(1)であらわされる窒素含有芳香族性化合物(以下、化合物(1)ということがある。)と、後で詳述するπ共役系導電性高分子及びポリアニオンを含む導電性複合体と、を含有している。
【0015】
【化2】

[式中、X及びXのうち少なくとも一方が窒素原子であり、窒素原子でない場合のX,Xは炭素原子であり、
は、Xが窒素原子である場合は存在せず、
は、Xが窒素原子である場合は存在せず、
,R,R,R及びRのうち少なくとも1つは任意の有機基であり、
,R,R,R及びRの炭素数の合計が3以上であり、
前記任意の有機基でないR,R,R,R,Rは水素原子である。]
【0016】
化合物(1)は、下記化学式(1−1)〜(1−2)で表される化合物(1−1)〜(1−2)から選ばれる1種以上であることが好ましい。
【0017】
【化3】
[各式中、R,R,R,R及びRのうち少なくとも1つは任意の有機基であり、
,R,R,R及びRの炭素数の合計が3以上であり、前記任意の有機基でないR,R,R,R,Rは水素原子である。]
【0018】
化合物(1)、化合物(1−1)〜(1−3)において、ESRを低減させる観点から、前記任意の有機基がそれぞれ独立にアルキル基、アルケニル基、又はアルキニル基であることが好ましい。
前記アルキル基としては、例えば、炭素数1以上10以下の直鎖状又は分岐鎖状のアルキル基が挙げられる。
前記アルケニル基としては、例えば、炭素数2以上10以下の直鎖状又は分岐鎖状のアルケニル基が挙げられる。
前記アルキニル基としては、例えば、炭素数2以上10以下の直鎖状又は分岐鎖状のアルケニル基が挙げられる。
【0019】
化合物(1)、化合物(1−1)〜(1−3)の各化合物において、全ての有機基の炭素数の合計は、3以上20以下が好ましく、3以上15以下がより好ましく、3以上10以下がさらに好ましい。前記炭素数の合計が3以上であると、ESRが低減しやすく、前記炭素数の合計が20以下であると、導電性高分子分散液中の前記化合物の溶解性が高まり、固体電解質中の各成分の分散性が高まり、ESRが低減しやすい。
【0020】
化合物(1−1)〜(1−3)のうち、ESRが低減しやすいことから、化合物(1−1)及び化合物(1−2)が好ましく、化合物(1−1)がより好ましい。
【0021】
化合物(1−1)の例として、1−イソプロピルイミダゾール、2−プロピルイミダゾール、2−イソプロピルイミダゾール、2−ブチルイミダゾール、1−イソブチル−2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−プロピルイミダゾール、1−アリルイミダゾール、及び1−ブチルイミダゾールなどが挙げられる。
本発明のキャパシタの固体電解質には、次に例示する化合物(1−1)の群:1−イソブチル−2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−プロピルイミダゾール、1−アリルイミダゾール、及び1−ブチルイミダゾールから選ばれる1つ以上が含まれることが好ましい。
【0022】
例示した化合物(1−1)の固体電解質中の含有量は、導電性複合体100質量部に対して、次の通りであることが好ましい。
【0023】
1−イソブチル−2−メチルイミダゾールの前記含有量は、25.0質量部以上80.0質量部以下が好ましく、30.0質量部以上60.0質量部以下がより好ましく、35.0質量部以上55.0質量部以下がさらに好ましく、45.0質量部以上55.0質量部以下が特に好ましい。上記範囲であると、ESRを低減するとともに、耐熱性を向上させることができる。
【0024】
2−エチル−4−メチルイミダゾールの前記含有量は、20.0質量部以上80.0質量部以下が好ましく、25.0質量部以上70.0質量部以下がより好ましく、30.0質量部以上60.0質量部以下がさらに好ましく、30.0質量部以上50.0質量部以下が特に好ましい。上記範囲であると、ESRを低減するとともに、耐熱性を向上させることができる。
【0025】
1−プロピルイミダゾールの前記含有量は、20.0質量部以上60.0質量部以下が好ましく、25.0質量部以上50.0質量部以下がより好ましく、30.0質量部以上45.0質量部以下がさらに好ましく、32.5質量部以上40.0質量部以下が特に好ましい。上記範囲であると、ESRを低減するとともに、耐熱性を向上させることができる。
【0026】
1−アリルイミダゾールの前記含有量は、20.0質量部以上80.0質量部以下が好ましく、25.0質量部以上70.0質量部以下がより好ましく、30.0質量部以上60.0質量部以下がさらに好ましく、32.5質量部以上50.0質量部以下が特に好ましい。上記範囲であると、ESRを低減するとともに、耐熱性を向上させることができる。
【0027】
1−ブチルイミダゾールの前記含有量は、20.0質量部以上80.0質量部以下が好ましく、25.0質量部以上70.0質量部以下がより好ましく、30.0質量部以上60.0質量部以下がさらに好ましく、35.0質量部以上55.0質量部以下が特に好ましく、40.0質量部以上50.0質量部以下が最も好ましい。上記範囲であると、ESRを低減するとともに、耐熱性を向上させることができる。
【0028】
固体電解質層14の総質量に対する化合物(1)の合計の含有量は、1質量%以上60質量%以下が好ましく、10質量%以上50質量%以下がより好ましく、25質量%以上40質量%以下がさらに好ましい。上記の範囲であると、キャパシタの等価直列抵抗がより低下し易くなるので好ましい。
固体電解質層14に含まれる化合物(1)の種類は、1種類でもよいし、2種類以上でもよい。
【0029】
次に、固体電解質層14に含有されるπ共役系導電性高分子及びポリアニオンを含む導電性複合体について説明する。
π共役系導電性高分子としては、主鎖がπ共役系で構成されている有機高分子であれば特に制限されず、例えば、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、及びこれらの共重合体等が挙げられる。空気中での安定性の点からは、ポリピロール系導電性高分子、ポリチオフェン系導電性高分子及びポリアニリン系導電性高分子が好ましく、ポリチオフェン系導電性高分子がより好ましい。
【0030】
ポリチオフェン系導電性高分子としては、例えば、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブチレンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)が挙げられる。
【0031】
ポリピロール系導電性高分子としては、例えば、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)が挙げられる。
【0032】
ポリアニリン系導電性高分子としては、例えば、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)が挙げられる。
以上で例示したπ共役系導電性高分子の中でも、導電性、耐熱性の点から、ポリ(3,4−エチレンジオキシチオフェン)が特に好ましい。
π共役系導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
【0033】
ポリアニオンとは、アニオン基を有するモノマー単位を、分子内に2つ以上有する重合体である。このポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性を向上させることができる。
ポリアニオンのアニオン基は、スルホ基またはカルボキシ基であることが好ましい。
ポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4−スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2−アクリルアミド−2−メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
これらのポリアニオンのなかでも、導電性をより高くできることから、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。
ポリアニオンの質量平均分子量は2万以上100万以下であることが好ましく、10万以上50万以下であることがより好ましい。
本明細書における質量平均分子量は、ゲルパーミエーションクロマトグラフィで測定し、標準物質をポリスチレンとして求めた値である。
【0034】
導電性複合体中の、ポリアニオンの含有割合は、π共役系導電性高分子100質量部に対して、1質量部以上1000質量部以下の範囲であることが好ましく、10質量部以上700質量部以下の範囲であることがより好ましく、100質量部以上500質量部以下の範囲であることがさらに好ましい。ポリアニオンの含有割合が前記下限値以上であると、π共役系導電性高分子へのドーピング効果が強くなる傾向にあり、充分な導電性が得られ易く、さらに導電性高分子分散液における導電性複合体の分散性が高くなる。また、ポリアニオンの含有量が前記上限値以下であると、π共役系導電性高分子の相対的な含有量が多くなり、充分な導電性が得られ易い。
【0035】
ポリアニオンがπ共役系導電性高分子に配位してドープすることによって導電性複合体が形成される。導電性複合体の導電性及び分散性の向上の観点から、全てのアニオン基がπ共役系導電性高分子にドープするよりも、ドープに寄与しない余剰のアニオン基を有することが好ましい。
【0036】
固体電解質層14の総質量に対する導電性複合体の含有量は、40質量%以上99質量%以下が好ましく、50質量%以上90質量%以下がより好ましく、60質量%以上75質量%以下がさらに好ましい。上記の範囲であると、キャパシタの等価直列抵抗がより低下し易くなるので好ましい。
【0037】
固体電解質層14には、化合物(1)以外の含窒素化合物の1種以上が含有されていてもよい。含窒素化合物が固体電解質層14に含まれることによって、キャパシタの等価直列抵抗をさらに低減することができる。
【0038】
前記含窒素化合物として、以下のアミン化合物及び窒素含有芳香族性環式化合物を例示できる。これらのアミン化合物及び窒素含有芳香族性環式化合物の少なくともどちらか一方が固体電解質層14に含まれると、キャパシタの等価直列抵抗をさらに低減できることがある。
アミン化合物は、アミノ基を有する化合物であり、アミノ基が、ポリアニオンのアニオン基と反応する。
アミン化合物としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩のいずれであってもよい。また、アミン化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
アミン化合物は、炭素数2以上12以下の直鎖、もしくは分岐鎖のアルキル基、炭素数6以上12以下のアリール基、炭素数7以上12以下のアラルキル基、炭素数2以上12以下のアルキレン基、炭素数6以上12以下のアリーレン基、炭素数7以上12以下のアラルキレン基、及び炭素数2以上12以下のオキシアルキレン基から選択される置換基を有していてもよい。
具体的な1級アミンとしては、例えば、アニリン、トルイジン、ベンジルアミン、エタノールアミン等が挙げられる。
具体的な2級アミンとしては、例えば、ジエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジフェニルアミン、ジベンジルアミン、ジナフチルアミン等が挙げられる。
具体的な3級アミンとしては、例えば、トリエタノールアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、トリナフチルアミン等が挙げられる。
具体的な4級アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラフェニルアンモニウム塩、テトラベンジルアンモニウム塩、テトラナフチルアンモニウム塩等が挙げられる。アンモニウムの対となる陰イオンとしてはヒドロキシドイオンが挙げられる。
これらアミン化合物のうち、3級アミンが好ましく、トリエチルアミン、トリプロピルアミンがより好ましい。
窒素含有芳香族性環式化合物(少なくとも1つの窒素原子が環構造を形成する芳香族性化合物)としては、例えば、ピロール、イミダゾール、2−メチルイミダゾール、N−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、1,2−ジメチルイミダゾール、ピリジン等が挙げられる。
【0039】
固体電解質層14には、電解液用溶媒中に電解質を溶解させた電解液が含まれてもよい。電解液の電気伝導度は高いほど好ましい。
電解液用溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン等のアルコール系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン系溶媒、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−メチルピロリジノン等のアミド系溶媒、アセトニトリル、3−メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。
電解質としては、例えば、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸等のデカンジカルボン酸、1,7−オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸;あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物;リン酸、炭酸、ケイ酸等の無機酸などをアニオン成分とし、1級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、2級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、3級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8−ジアザビシクロ(5,4,0)−ウンデセン−7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質;等が挙げられる。
【0040】
<作用効果>
本発明のキャパシタの固体電解質層が化合物(1)を含有することによって、静電容量を低下させることなく、キャパシタの等価直列抵抗を従来よりも低減することができる。このメカニズムは未解明であるが、置換基の合計の炭素数が3以上であり、5員環の周囲に比較的多数の炭素原子が存在する化合物(1)が固体電解質層の導電性を向上させることによって、その等価直列抵抗が小さくなったと推測される。
【0041】
《キャパシタの製造方法、導電性高分子分散液》
本発明にかかるキャパシタは、弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程(誘電体形成工程)と、前記誘電体層に対向する位置に陰極を配置する工程(陰極形成工程)と、前記誘電体層の表面の少なくとも一部に、導電性高分子分散液を塗布し、乾燥させて、固体電解質層を形成する工程と、によって製造することができる。
【0042】
前記導電性高分子分散液は、化合物(1)の1種以上が含まれ、さらにπ共役系導電性高分子及びポリアニオンを含む導電性複合体が分散された分散液である。
前記導電性高分子分散液には、前述した化合物(1)以外の含窒素化合物、後述する添加剤等を含有させてもよい。
【0043】
誘電体層形成工程は、弁金属の多孔質体からなる陽極11の表面を酸化して誘電体層12を形成する工程である。
誘電体層12を形成する方法としては、例えば、アジピン酸アンモニウム水溶液、ホウ酸アンモニウム水溶液、リン酸アンモニウム水溶液などの化成処理用電解液中にて、陽極11の表面を陽極酸化する方法が挙げられる。
【0044】
陰極形成工程は、誘電体層12に対向する位置に陰極13を配置する工程である。
陰極13を配置する方法としては、例えば、カーボンペースト、銀ペースト等の導電性ペーストを用いて陰極13を形成する方法、アルミニウム箔等の金属箔を誘電体層12に対向配置させる方法などが挙げられる。
【0045】
固体電解質層形成工程は、誘電体層12の表面の少なくとも一部に、前記導電性高分子分散液を塗布し、乾燥させて、固体電解質層14を形成する工程である。
【0046】
導電性高分子分散液を構成する分散媒は、前記導電性複合体を分散させ得る液体であれば特に限定されず、例えば、水、有機溶剤、又は、水と有機溶剤との混合液が挙げられる。
有機溶剤としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、芳香族炭化水素系溶媒等が挙げられる。これら有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール、アリルアルコール等が挙げられる。
エーテル系溶媒としては、例えば、ジエチルエーテル、ジメチルエーテル、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル等のプロピレングリコールモノアルキルエーテル、プロピレングリコールジアルキルエーテル等が挙げられる。
ケトン系溶媒としては、例えば、ジエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、ジイソプロピルケトン、メチルエチルケトン、アセトン、ジアセトンアルコール等が挙げられる。
エステル系溶媒としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。
芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン等が挙げられる。
【0047】
添加剤としては、例えば、界面活性剤、無機導電剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤、高導電化剤などが挙げられる。ただし、添加剤は、前記導電性複合体、化合物(1)及び前記含窒素化合物以外の化合物である。
界面活性剤としては、ノニオン系、アニオン系、カチオン系の界面活性剤が挙げられるが、保存安定性の面からノニオン系が好ましい。また、ポリビニルアルコール、ポリビニルピロリドンなどのポリマー系界面活性剤を添加してもよい。
無機導電剤としては、金属イオン類、導電性カーボン等が挙げられる。金属イオンは、金属塩を水に溶解させることにより生成させることができる。
消泡剤としては、シリコーン樹脂、ポリジメチルシロキサン、シリコーンオイル等が挙げられる。
カップリング剤としては、ビニル基、アミノ基、エポキシ基等を有するシランカップリング剤等が挙げられる。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、糖類等が挙げられる。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オキサニリド系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。
高導電化剤は導電性複合体の導電率を向上させ、ESRを低下することに寄与できる。高導電化剤としては、糖類、2個以上のヒドロキシ基を有する化合物、1個以上のヒドロキシ基および1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物等が挙げられる。
固体電解質層を形成する導電性高分子分散液に上記の添加剤等の導電性複合体及び化合物(1)以外の成分が含まれる場合、固体電解質層にその成分が含まれてもよい。
【0048】
導電性高分子分散液の総質量に対する前記導電性複合体の含有量は特に限定されず、塗布することが容易な粘度となる含有量が好ましい。具体的には、例えば、0.1質量%以上10質量%以下が好ましく、0.5質量%以上5質量%以下がより好ましく、1質量%以上2質量%以下がさらに好ましい。
【0049】
導電性高分子分散液の総質量に対する化合物(1)の1種以上の合計の含有量は特に限定されず、塗布することが容易な粘度となる含有量が好ましい。具体的には、例えば、0.1質量%以上2.0質量%以下が好ましく、0.2質量%以上1.0質量%以下がより好ましく、0.3質量%以上0.8質量%以下がさらに好ましい。
【0050】
導電性高分子分散液が化合物(1)以外の前記含窒素化合物を含有する場合、その含有割合は、含窒素化合物の種類に応じて適宜決められるが、例えば、導電性複合体の固形分100質量部に対して、例えば、1質量部以上100質量部以下が好ましく、10質量部以上50質量部以下がより好ましい。
【0051】
導電性高分子分散液が前記添加剤を含有する場合、その含有割合は、添加剤の種類に応じて適宜決められるが、例えば、導電性複合体の固形分100質量部に対して、例えば、1質量部以上1000質量部以下の範囲内とすることができる。
【0052】
導電性高分子分散液の調製方法としては、ポリアニオン及び分散媒の存在下、π共役系導電性高分子を形成する前駆体モノマーを酸化重合する方法が挙げられる。
得られた導電性高分子分散液に、1種以上の化合物(1)を添加し、さらに必要に応じて化合物(1)以外の前記含窒素化合物及び添加剤等を添加することができる。
導電性高分子分散液に含まれる各材料の分散性を向上させる目的で、塗布前に導電性高分子分散液にせん断力を加えながら分散させる公知の高分散処理を施すことが好ましい。
【0053】
化合物(1)の1種以上を含む導電性高分子分散液の25℃におけるpHは、2.00以上8.00以下が好ましく、2.50以上7.50以下がより好ましく、3.00以上7.00以下がさらに好ましく、3.50以上7.00以下が特に好ましい。
pHが上記範囲であると、キャパシタのESRをより低減することができる。
導電性高分子分散液のpHの測定は、JIS Z 8802:2011に準拠して公知のpH測定器にて行われる。
【0054】
導電性高分子分散液の塗布方法としては、例えば、浸漬(ディップコーティング)、コンマコーティング、リバースコーティング、リップコーティング、マイクログラビアコーティング等を適用することができる。これらの中でも、誘電体層12と陰極13との間に固体電解質層14を容易に形成できる観点から、浸漬が好ましい。
乾燥方法としては、例えば、室温乾燥、熱風乾燥、遠赤外線乾燥等が挙げられる。
【0055】
本発明のキャパシタ及びその製造方法は上記の実施形態の例に限定されない。
本発明のキャパシタでは、誘電体層と陰極との間に、セパレータが設けられてもよい。
誘電体層と陰極との間にセパレータが設けられたキャパシタとしては、巻回型キャパシタが挙げられる。
セパレータとしては、例えば、セルロース、ポリビニルアルコール、ポリエステル、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイミド、ポリアミド、ポリフッ化ビニリデンなどからなるシート(不織布を含む)、ガラス繊維の不織布などが挙げられる。
セパレータの密度は、0.1g/cm以上1.0g/cm以下の範囲であることが好ましく、0.2g/cm以上0.8g/cm以下の範囲であることがより好ましい。
セパレータを設ける場合には、セパレータにカーボンペーストあるいは銀ペーストを含浸させて陰極を形成する方法を適用することもできる。
【実施例】
【0056】
(製造例1)
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。
得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000ml添加し、限外ろ過法によりポリスチレンスルホン酸含有溶液の約1000mlの溶媒を除去した。残液に2000mlのイオン交換水を加え、限外ろ過法により約2000mlの溶媒を除去し、ポリスチレンスルホン酸を水洗した。この限外ろ過操作を3回繰り返した。
得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
【0057】
(製造例2)
3,4−エチレンジオキシチオフェン14.2gと、製造例1で得たポリスチレンスルホン酸36.7gとを2000mlのイオン交換水に溶かした溶液とを20℃で混合させた。
得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。
得られた反応液に2000mlのイオン交換水を加え、限外ろ過法により約2000ml溶液を除去した。この操作を3回繰り返した。
得られた溶液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法により約2000mlの溶媒を除去した。残液に2000mlのイオン交換水を加え、限外ろ過法により約2000mlの溶媒を除去し、ポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PEDOT−PSS)を水洗した。この操作を8回繰り返し、1.60質量%のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)水分散液(PEDOT−PSS水分散液)を得た。
【0058】
(製造例3)
エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で130Vの電圧を印加し、化成(酸化処理)して、アルミニウム箔の両面に誘電体層を形成して陽極箔を得た。
次に、陽極箔の両面に、陰極リード端子を溶接させた対向アルミニウム陰極箔を、セルロース製のセパレータを介して積層し、これを円筒状に巻き取ってキャパシタ用素子を得た。
【0059】
(実施例1)
製造例2で得た1.60質量%のPEDOT−PSS水分散液100質量部に、下記式(a)で表される1−イソブチル−2−メチルイミダゾール0.407質量部(導電性複合体100質量部に対して25.4質量部)を加え、室温で撹拌した後、高圧分散機を用い、100MPaの圧力で分散処理を施し、導電性高分子分散液を得た。導電性高分子分散液の25℃におけるpHを、pH計により測定したところ、2.06であった。
製造例3で得たキャパシタ用素子を導電性高分子分散液に減圧下で浸漬した後、125℃の熱風乾燥機により30分間乾燥する工程を2回繰り返して、誘電体層表面上に導電性複合体を含む固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層を形成させたキャパシタ用素子を装填し、封口ゴムで封止して、キャパシタを得た。
(実施例2)
1−イソブチル−2−メチルイミダゾールの添加量を0.625質量部(導電性複合体100質量部に対して39.1質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例3)
1−イソブチル−2−メチルイミダゾールの添加量を0.702質量部(導電性複合体100質量部に対して43.8質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例4)
1−イソブチル−2−メチルイミダゾールの添加量を0.804質量部(導電性複合体100質量部に対して50.2質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例5)
1−イソブチル−2−メチルイミダゾールの添加量を0.901質量部(導電性複合体100質量部に対して56.3質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0060】
(実施例6)
1−イソブチル−2−メチルイミダゾールを下記式(b)で表される2−エチル−4−メチルイミダゾールに変更し、その添加量を0.375質量部(導電性複合体100質量部に対して23.4質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例7)
1−イソブチル−2−メチルイミダゾールを2−エチル−4−メチルイミダゾールに変更し、その添加量を0.487質量部(導電性複合体100質量部に対して30.4質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0061】
(実施例8)
1−イソブチル−2−メチルイミダゾールを下記式(c)で表される1−プロピルイミダゾールに変更し、その添加量を0.490質量部(導電性複合体100質量部に対して30.6質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例9)
1−イソブチル−2−メチルイミダゾールを1−プロピルイミダゾールに変更し、その添加量を0.554質量部(導電性複合体100質量部に対して34.6質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0062】
(実施例10)
1−イソブチル−2−メチルイミダゾールを下記式(d)で表される1−アリルイミダゾールに変更し、その添加量を0.416質量部(導電性複合体100質量部に対して26.0質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例11)
1−イソブチル−2−メチルイミダゾールを1−アリルイミダゾールに変更し、その添加量を0.557質量部(導電性複合体100質量部に対して34.8質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0063】
(実施例12)
1−イソブチル−2−メチルイミダゾールを下記式(e)で表される1−ブチルイミダゾールに変更し、その添加量を0.382質量部(導電性複合体100質量部に対して23.9質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例13)
1−イソブチル−2−メチルイミダゾールを1−ブチルイミダゾールに変更し、その添加量を0.505質量部(導電性複合体100質量部に対して31.6質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(実施例14)
1−イソブチル−2−メチルイミダゾールを1−ブチルイミダゾールに変更し、その添加量を0.752質量部(導電性複合体100質量部に対して47.0質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0064】
(比較例1)
1−イソブチル−2−メチルイミダゾールを下記式(f)で表されるイミダゾールに変更し、その添加量を0.223質量部(導電性複合体100質量部に対して13.9質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例2)
1−イソブチル−2−メチルイミダゾールをイミダゾールに変更し、その添加量を0.255質量部(導電性複合体100質量部に対して15.9質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例3)
1−イソブチル−2−メチルイミダゾールをイミダゾールに変更し、その添加量を0.300質量部(導電性複合体100質量部に対して18.8質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例4)
1−イソブチル−2−メチルイミダゾールをイミダゾールに変更し、その添加量を0.350質量部(導電性複合体100質量部に対して21.9質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例5)
1−イソブチル−2−メチルイミダゾールをイミダゾールに変更し、その添加量を0.475質量部(導電性複合体100質量部に対して29.7質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0065】
(比較例6)
1−イソブチル−2−メチルイミダゾールを下記式(g)で表される1−ビニルイミダゾールに変更し、その添加量を0.390質量部(導電性複合体100質量部に対して24.4質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例7)
1−イソブチル−2−メチルイミダゾールを1−ビニルイミダゾールに変更し、その添加量を0.589質量部(導電性複合体100質量部に対して36.8質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0066】
(比較例8)
1−イソブチル−2−メチルイミダゾールを下記式(h)で表される1−メチルイミダゾールに変更し、その添加量を0.364質量部(導電性複合体100質量部に対して22.8質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例9)
1−イソブチル−2−メチルイミダゾールを1−メチルイミダゾールに変更し、その添加量を0.582質量部(導電性複合体100質量部に対して36.4質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0067】
(比較例10)
1−イソブチル−2−メチルイミダゾールを下記式(i)で表される2−エチルイミダゾールに変更し、その添加量を0.561質量部(導電性複合体100質量部に対して35.0質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0068】
(比較例11)
1−イソブチル−2−メチルイミダゾールを下記式(j)で表される1,2−ジメチルイミダゾールに変更し、その添加量を0.408質量部(導電性複合体100質量部に対して25.5質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
(比較例12)
1−イソブチル−2−メチルイミダゾールを1,2−ジメチルイミダゾールに変更し、その添加量を0.604質量部(導電性複合体100質量部に対して37.7質量部)に変更した以外は実施例1と同様にしてキャパシタを得た。
【0069】
〔評価〕
[静電容量・等価直列抵抗]
実施例1〜14及び比較例1〜12のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C)、及び100kHzでの等価直列抵抗(ESR)を測定した。その測定結果を表1に示す。
【0070】
[耐熱性試験]
実施例1〜14及び比較例1〜12のキャパシタを135℃の熱風乾燥機中に静置し、1000時間経過後に取り出し、室温で30分間冷却した。冷却後のキャパシタについて、LCRメータZM2376((株)エヌエフ回路設計ブロック製)を用いて、120Hzでの静電容量(C)、及び100kHzでの等価直列抵抗(ESR)を測定した。その測定結果を表1に示す。
また、耐熱試験前後の変化量として、△C=C/C、△ESR=ESR/ESRを求めた。△C及び△ESRについても表1に示す。
【0071】
【表1】
【0072】
【化4】
【0073】
上記の化学式は実施例で用いた化合物と比較例で用いた化合物を表す。
実施例1〜14で作製されたキャパシタは、充分な静電容量を有し、等価直列抵抗が低かった。さらに耐熱性試験後の等価直列抵抗も低かった。
比較例1〜12で作製されたキャパシタは、充分な静電容量を有するが、等価直列抵抗が高かった。さらに耐熱性試験後の等価直列抵抗も高かった。
【符号の説明】
【0074】
10 キャパシタ
11 陽極
12 誘電体層
13 陰極
14 固体電解質層
図1