特許第6948267号(P6948267)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ブリヂストンの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6948267
(24)【登録日】2021年9月22日
(45)【発行日】2021年10月13日
(54)【発明の名称】ゴム組成物及びタイヤ
(51)【国際特許分類】
   C08L 15/00 20060101AFI20210930BHJP
   C08L 9/00 20060101ALI20210930BHJP
   C08L 7/00 20060101ALI20210930BHJP
   C08L 57/02 20060101ALI20210930BHJP
   C08K 3/36 20060101ALI20210930BHJP
   C08K 3/04 20060101ALI20210930BHJP
   B60C 1/00 20060101ALI20210930BHJP
【FI】
   C08L15/00
   C08L9/00
   C08L7/00
   C08L57/02
   C08K3/36
   C08K3/04
   B60C1/00 A
【請求項の数】14
【全頁数】24
(21)【出願番号】特願2017-562909(P2017-562909)
(86)(22)【出願日】2017年1月19日
(86)【国際出願番号】JP2017001814
(87)【国際公開番号】WO2017126633
(87)【国際公開日】20170727
【審査請求日】2019年12月19日
(31)【優先権主張番号】特願2016-8208(P2016-8208)
(32)【優先日】2016年1月19日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000005278
【氏名又は名称】株式会社ブリヂストン
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100119530
【弁理士】
【氏名又は名称】冨田 和幸
(72)【発明者】
【氏名】額賀 英幸
【審査官】 今井 督
(56)【参考文献】
【文献】 特開2005−105060(JP,A)
【文献】 特開2015−078272(JP,A)
【文献】 特開平7−133376(JP,A)
【文献】 特開2004−66894(JP,A)
【文献】 特開2001−279028(JP,A)
【文献】 特開平11−189616(JP,A)
【文献】 特開2001−158836(JP,A)
【文献】 特開2004−238619(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 7/00− 21/02
C08L 57/02
C08K 3/00− 13/08
B60C 1/00
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
−20℃での貯蔵弾性率(E’)が5MPa以上且つ10MPa以下であり、
−20℃での貯蔵弾性率(E’)と−20℃での損失正接(tanδ)とが下記式(1):
0.02×(E’−20℃)+0.25≦(tanδ−20℃)≦0.65 ・・・ (1)
[式中、(E’−20℃)は−20℃での貯蔵弾性率(MPa)であり、(tanδ−20℃)は−20℃での損失正接である]の関係を満たし、
互いに非相溶な複数のポリマー相を形成する少なくとも二種のジエン系重合体と、シリカと、カーボンブラックと、樹脂とを含み、
前記ジエン系重合体の中で配合量が最も多いジエン系重合体と配合量が2番目に多いジエン系重合体との内、ガラス転移温度(Tg)がより低いジエン系重合体(A)は、配合量が、ガラス転移温度(Tg)がより高いジエン系重合体(B)の配合量の80質量%以上175質量%以下であり、
前記ガラス転移温度(Tg)がより低いジエン系重合体(A)は、末端がシラン化合物で変性されているポリブタジエンゴムであり、
前記ガラス転移温度(Tg)がより高いジエン系重合体(B)は、天然ゴム及び合成ポリイソプレンゴムの少なくとも1種であり、
前記シリカの配合量は、前記ジエン系重合体の合計100質量部に対して、20質量部以上80質量部以下であり、
前記樹脂は、C系樹脂及びC−C系樹脂の少なくとも1種であり、
前記シリカの配合量(質量部)と前記樹脂の配合量(質量部)との質量比(シリカの配合量/樹脂の配合量)が1.00〜4.00であることを特徴とする、
ゴム組成物。
【請求項2】
前記カーボンブラックの配合量が、前記ジエン系重合体の合計100質量部に対して20質量部以上である、請求項に記載のゴム組成物。
【請求項3】
前記シリカと前記カーボンブラックとの合計配合量が、60質量部以上である、請求項に記載のゴム組成物。
【請求項4】
前記シリカの配合量が、前記カーボンブラックの配合量以上である、請求項2又は3に記載のゴム組成物。
【請求項5】
前記末端が変性されたジエン系重合体(A)の配合量(質量部)と前記樹脂の配合量(質量部)との質量比(末端が変性されたジエン系重合体(A)の配合量/樹脂の配合量)が1.2〜7.5である、請求項に記載のゴム組成物。
【請求項6】
前記樹脂の配合量(質量部)とゴム組成物の発泡率(%)との比[樹脂の配合量(質量部)/ゴム組成物の発泡率(%)]が0.4〜3.5である、請求項1〜のいずれか一項に記載のゴム組成物。
【請求項7】
−20℃での損失正接(tanδ)が0.46以上且つ0.55以下である、請求項1〜のいずれか一項に記載のゴム組成物。
【請求項8】
前記ジエン系重合体(B)が、天然ゴムである、請求項1に記載のゴム組成物。
【請求項9】
前記シラン化合物が、グリシドキシ基を有する、請求項に記載のゴム組成物。
【請求項10】
更に発泡剤を含む、請求項1〜のいずれか一項に記載のゴム組成物。
【請求項11】
発泡孔を有する、請求項1〜のいずれか一項に記載のゴム組成物。
【請求項12】
前記樹脂としてC系樹脂を含む、請求項1〜11のいずれか一項に記載のゴム組成物。
【請求項13】
更に親水性短繊維を含む、請求項1〜12のいずれか一項に記載のゴム組成物。
【請求項14】
請求項1〜13のいずれか一項に記載のゴム組成物を用いたことを特徴とする、タイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ゴム組成物及びタイヤに関する。
【背景技術】
【0002】
従来、通常の路面上に加え、氷上でも安全に走行するためのタイヤとして、トレッドゴムを柔らかくしたスタッドレスタイヤが使用されており、トレッドゴムを柔らかくすることで、タイヤの氷上性能が向上することが知られている。しかしながら、一般に柔らかいトレッドゴムを具えるタイヤは、通常の路面における耐摩耗性が悪いという問題があり、タイヤの氷上性能と耐摩耗性は二律背反の関係にある。
【0003】
これに対して、特開2008−303334号公報(特許文献1)には、天然ゴムおよびブタジエンゴムからなるゴム成分100重量部に対して、チタン酸カリウム繊維を0.5〜20重量部、ならびにヨウ素吸着量が100〜300mg/gであるカーボンブラックを5〜200重量部配合したゴム組成物が提案されており、該ゴム組成物を、キャップトレッド及びベーストレッドからなる2層構造のトレッドのキャップトレッドに使用することで、耐摩耗性の低下を抑制しつつ、氷上性能(氷雪上性能)が向上することが報告されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−303334号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特開2008−303334号公報(特許文献1)の表1に開示のように、チタン酸カリウム繊維を特定量配合したゴム組成物をキャップトレッドに使用することで、タイヤの氷上性能(氷上摩擦係数)は向上するものの、耐摩耗性は若干低下してしまい、氷上性能と耐摩耗性との両方を向上させることまではできない。
【0006】
そこで、本発明は、上記従来技術の問題を解決し、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能なゴム組成物を提供することを課題とする。
また、本発明は、氷上性能と耐摩耗性との両方に優れるタイヤを提供することを更なる課題とする。
【課題を解決するための手段】
【0007】
上記課題を解決する本発明の要旨構成は、以下の通りである。
【0008】
本発明のゴム組成物は、−20℃での貯蔵弾性率(E’)が5MPa以上且つ10MPa以下であり、
−20℃での貯蔵弾性率(E’)と−20℃での損失正接(tanδ)とが下記式(1):
0.02×(E’−20℃)+0.25≦(tanδ−20℃)≦0.65 ・・・ (1)
[式中、(E’−20℃)は−20℃での貯蔵弾性率(MPa)であり、(tanδ−20℃)は−20℃での損失正接である]の関係を満たし、
一種以上のジエン系重合体と、シリカと、樹脂とを含み、
前記シリカの配合量(質量部)と前記樹脂の配合量(質量部)との質量比(シリカの配合量/樹脂の配合量)が1.00〜4.00であることを特徴とする。
かかる本発明のゴム組成物によれば、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
【0009】
本発明のゴム組成物において、前記ジエン系重合体のうち少なくとも一種は、末端が変性されていることが好ましい。この場合、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能がより向上することに加え、タイヤの低燃費性も向上する。
【0010】
本発明のゴム組成物においては、前記シリカの配合量が、前記ジエン系重合体の合計100質量部に対して20質量部以上であることが好ましく、また、本発明のゴム組成物は、更にカーボンブラックを、前記ジエン系重合体の合計100質量部に対して20質量部以上含むことが好ましい。この場合、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上する。
ここで、前記シリカと前記カーボンブラックとの合計配合量は、60質量部以上であることが好ましい。この場合、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性がより一層向上する。
また、前記シリカの配合量は、前記カーボンブラックの配合量以上であることが好ましい。この場合、ゴム組成物をタイヤに適用した際に、燃費性能をより向上させつつ、氷上性能をより向上させることができる。
【0011】
本発明のゴム組成物においては、前記ジエン系重合体が、互いに非相溶な複数のポリマー相を形成する少なくとも二種のジエン系重合体を含み、
前記ジエン系重合体の中で配合量が最も多いジエン系重合体と配合量が2番目に多いジエン系重合体との内、ガラス転移温度(Tg)がより低いジエン系重合体(A)は、配合量が、ガラス転移温度(Tg)がより高いジエン系重合体(B)の配合量の80質量%以上であることが好ましい。この場合、ゴム組成物の柔らかさを十分に確保でき、氷上性能が更に向上する。
【0012】
なお、本発明において、ポリマー相の非相溶性は、試験用ロールを用いて対象とするゴム組成物をシート状に加工し、15cm×15cm×1cmの試験用モールドにて150℃×30分間のプレス加硫を行い加硫シートを作製し、得られた加硫シートをミクロトームにより超薄切片として、走査型プローブ顕微鏡を用いて観察することによって評価され、相分離構造が確認された場合、ポリマー相は互いに非相溶である。
【0013】
また、本発明において、ジエン系重合体のガラス転移温度(Tg)は、ASTM D3418−82に準拠し、示差走査熱量計(DSC)を用いて測定した外挿開始温度(extrapolated onset temperature):Tfとする。
【0014】
ここで、本発明のゴム組成物は、前記ジエン系重合体(A)の末端が変性されていることが好ましい。この場合、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上することに加え、タイヤの低燃費性も向上する。
【0015】
また、本発明のゴム組成物は、前記末端が変性されたジエン系重合体(A)の配合量(質量部)と前記樹脂の配合量(質量部)との質量比(末端が変性されたジエン系重合体(A)の配合量/樹脂の配合量)が1.2〜7.5であることが好ましい。この場合も、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上する。
【0016】
また、本発明のゴム組成物は、前記シリカの配合量(質量部)と前記樹脂の配合量(質量部)との質量比(シリカの配合量/樹脂の配合量)が1.00〜2.95であることが好ましい。この場合、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上する。
【0017】
また、本発明のゴム組成物は、前記樹脂の配合量(質量部)とゴム組成物の発泡率(%)との比[樹脂の配合量(質量部)/ゴム組成物の発泡率(%)]が0.4〜4.0であることが好ましく、0.4〜3.5であることが更に好ましく、0.4〜2.0であることがより一層好ましい。この場合も、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上する。
【0018】
また、本発明のゴム組成物は、−20℃での損失正接(tanδ)が0.46以上且つ0.55以下であることが好ましい。この場合、ゴム組成物をトレッドに適用した際に、タイヤの氷上性能と耐摩耗性が更に向上する。
【0019】
また、前記ジエン系重合体(A)は、ブタジエン骨格を有することが好ましい。この場合、ゴム組成物が柔らかくなり、ゴム組成物をトレッドに適用した際に、トレッドの接地面積が大きくなり、氷上性能がより向上する。
ここで、前記ジエン系重合体(A)は、ポリブタジエンゴムであることが好ましい。この場合、ゴム組成物が更に柔らかくなることで、接地面積が更に大きくなり、氷上性能が更に向上する。
【0020】
また、前記ジエン系重合体(B)は、イソプレン骨格を有することが好ましい。この場合、ゴム組成物の補強性が高くなり、耐摩耗性がより向上する。
ここで、前記ジエン系重合体(B)は、天然ゴムであることが好ましい。この場合、ゴム組成物の補強性が更に高くなり、耐摩耗性が更に向上する。
【0021】
また、前記ジエン系重合体(A)は、末端がシラン化合物で変性されていることが好ましい。この場合、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能がより向上する。
ここで、前記シラン化合物は、グリシドキシ基を有することが好ましい。この場合、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能がより一層向上する。
【0022】
また、本発明のゴム組成物は、更に発泡剤を含むことが好ましい。発泡剤を含むゴム組成物をトレッドゴムに使用してタイヤを製造すると、生タイヤを加硫する際に、発泡剤由来の気泡がトレッドゴム中に形成され、トレッドの気泡による引っ掻き効果及び排水効果で、タイヤの氷上性能を更に向上させることができる。
また、本発明のゴム組成物は、発泡孔を有することが好ましい。発泡孔を有するゴム組成物をトレッドゴムに使用した場合、トレッドの発泡孔(気泡)による引っ掻き効果及び排水効果で、タイヤの氷上性能を更に向上させることができる。
【0023】
また、本発明のゴム組成物は、前記樹脂としてC系樹脂を含むことが好ましい。この場合、タイヤの氷上性能を更に向上させることができる。
【0024】
また、本発明のゴム組成物は、更に親水性短繊維を含むことが好ましい。この場合、タイヤの氷上性能を大幅に向上させることができる。
【0025】
更に、本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。本発明のタイヤは、上記のゴム組成物が用いられているので、氷上性能と耐摩耗性との両方に優れる。
【発明の効果】
【0026】
本発明によれば、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能なゴム組成物を提供することができる。
また、本発明によれば、氷上性能と耐摩耗性との両方に優れるタイヤを提供することができる。
【発明を実施するための形態】
【0027】
<ゴム組成物>
以下に、本発明のゴム組成物を、その実施形態に基づき、詳細に例示説明する。
本発明のゴム組成物は、−20℃での貯蔵弾性率(E’)が5MPa以上且つ10MPa以下であり、
−20℃での貯蔵弾性率(E’)と−20℃での損失正接(tanδ)とが下記式(1):
0.02×(E’−20℃)+0.25≦(tanδ−20℃)≦0.65 ・・・ (1)
[式中、(E’−20℃)は−20℃での貯蔵弾性率(MPa)であり、(tanδ−20℃)は−20℃での損失正接である]の関係を満たし、
一種以上のジエン系重合体と、シリカと、樹脂とを含み、
前記シリカの配合量(質量部)と前記樹脂の配合量(質量部)との質量比(シリカの配合量/樹脂の配合量)が1.00〜4.00であることを特徴とする。
【0028】
−20℃での貯蔵弾性率(E’)が低いゴム組成物は低温でも柔らかく、該ゴム組成物を、タイヤに適用することで、タイヤの氷路面との接触性が向上する。また、−20℃での損失正接(tanδ)が高いゴム組成物は低温でのヒステリシスロスが大きく、該ゴム組成物を、タイヤに適用することで、ブレーキ時のタイヤのせん断力が向上する。
そして、本発明のゴム組成物は、−20℃での貯蔵弾性率(E’)が10MPa以下であることで、タイヤの氷路面との接触性が向上し、また、−20℃での損失正接(tanδ)と−20℃での損失正接(tanδ)とが式(1)の関係を満たすことで、ブレーキ時のタイヤのせん断力が向上し、その結果として、タイヤの氷上性能を向上させることができる。
また、本発明のゴム組成物は、−20℃での貯蔵弾性率(E’)が5MPa以上であることで、タイヤに適用に適用した際に、タイヤの耐摩耗性を向上させることができる。
【0029】
本発明のゴム組成物は、氷上性能の観点から、−20℃での貯蔵弾性率(E’)が9.2MPa以下であることが好ましく、また、耐摩耗性の観点から、−20℃での貯蔵弾性率(E’)が7MPa以上であることが好ましく、7.8MPa以上であることが更に好ましい。
【0030】
また、本発明のゴム組成物は、氷上性能の観点から、−20℃での損失正接(tanδ)が0.46以上であることが好ましく、0.48以上であることが更に好ましく、また、耐摩耗性の観点から、−20℃での損失正接(tanδ)が0.59以下であることが好ましく、0.56以下であることが更に好ましく、0.55以下であることがより一層好ましい。
なお、ゴム組成物の−20℃での損失正接(tanδ)が0.46以上且つ0.55以下である場合、該ゴム組成物をタイヤのトレッドに使用することで、タイヤの氷上性能と耐摩耗性が大幅に向上する。
【0031】
上述した−20℃での貯蔵弾性率(E’)が5MPa以上且つ10MPa以下で、−20℃での貯蔵弾性率(E’)と−20℃での損失正接(tanδ)とが式(1)の関係を満たすゴム組成物は、配合するジエン系重合体(ゴム成分)、シリカ、樹脂等の配合剤の種類及び量を調整することで製造できる。
以下、本発明のゴム組成物の製造に使用できるジエン系重合体(ゴム成分)、シリカ、樹脂等の配合剤の好適例について説明する。
【0032】
本発明のゴム組成物は、一種以上のジエン系重合体を含むが、該ジエン系重合体のうち少なくとも一種は、末端が変性されていることが好ましい。末端が変性されているジエン系重合体を使用することで、シリカ等の充填剤との相互作用が大きくなり、ゴム組成物をタイヤのトレッドに使用した場合、タイヤの氷上性能及び耐摩耗性が更に向上する。
【0033】
本発明のゴム組成物は、シリカを含む。該シリカは、ジエン系重合体から形成されるポリマー相にミクロな凹凸を付与しつつ、該ポリマー相を柔らかくして、氷上性能を向上させる。
前記シリカは、CTAB(セチルトリメチルアンモニウムブロミド)比表面積が好ましくは180m/g以上、更に好ましくは190mg以上、より一層好ましくは195m/g以上、特に好ましくは197m/g以上であり、また、好ましくは600m/g以下、より好ましくは300m/g以下、特に好ましくは250m/g以下である。シリカのCTAB比表面積が180m/g以上の場合、耐摩耗性が更に向上し、また、シリカのCTAB比表面積が600m/g以下の場合、転がり抵抗が小さくなる。
前記シリカとしては、特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらシリカは、一種単独で使用してもよいし、二種以上を併用してもよい。
【0034】
前記シリカの配合量は、前記ジエン系重合体の合計100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、より一層好ましくは30質量部以上、特に好ましくは40質量部以上であり、また、好ましくは80質量部以下、より好ましくは70質量部以下である。シリカの配合量をジエン系重合体の合計100質量部に対して20質量部以上とすることで、氷上性能を更に向上させることができる。また、シリカの配合量をジエン系重合体の合計100質量部に対して80質量部以下とすることで、ゴム組成物の作業性を良好にすることができる。
【0035】
また、本発明のゴム組成物において、前記シリカの配合量は、後述するカーボンブラックの配合量と同量又はそれより多いことが好ましい。シリカの配合量がカーボンブラックの配合量と同量又はそれより多いと、ゴム組成物をタイヤに適用した場合、燃費性能をより向上させつつ、氷上性能をより向上させることができる。
【0036】
本発明のゴム組成物は、カーボンブラックを含むことが好ましい。該カーボンブラックは、ジエン系重合体から形成されるポリマー相を補強して、耐摩耗性を向上させる。
前記カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。これらカーボンブラックは、一種単独で使用してもよいし、二種以上を併用してもよい。
【0037】
前記カーボンブラックの配合量は、前記ジエン系重合体の合計100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、より一層好ましくは27質量部以上、特に好ましくは29質量部以上であり、また、好ましくは50質量部以下、より好ましくは40質量部以下である。カーボンブラックの配合量をジエン系重合体の合計100質量部に対して20質量部以上とすることで、耐摩耗性を更に向上させることができる。また、カーボンブラックの配合量をジエン系重合体の合計100質量部に対して50質量部以下とすることで、ゴム組成物の作業性を良好にすることができる。
【0038】
本発明のゴム組成物は、前記ジエン系重合体の合計100質量部に対して、前記シリカの配合量が20質量部以上で且つ前記カーボンブラックの配合量が20質量部以上であることが好ましい。この場合、シリカを20質量部以上含むことで、氷上性能が更に向上し、カーボンブラックを20質量部以上含むことで、耐摩耗性を更に向上するため、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能と耐摩耗性とを高度に改善できる。
【0039】
また、前記シリカと前記カーボンブラックとの合計配合量は、60質量部以上であることが好ましい。ジエン系重合体の合計100質量部に対して、シリカとカーボンブラックとを合計60質量部以上含むゴム組成物をタイヤのトレッドに使用した場合、タイヤの氷上性能及び耐摩耗性が更に向上する。
【0040】
本発明のゴム組成物は、互いに非相溶な複数のポリマー相を形成する少なくとも二種のジエン系重合体を含むことが好ましく、また、該ジエン系重合体の中で配合量が最も多いジエン系重合体と配合量が2番目に多いジエン系重合体との内、ガラス転移温度(Tg)がより低いジエン系重合体(A)は、配合量が、ガラス転移温度(Tg)がより高いジエン系重合体(B)の配合量の80質量%以上であることが好ましく、90質量%以上であることが更に好ましく、100質量%以上であることがより一層好ましく、また、175質量%以下であることが好ましい。
ここで、前記二種以上のジエン系重合体からなるポリマーブレンドは、互いに非相溶な複数のポリマー相を形成することとなる。そして、前記ジエン系重合体の中で配合量が最も多いジエン系重合体は、前記非相溶な複数のポリマー相が形成する海島構造の海相を構成し、一方、前記ジエン系重合体の中で配合量が2番目に多いジエン系重合体は、前記非相溶な複数のポリマー相が形成する海島構造の島相を構成することとなるが、これらの内、ガラス転移温度(Tg)がより低いジエン系重合体(A)は、柔らかく、氷上性能が高い。一方、ガラス転移温度(Tg)がより高いジエン系重合体(B)は、より硬く、耐摩耗性が高い。
そして、ガラス転移温度(Tg)がより低いジエン系重合体(A)の配合量が、ガラス転移温度(Tg)がより高いジエン系重合体(B)の配合量の80質量%以上であれば、ゴム組成物の柔らかさを十分に確保でき、氷上性能が更に向上する。
【0041】
前記ポリマー相を形成するジエン系重合体は、室温(25℃)においてゴム弾性を示し、該ジエン系重合体としては、例えば、天然ゴム(NR)及び合成ジエン系ゴムが挙げられ、該合成ジエン系ゴムとして、具体的には、ポリブタジエンゴム(BR)、合成ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、スチレン−イソプレン共重合体ゴム(SIR)等が挙げられる。ここで、互いに非相溶な複数のポリマー相を形成するジエン系重合体の組み合わせとしては、ブタジエン骨格を有するジエン系重合体/イソプレン骨格を有するジエン系重合体が好ましく、その具体例としては、ポリブタジエンゴム(BR)/天然ゴム(NR)、ポリブタジエンゴム(BR)/合成ポリイソプレンゴム(IR)等が挙げられ、ポリブタジエンゴム(BR)/天然ゴム(NR)が好ましい。
【0042】
前記ジエン系重合体(A)は、末端が変性されていることが好ましい。前記ジエン系重合体(A)の末端が変性されている場合、該ジエン系重合体(A)は、充填剤との相互作用が大きく、該ジエン系重合体(A)を含むポリマー相中での充填剤の分散性が向上し、該ゴム組成物をタイヤのトレッドに使用した場合、タイヤの氷上性能及び耐摩耗性が更に向上することに加え、タイヤの低燃費性も向上する。
【0043】
また、本発明のゴム組成物は、50℃での損失正接(tanδ)が0.18以下であることが好ましく、0.16以下であることが更に好ましい。ゴム組成物の50℃での損失正接(tanδ)が0.18以下であれば、タイヤに適用した際に、タイヤの転がり抵抗が小さくなり、タイヤの低燃費性を向上させることができる。
前述のように、本発明のゴム組成物は、タイヤの氷上性能を向上させる観点から、−20℃での損失正接(tanδ)と−20℃での損失正接(tanδ)とが式(1)の関係を満たすが、一般に、−20℃での損失正接(tanδ)が大きくなると、50℃での損失正接(tanδ)も大きくなり易く、タイヤの氷上性能と低燃費性を両立することが難しくなる。しかしながら、前記ジエン系重合体(A)の末端が変性されている場合、−20℃での損失正接(tanδ)を大きくしつつ、50℃での損失正接(tanδ)を小さくでき、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能と低燃費性を両立することができる。
【0044】
本発明のゴム組成物において、前記ジエン系重合体(A)は、末端がシラン化合物で変性されていることが好ましく、ここで、該シラン化合物は、グリシドキシ基を有することが好ましい。
前記ジエン系重合体(A)の末端がシラン化合物で変性されている場合、該ジエン系重合体(A)は、シリカとの相互作用が大きく、該ジエン系重合体(A)を含むポリマー相に、シリカがより多く分配され、該ポリマー相にミクロな凹凸を付与しつつ、該ポリマー相を柔らかくする。そのため、該ゴム組成物をタイヤのトレッドに使用した場合、トレッドの接地面積が大きくなり、タイヤの氷上性能が向上する。一方、前記ジエン系重合体(A)を含まないポリマー相は、他のジエン系重合体から形成され、前記ジエン系重合体(A)を含むポリマー相にシリカが多く分配されるため、相対的にカーボンブラックが多く分配される。そして、該ポリマー相は、補強性の高いカーボンブラックを多く含むため、該ポリマー相の耐摩耗性が向上する。
また、前記ジエン系重合体(A)の末端がグリシドキシ基を有するシラン化合物で変性されていることで、該ジエン系重合体(A)とシリカとの相互作用がより向上し、該ジエン系重合体(A)を含むポリマー相中でのシリカの分散性が更に向上して、ゴム組成物をタイヤに適用した際に、タイヤの氷上性能がより一層向上する。
【0045】
前記ジエン系重合体(A)[以下、「低Tgジエン系重合体(A)」と略記することがある]としては、単量体として共役ジエン化合物を使用して得た、該共役ジエン化合物の重合体又は共重合体、或いは、単量体として共役ジエン化合物と芳香族ビニル化合物を使用して得た、該共役ジエン化合物と芳香族ビニル化合物との共重合体を使用することができ、また、これら(共)重合体の分子末端及び/又は主鎖を変性したものを使用することもできる。具体的に、分子末端を変性した公知の変性ジエン系重合体としては、国際公開第2003/046020号、特表2004−513987号公報、特開平11−29603号公報、特開2003−113202号公報、及び特公平6−29338号公報に開示の変性ジエン系重合体を例示することができ、主鎖を変性した公知の変性ジエン系重合体としては、特表2003−534426号公報、及び特開2002−201310号公報に開示の変性ジエン系重合体を例示することができる。
【0046】
上記低Tgジエン系重合体(A)の合成に用いる単量体に関し、共役ジエン化合物としては、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン、1,3−ヘキサジエン等が挙げられ、また、芳香族ビニル化合物としては、スチレン、α−メチルスチレン、1−ビニルナフタレン、3−ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4−シクロヘキシルスチレン、2,4,6−トリメチルスチレン等が挙げられる。
【0047】
分子末端が変性された低Tgジエン系重合体(A)は、例えば、国際公開第2003/046020号、特開2007−217562号公報に記載の方法に従って、活性末端を有するジエン系重合体の末端に、種々の変性剤を反応させることで製造できる。
一好適態様においては、該分子末端が変性された低Tgジエン系重合体(A)は、国際公開第2003/046020号、特開2007−217562号公報に記載の方法に従って、シス−1,4結合含有量が75%以上の活性末端を有するジエン系重合体の末端に、シラン化合物(例えば、ヒドロカルビルオキシシラン化合物)を反応させた後、多価アルコールのカルボン酸部分エステルと反応させて安定化を行うことで製造することができる。
【0048】
前記シラン化合物(変性剤)で変性するにあたって、シラン化合物としては、上述のように、グリシドキシ基を有するシラン化合物を使用することが好ましく、グリシドキシ基を有するシラン化合物として、具体的には、2−グリシドキシエチルトリメトキシシラン、2−グリシドキシエチルトリエトキシシラン、(2−グリシドキシエチル)メチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、(3−グリシドキシプロピル)メチルジメトキシシラン等が挙げられ、これらの中でも、3−グリシドキシプロピルトリメトキシシラン及び3−グリシドキシプロピルトリエトキシシランが特に好ましい。
【0049】
また、前記多価アルコールのカルボン酸部分エステルとは、多価アルコールとカルボン酸とのエステルであり、かつ水酸基を一つ以上有する部分エステルを意味する。具体的には、炭素数4以上の糖類又は変性糖類と脂肪酸とのエステルが好ましく用いられる。このエステルは、さらに好ましくは、(1)多価アルコールの脂肪酸部分エステル、特に炭素数10〜20の飽和高級脂肪酸又は不飽和高級脂肪酸と多価アルコールとの部分エステル(モノエステル、ジエステル、トリエステルのいずれでもよい)、(2)多価カルボン酸と高級アルコールの部分エステルを、多価アルコールに1〜3個結合させたエステル化合物などが挙げられる。
前記部分エステルの原料に用いられる多価アルコールとしては、好ましくは少なくとも三つの水酸基を有する炭素数5又は6の糖類(水素添加されていても、水素添加されていなくてもよい)、グリコールやポリヒドロキシ化合物などが用いられる。また、原料脂肪酸としては、好ましくは炭素数10〜20の飽和又は不飽和脂肪酸であり、例えば、ステアリン酸、ラウリン酸、パルミチン酸が用いられる。
前記多価アルコールの脂肪酸部分エステルの中では、ソルビタン脂肪酸エステルが好ましく、具体的には、ソルビタンモノラウリン酸エステル、ソルビタンモノパルミチン酸エステル、ソルビタンモノステアリン酸エステル、ソルビタントリステアリン酸エステル、ソルビタンモノオレイン酸エステル、ソルビタントリオレイン酸エステル等が挙げられる。
【0050】
一方、主鎖が変性された低Tgジエン系重合体(A)は、例えば、(1)上記単量体の(共)重合体に極性基含有単量体をグラフト重合させる方法、(2)上記単量体と極性基含有単量体を共重合させる方法、(3)上記単量体の(共)重合体に極性基含有化合物を付加させる方法等で製造することができる。なお、極性基含有単量体を用いた共重合は、乳化重合で行ってもよいし、リビングアニオン重合やリビングラジカル重合で行ってもよく、上記単量体と極性基含有単量体の共重合体は、共役ジエン化合物及び芳香族ビニル化合物から選択される単量体と極性基含有単量体とがブロック重合したものであってもよい。
また、上記(1)共役ジエン化合物や芳香族ビニル化合物等の(共)重合体に極性基含有単量体をグラフト重合させる方法、並びに、上記(2)共役ジエン化合物や芳香族ビニル化合物等と極性基含有単量体を共重合させる方法において、使用する極性基含有単量体としては、極性基含有ビニル系単量体が好ましい。また、上記(3)共役ジエン化合物や芳香族ビニル化合物等の(共)重合体に極性基含有化合物を付加させる方法において、使用する極性基含有化合物としては、極性基含有メルカプト化合物が好ましい。なお、上記極性基の具体例としては、アルコキシシリル基等を好適に挙げることができる。
【0051】
前記極性基含有ビニル系単量体として、具体的には、(メタ)アクリロキシメチルトリメトキシシラン[ここで、「(メタ)アクリロオキシ」はアクリロオキシ及び/又はメタクリロオキシを指す。以下同じ。]、(メタ)アクリロキシメチルメチルジメトキシシラン、(メタ)アクリロキシメチルジメチルメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン、(メタ)アクリロキシメチルメチルジエトキシシラン、(メタ)アクリロキシメチルジメチルエトキシシラン、(メタ)アクリロキシメチルトリプロポキシシラン、(メタ)アクリロキシメチルメチルジプロポキシシラン、(メタ)アクリロキシメチルジメチルプロポキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルメチルジメトキシシラン、γ−(メタ)アクリロキシプロピルジメチルメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、γ−(メタ)アクリロキシプロピルメチルジエトキシシラン、γ−(メタ)アクリロキシプロピルジメチルエトキシシラン、γ−(メタ)アクリロキシプロピルトリプロポキシシラン、γ−(メタ)アクリロキシプロピルメチルジプロポキシシラン、γ−(メタ)アクリロキシプロピルジメチルプロポキシシラン、γ−(メタ)アクリロキシプロピルメチルジフェノキシシラン、γ−(メタ)アクリロキシプロピルジメチルフェノキシシラン、γ−(メタ)アクリロキシプロピルメチルジベンジロキシシラン、γ−(メタ)アクリロキシプロピルジメチルベンジロキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、6−トリメトキシシリル−1,2−ヘキセン、p−トリメトキシシリルスチレン等が挙げられる。これら単量体は、一種単独で用いてもよく、二種以上を組み合せて用いてもよい。
【0052】
また、前記極性基含有メルカプト化合物として、具体的には、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルジメチルメトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられる。これら化合物は、一種単独で用いてもよく、二種以上を組み合せて用いてもよい。
【0053】
また、前記ジエン系重合体(A)は、末端がスズ原子(Sn)及び窒素原子(N)の少なくとも一方を含む化合物で変性されていることも好ましい。前記ジエン系重合体(A)がスズ原子及び窒素原子の少なくとも一方を含む化合物により変性されていることで、該ジエン系重合体(A)とカーボンブラックとの相互作用がより向上し、該ジエン系重合体(A)を含むポリマー相中でのカーボンブラックの分散性が更に向上して、ゴム組成物の耐摩耗性がより向上する。
分子末端がスズ原子(Sn)及び窒素原子(N)の少なくとも一方を含む化合物で変性されたジエン系重合体(A)は、例えば、上記単量体をスズ原子及び/又は窒素原子を含む重合開始剤を用いてリビング重合させた後、重合活性末端をスズ原子及び/又は窒素原子を含む変性剤で変性させる方法で製造することができる。なお、上記リビング重合は、アニオン重合で行うことが好ましい。
【0054】
アニオン重合で活性末端を有する(共)重合体を製造する場合、重合開始剤としては、リチウムアミド化合物が好ましい。該リチウムアミド化合物としては、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジヘキシルアミド、リチウムジヘプチルアミド、リチウムジオクチルアミド、リチムジ−2−エチルヘキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムメチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。
【0055】
また、上記リチウムアミド化合物として、式:Li−AM[式中、AMは、下記式(I):
【化1】
(式中、Rは、それぞれ独立して炭素数1〜12のアルキル基、シクロアルキル基又はアラルキル基である)で表される置換アミノ基又は下記式(II):
【化2】
(式中、Rは、3〜16のメチレン基を有する、アルキレン基、置換アルキレン基、オキシアルキレン基又はN−アルキルアミノ−アルキレン基を示す)で表される環状アミノ基である]で表されるリチウムアミド化合物を用いることで、式(I)で表される置換アミノ基及び式(II)で表される環状アミノ基からなる群から選択される少なくとも一種の窒素含有官能基が導入されたジエン系重合体(A)が得られる。
【0056】
上記式(I)において、Rは、炭素数1〜12の、アルキル基、シクロアルキル基又はアラルキル基であり、具体的には、メチル基、エチル基、ブチル基、オクチル基、シクロヘキシル基、3−フェニル−1−プロピル基及びイソブチル基等が好適に挙げられる。なお、R1は、それぞれ同じでも異なってもよい。
また、上記式(II)において、Rは、3〜16個のメチレン基を有する、アルキレン基、置換アルキレン基、オキシアルキレン基又はN−アルキルアミノ−アルキレン基である。ここで、置換アルキレン基には、一置換から八置換のアルキレン基が含まれ、置換基としては、炭素数1〜12の、鎖状若しくは分枝状アルキル基、シクロアルキル基、ビシクロアルキル基、アリール基及びアラルキル基が挙げられる。また、Rとして、具体的には、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オキシジエチレン基、N−アルキルアザジエチレン基、ドデカメチレン基及びヘキサデカメチレン基等が好ましい。
【0057】
上記リチウムアミド化合物は、二級アミンとリチウム化合物から予備調製して重合反応に用いてもよいが、重合系中で生成させてもよい。
ここで、二級アミンとしては、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン、ジシクロヘキシルアミン、ジイソブチルアミン等の他、アザシクロヘプタン(即ち、ヘキサメチレンイミン)、2−(2−エチルヘキシル)ピロリジン、3−(2−プロピル)ピロリジン、3,5−ビス(2−エチルヘキシル)ピペリジン、4−フェニルピペリジン、7−デシル−1−アザシクロトリデカン、3,3−ジメチル−1−アザシクロテトラデカン、4−ドデシル−1−アザシクロオクタン、4−(2−フェニルブチル)−1−アザシクロオクタン、3−エチル−5−シクロヘキシル−1−アザシクロヘプタン、4−ヘキシル−1−アザシクロヘプタン、9−イソアミル−1−アザシクロヘプタデカン、2−メチル−1−アザシクロヘプタデセ−9−エン、3−イソブチル−1−アザシクロドデカン、2−メチル−7−tert−ブチル−1−アザシクロドデカン、5−ノニル−1−アザシクロドデカン、8−(4’−メチルフェニル)−5−ペンチル−3−アザビシクロ[5.4.0]ウンデカン、1−ブチル−6−アザビシクロ[3.2.1]オクタン、8−エチル−3−アザビシクロ[3.2.1]オクタン、1−プロピル−3−アザビシクロ[3.2.2]ノナン、3−(tert−ブチル)−7−アザビシクロ[4.3.0]ノナン、1,5,5−トリメチル−3−アザビシクロ[4.4.0]デカン等の環状アミンが挙げられる。
また、リチウム化合物としては、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチル−フェニルリチウム、4−フェニル−ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等のヒドロカルビルリチウムを用いることができる。
【0058】
上記活性末端を有する(共)重合体の活性末端を変性剤で変性するにあたって、変性剤としては、スズ原子及び窒素原子の少なくとも一方を含む変性剤を使用することができる。
【0059】
上記スズ原子を含む変性剤(即ち、スズ含有化合物)としては、下記式(III):
SnX ・・・ (III)
[式中、Rは、それぞれ独立して炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基及び炭素数7〜20のアラルキル基からなる群から選択され;Xは、それぞれ独立して塩素又は臭素であり;aは0〜3で、bは1〜4で、但し、a+b=4である]で表されるスズ含有カップリング剤が好ましい。式(III)のスズ含有カップリング剤で変性したジエン系重合体(A)は、少なくとも一種のスズ−炭素結合を有する。
ここで、Rとして、具体的には、メチル基、エチル基、n−ブチル基、ネオフィル基、シクロヘキシル基、n−オクチル基、2−エチルヘキシル基等が挙げられる。また、式(III)のカップリング剤としては、四塩化スズ、RSnCl、RSnCl、RSnCl等が好ましく、四塩化スズが特に好ましい。
【0060】
また、上記窒素原子を含む変性剤(即ち、窒素含有化合物)としては、置換又は非置換のアミノ基、アミド基、イミノ基、イミダゾール基、ニトリル基、ピリジル基等を有する窒素含有化合物が挙げられ、より具体的には、N,N’−ジメチルイミダゾリジノン(即ち、1,3−ジメチル−2−イミダゾリジノン)、N−メチルピロリドン、4−ジメチルアミノベンジリデンアニリン、4,4’−ビス(N,N−ジメチルアミノ)ベンゾフェノン、4,4’−ビス(N,N−ジエチルアミノ)ベンゾフェノン、4−(N,N−ジメチルアミノ)ベンゾフェノン、4−(N,N−ジエチルアミノ)ベンゾフェノン、[4−(N,N−ジメチルアミノ)フェニル]メチルエチルケトン、4,4’−ビス(1−ヘキサメチレンイミノメチル)ベンゾフェノン、4,4’−ビス(1−ピロリジノメチル)ベンゾフェノン、4−(1−ヘキサメチレンイミノメチル)ベンゾフェノン、4−(1−ピロリジノメチル)ベンゾフェノン、[4−(1−ヘキサメチレンイミノ)フェニル]メチルエチルケトン、3−[N,N−メチル(トリメチルシリル)アミノ]プロピルジメチルエトキシシラン等が挙げられる。
【0061】
前記ジエン系重合体(A)は、ブタジエン骨格を有することが好ましい。低Tgジエン系重合体(A)がブタジエン骨格を有する場合、ゴム組成物が柔らかくなり、ゴム組成物をトレッドに使用した場合、トレッドの接地面積が大きくなり、氷上性能がより向上する。ここで、ブタジエン骨格を有するジエン系重合体としては、ポリブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)等が挙げられる。なお、前記低Tgジエン系重合体(A)は、氷上性能の観点から、ポリブタジエンゴム(BR)であることが特に好ましい。
【0062】
上述したジエン系重合体(A)の配合量は、好ましくはジエン系重合体の総量の45質量%以上、より好ましくは50質量%以上、また、好ましくはジエン系重合体の総量の75質量%以下、より好ましくは70質量%以下、特に好ましくは65質量%以下である。前記ジエン系重合体(A)の配合量がこの範囲であれば、氷上性能と耐摩耗性を十分に向上させることができる。
【0063】
また、前記ジエン系重合体(B)[以下、「高Tgジエン系重合体(B)」と略記することがある]は、イソプレン骨格を有することが好ましい。高Tgジエン系重合体(B)がイソプレン骨格を有する場合、ゴム組成物の補強性が高くなり、耐摩耗性がより向上する。ここで、イソプレン骨格を有するジエン系重合体としては、天然ゴム(NR)、合成ポリイソプレンゴム(IR)、スチレン−イソプレン共重合体ゴム(SIR)等が挙げられる。なお、前記高Tgジエン系重合体(B)は、耐摩耗性の観点から、天然ゴム(NR)であることが特に好ましい。
【0064】
上述したジエン系重合体(B)の配合量は、好ましくはジエン系重合体の総量の25質量%以上、より好ましくは30質量%以上、特に好ましくは35質量%以上であり、また、好ましくはジエン系重合体の総量の55質量%以下、より好ましくは50質量%以下である。前記ジエン系重合体(B)の配合量がこの範囲であれば、氷上性能と耐摩耗性を十分に向上させることができる。
【0065】
本発明のゴム組成物は、上述したジエン系重合体(A)とジエン系重合体(B)の他に、更に他のジエン系重合体(C)を含んでもよい。かかる他のジエン系重合体(C)は、ガラス転移温度(Tg)が前記低Tgジエン系重合体(A)と前記高Tgジエン系重合体(B)の間にあることが好ましく、該他のジエン系重合体(C)[以下、「中Tgジエン系重合体(C)」と略記することがある]は、前記低Tgジエン系重合体(A)及び前記高Tgジエン系重合体(B)の種類にもよるが、例えば、低Tgジエン系重合体(A)がポリブタジエンゴム(BR)で、高Tgジエン系重合体(B)が天然ゴム(NR)又は合成ポリイソプレンゴム(IR)の場合は、中Tgジエン系重合体(C)としては、スチレン−ブタジエン共重合体ゴム(SBR)、スチレン−イソプレン共重合体ゴム(SIR)等が挙げられる。
【0066】
また、本発明のゴム組成物は、発泡剤を含むことが好ましい。ゴム組成物が発泡剤を含む場合、ゴム組成物を加硫させて加硫ゴムを製造する際に、発泡剤由来の気泡が加硫ゴム中に形成される。従って、発泡剤を含むゴム組成物をトレッドに使用してタイヤを製造すると、トレッドの気泡による引っ掻き効果及び排水効果で、タイヤの氷上性能を更に向上させることができる。
前記発泡剤としては、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DNPT)、ジニトロソペンタスチレンテトラミンやベンゼンスルホニルヒドラジド誘導体、p,p’−オキシビスベンゼンスルホニルヒドラジド(OBSH)、重炭酸アンモニウム、重炭酸ナトリウム、炭酸アンモニウム、ニトロソスルホニルアゾ化合物、N,N’−ジメチル−N,N’−ジニトロソフタルアミド、トルエンスルホニルヒドラジド、p−トルエンスルホニルセミカルバジド、p,p’−オキシビスベンゼンスルホニルセミカルバジド等が挙げられる。これら発泡剤の中でも、ジニトロソペンタメチレンテトラミン(DNPT)が好ましい。これら発泡剤は、一種単独で使用してもよいし、二種以上を併用してもよい。
また、該発泡剤の配合量は、特に限定されるものではないが、前記ジエン系重合体の合計100質量部に対して0.1〜30質量部の範囲が好ましく、1〜20質量部の範囲が更に好ましい。
【0067】
また、上記発泡剤には、発泡助剤として尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛、亜鉛華等を併用することが好ましい。これら発泡助剤は、一種単独で使用してもよいし、二種以上を併用してもよい。発泡助剤を併用することにより、発泡反応を促進して反応の完結度を高め、経時的に不要な劣化を抑制することができる。
また、該発泡助剤の配合量は、特に限定されるものではないが、前記ジエン系重合体の合計100質量部に対して1〜30質量部の範囲が好ましい。
【0068】
なお、上記発泡剤を含有するゴム組成物を加硫した後に得られる加硫ゴムにおいて、その発泡率は、通常1〜50%、好ましくは5〜40%である。発泡剤を配合した場合、発泡率が大きすぎるとゴム表面の空隙も大きくなり、充分な接地面積を確保できなくなるおそれがあるが、上記範囲内の発泡率であれば、排水溝として有効に機能する気泡の形成を確保しつつ、気泡の量を適度に保持できるので、耐久性を損なうおそれもない。ここで、上記加硫ゴムの発泡率とは、平均発泡率Vsを意味し、具体的には次式(2)により算出される値を意味する。
Vs=(ρ/ρ−1)×100(%) ・・・ (2)
式(2)中、ρは加硫ゴム(発泡ゴム)の密度(g/cm)を示し、ρは加硫ゴム(発泡ゴム)における固相部の密度(g/cm)を示す。なお、加硫ゴムの密度及び加硫ゴムの固相部の密度は、エタノール中の質量と空気中の質量を測定し、これから算出される。また、発泡率は、発泡剤や発泡助剤の種類、量等により適宜変化させることができる。
【0069】
本発明のゴム組成物は、樹脂を含む。該樹脂としては、C系樹脂、C−C系樹脂等が挙げられ、これら樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0070】
ここで、本発明のゴム組成物は、C系樹脂を含むことが特に好ましい。C系樹脂を含むゴム組成物をタイヤに使用すると、タイヤの氷上性能を更に向上させることができる。
前記C系樹脂としては、石油化学工業のナフサの熱分解によって得られるC留分を(共)重合して得られる脂肪族系石油樹脂が挙げられる。上記C留分には、通常1−ペンテン、2−ペンテン、2−メチル−1−ブテン、2−メチル−2−ブテン、3−メチル−1−ブテン等のオレフィン系炭化水素、2−メチル−1,3−ブタジエン、1,2−ペンタジエン、1,3−ペンタジエン、3−メチル−1,2−ブタジエン等のジオレフィン系炭化水素等が含まれる。なお、上記C系樹脂としては、市販品を利用することができる。
また、該C系樹脂の配合量は、特に限定されるものではないが、前記ジエン系重合体の合計100質量部に対して5〜50質量部の範囲が好ましく、13〜43質量部の範囲が更に好ましく、15〜25質量部の範囲がより一層好ましい。C系樹脂の配合量が5質量部以上であれば、氷上性能が十分に向上し、また、50質量部以下であれば、耐摩耗性を十分に確保することができる。
【0071】
また、本発明のゴム組成物は、C−C系樹脂を含むことも好ましい。C−C系樹脂を含むゴム組成物をタイヤに使用すると、タイヤの氷上性能を更に向上させることができる。
前記C−C系樹脂とは、C−C系合成石油樹脂を指し、該C−C系樹脂としては、例えば、石油由来のC−C11留分を、AlClやBFなどのフリーデルクラフツ触媒を用いて重合して得られる固体重合体が挙げられ、より具体的には、スチレン、ビニルトルエン、α−メチルスチレン、インデンなどを主成分とする共重合体などが挙げられる。該C−C系樹脂としては、C以上の成分の少ない樹脂が、ジエン系重合体との相溶性の観点から好ましい。ここで、「C以上の成分が少ない」とは、樹脂全量中のC以上の成分が50質量%未満、好ましくは40質量%以下であることを言うものとする。前記C−C系樹脂しては、市販品を利用することができ、例えば、商品名「クイントン(登録商標)G100B」(日本ゼオン株式会社製)、商品名「ECR213」(エクソンモービルケミカル社製)等が挙げられる。
また、該C−C系樹脂の配合量は、特に限定されるものではないが、前記ジエン系重合体の合計100質量部に対して13〜43質量部の範囲が更に好ましい。C−C系樹脂の配合量が13質量部以上であれば、氷上性能が十分に向上し、また、43質量部以下であれば、耐摩耗性を十分に確保することができる。
【0072】
本発明のゴム組成物は、前記シリカの配合量(質量部)と前記樹脂の配合量(質量部)との質量比(シリカの配合量/樹脂の配合量)が1.00〜4.00であり、1.00〜2.95であることが好ましい。シリカの配合量/樹脂の配合量が1.00〜4.00であれば、ゴム組成物をトレッドに使用した場合、タイヤの氷上性能と耐摩耗性が更に向上し、また、シリカの配合量/樹脂の配合量が1.00〜2.95であれば、ゴム組成物をトレッドに使用した場合、タイヤの氷上性能と耐摩耗性がより一層向上する。なお、シリカの配合量/樹脂の配合量が2.95以下であれば、ゴム組成物の低温での弾性率が高くなり過ぎること並びに低温でのtanδが低くなり過ぎることが無く、ゴム組成物をトレッドに使用した場合、タイヤの氷上性能がより一層向上する。
また、上述したシリカの配合量/樹脂の配合量は、より好ましくは2.30以下、より一層好ましくは1.70以下であり、また、より好ましくは1.20以上、より一層好ましくは1.50以上であり、この範囲であれば、氷上性能と摩耗性能を最適にすることが出来る。
【0073】
また、本発明のゴム組成物は、前記末端が変性されたジエン系重合体(A)の配合量(質量部)と前記樹脂の配合量(質量部)との質量比(末端が変性されたジエン系重合体(A)の配合量/樹脂の配合量)が1.2〜7.5であることも好ましい。末端が変性されたジエン系重合体(A)の配合量/樹脂の配合量が1.2〜7.5であれば、ゴム組成物をトレッドに使用した場合、タイヤの氷上性能と耐摩耗性が更に向上する。なお、末端が変性されたジエン系重合体(A)の配合量/樹脂の配合量が1.2以上であれば、ゴム組成物の弾性率が低くなり過ぎることが無く、ゴム組成物をトレッドに使用した場合、タイヤの耐摩耗性が更に向上する。
また、上述したジエン系重合体(A)の配合量(質量部)と前記樹脂の配合量(質量部)との質量比は、より好ましくは6.0以下、より一層好ましくは4.5以下であり、また、より好ましくは2.0以上であり、この範囲であれば、氷上性能と摩耗性能を最適にすることが出来る。
【0074】
また、本発明のゴム組成物は、前記樹脂の配合量(質量部)と当該ゴム組成物の発泡率(%)との比[樹脂の配合量(質量部)/ゴム組成物の発泡率(%)]が0.4〜4.0であることが好ましく、0.4〜3.5であることが更に好ましく、0.4〜0.9であることがより一層好ましい。樹脂の配合量/ゴム組成物の発泡率が上記の範囲内であれば、ゴム組成物をトレッドに使用した場合、タイヤの氷上性能と耐摩耗性が更に向上する。
【0075】
また、本発明のゴム組成物は、親水性短繊維を含むことが好ましい。特には、ゴム組成物が親水性短繊維と前述の発泡剤を含む場合、加硫時に発泡剤から発生したガスが親水性短繊維の内部に浸入して、親水性短繊維の形状に対応した形状を有する気泡を形成することができ、また、該気泡は、壁面が親水性短繊維由来の樹脂で覆われ、親水化されている。そのため、親水性短繊維と発泡剤を含むゴム組成物をトレッドに使用してタイヤを製造すると、タイヤの使用時において、気泡の壁面がトレッド表面に露出することで、水との親和性が向上し、気泡が水を積極的に取り込むことができるようになり、タイヤに優れた排水性が付与され、タイヤの氷上性能を大幅に向上させることができる。
前記親水性短繊維の原料として用いる親水性樹脂としては、エチレン−ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸或いはそのエステル、ポリエチレングリコール、カルボキシビニル共重合体、スチレン−マレイン酸共重合体、ポリビニルピロリドン、ビニルピロリドン−酢酸ビニル共重合体、メルカプトエタノール等が挙げられ、これらの中でも、エチレン−ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸が好ましく、エチレン−ビニルアルコール共重合体が特に好ましい。
【0076】
上記親水性短繊維の表面には、前記ジエン系重合体に対して親和性を有し、好ましくは、ゴム組成物の加硫最高温度よりも低い融点を有する低融点樹脂からなる被覆層が形成されていてもよい。かかる被覆層を形成することで、親水性短繊維が有する水との親和性を有効に保持しつつ、被覆層とジエン系重合体との親和性が良好なため、短繊維のジエン系重合体への分散性が向上する。また、かかる低融点樹脂が加硫時に溶融することで流動性を帯びた被覆層となってジエン系重合体と親水性短繊維との接着を図ることに寄与し、良好な排水性と耐久性とが付与されたタイヤを容易に実現することができる。なお、かかる被覆層の厚みは、親水性短繊維の配合量や平均径等によって変動し得るが、通常0.001〜10μm、好ましくは0.001〜5μmである。
前記被覆層に用いる低融点樹脂の融点は、ゴム組成物の加硫の最高温度よりも低いことが好ましい。なお、加硫の最高温度とは、ゴム組成物の加硫時にゴム組成物が達する最高温度を意味する。例えば、モールド加硫の場合には、上記ゴム組成物がモールド内に入ってからモールドを出て冷却されるまでに該ゴム組成物が達する最高温度を意味し、かかる加硫最高温度は、例えば、ゴム組成物中に熱電対を埋め込むこと等により測定することができる。低融点樹脂の融点の上限としては、特に制限はないものの、以上の点を考慮して選択することが好ましく、一般的には、ゴム組成物の加硫最高温度よりも、10℃以上低いことが好ましく、20℃以上低いことがより好ましい。なお、ゴム組成物の工業的な加硫温度は、一般的には最高で約190℃程度であるが、例えば、加硫最高温度がこの190℃に設定されている場合には、低融点樹脂の融点としては、通常190℃未満の範囲で選択され、180℃以下が好ましく、170℃以下がより好ましい。
前記低融点樹脂としては、ポリオレフィン系樹脂が好ましく、例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン、エチレン−プロピレン共重合体、エチレン−メタクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレン−プロピレン−ジエン三元共重合体、エチレン−酢酸ビニル共重合体、並びにこれらのアイオノマー樹脂等が挙げられる。
【0077】
前記親水性短繊維は、平均長さが好ましくは0.1〜50mm、より好ましくは1〜7mmで、平均径が好ましくは1μm〜2mm、より好ましくは5μm〜0.5mmである。平均長さ及び平均径が上記範囲内であると、短繊維同士が必要以上に絡まるおそれがなく、良好な分散性を確保することができる。
前記親水性短繊維の配合量は、前記ジエン系重合体の合計100質量部に対して0.1〜100質量部の範囲が好ましく、1〜50質量部の範囲が更に好ましく、1〜10質量部の範囲がより一層好ましい。親水性短繊維の配合量を上記範囲に収めることで、氷上性能と耐摩耗性の良好なバランスを取ることができる。
【0078】
本発明のゴム組成物には、前記ジエン系重合体、シリカ、カーボンブラック、発泡剤、発泡助剤、C系樹脂、C−C系樹脂等の樹脂、親水性短繊維の他、ゴム工業界で通常使用される配合剤、例えば、シランカップリング剤、軟化剤(プロセスオイル等)、ステアリン酸、老化防止剤、ワックス、酸化亜鉛(亜鉛華)、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して配合してもよい。これら配合剤としては、市販品を好適に使用することができる。なお、本発明のゴム組成物は、特に限定されるものではないが、例えば、ジエン系重合体に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより製造することができる。
なお、ゴム組成物の−20℃での貯蔵弾性率(E’)、−20℃での損失正接(tanδ)は、上述のジエン系重合体の種類やブレンド比、配合剤の種類や配合量を調整することで、変化させることができる。
【0079】
<タイヤ>
本発明のタイヤは、上記のゴム組成物を用いたことを特徴とし、前述のゴム組成物がトレッドに使用されていることが好ましい。前記ゴム組成物をトレッドに使用したタイヤは、氷上性能と耐摩耗性との両方に優れ、スタッドレスタイヤ等の冬用タイヤとして有用である。
本発明のタイヤは、適用するタイヤの種類や部材に応じ、未加硫のゴム組成物を用いて成形後に加硫して得てもよく、又は予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して得てもよい。なお、タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
【実施例】
【0080】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
【0081】
<ゴム組成物の調製>
表1〜表3に示す配合処方で、通常のバンバリーミキサーを用いて、第1混合工程、最終混合工程の順に混合を行って、ゴム組成物を製造した。なお、第1混合工程の終了後、混合物をバンバリーミキサーから一旦取り出し、その後、再度混合物をバンバリーミキサーに投入して、最終混合工程を実施した。また、第1混合工程における混合物の最高温度は170℃とし、最終混合工程におけるゴム組成物の最高温度は110℃とした。
また、段落[0012]に記載の方法に従い走査型プローブ顕微鏡を用いて観察したところ、いずれのゴム組成物も相分離構造が確認され、互いに非相溶な複数のポリマー相が形成されていた。
更に、上記のようにして得られたゴム組成物に対して、下記の方法で、−20℃での貯蔵弾性率(E’)、−20℃での損失正接(tanδ)、50℃での損失正接(tanδ)を測定した。結果を表1〜表3に示す。
【0082】
(1)貯蔵弾性率(E’)及び損失正接(tanδ)
ゴム組成物を145℃で33分間加硫して得られた加硫ゴムに対して、上島製作所(株)製スペクトロメーターを用いて、初期歪2%、動歪1%、周波数52Hzの条件下で、−20℃における貯蔵弾性率(E’)、並びに、−20℃及び50℃における損失正接(tanδ)を測定した。
【0083】
<タイヤの作製>
上記のようにして得られたゴム組成物をトレッドに用いて、常法によって試験用のタイヤ(タイヤサイズ195/65R15)を作製し、トレッドの発泡率を上記式(2)に従って算出した。次に、該タイヤに対して、下記の方法で、氷上性能、耐摩耗性及び燃費性能を評価した。結果を表1〜表3に示す。
【0084】
(2)氷上性能
前記試験用のタイヤを排気量1600ccクラスの国産乗用車に4本を装着し、氷温−1℃の氷上制動性能を確認した。比較例6のタイヤをコントロールとし、氷上性能=(比較例6の制動距離/その他の例の制動距離)×100として、指数表示した。指数値が大きい程、氷上性能が優れていることを示す。
【0085】
(3)耐摩耗性
前記試験用のタイヤを用いた実車にて舗装路面を1万km走行後、残溝を測定し、トレッドが1mm摩耗するのに要する走行距離を相対比較し、比較例6のタイヤを100として指数表示した。指数値が大きい程、耐摩耗性が良好なことを示す。
【0086】
(4)燃費性能
供試タイヤを試験車に装着し、25〜30℃(常温)の環境下において、実車試験にて、燃費性能を測定し、比較例6のタイヤの燃費性能を100として指数表示した。指数値が大きい程、燃費性能が良好なこと(低燃費性に優れること)を示す。
【0087】
【表1】
【0088】
【表2】
【0089】
【表3】
【0090】
*1 ポリブタジエンゴム:シス−1,4−ポリブタジエンゴム、商品名「UBEPOL 150L」、宇部興産製、Tg=−110℃
*2 変性ポリブタジエンゴム1: 下記の方法で合成した変性ポリブタジエンゴム、Tg=−110℃
*3 変性ポリブタジエンゴム2: 下記の方法で合成した変性ポリブタジエンゴム、Tg=−95℃
*4 天然ゴム: Tg=−60℃
*5 カーボンブラック: N134、旭カーボン製、窒素吸着比表面積(NSA)=146m/g
*6 シリカ1: 商品名「Nipsil EQ」、東ソー・シリカ製、CTAB比表面積=100m/g、窒素吸着比表面積(NSA)=100m/g
*7 シリカ2: 商品名「Nipsil AQ」、東ソー・シリカ製、CTAB比表面積=150m/g、窒素吸着比表面積(NSA)=200m/g
*8 シリカ3: 商品名「ニップシールHQ」、東ソー・シリカ製、CTAB比表面積=200m/g、窒素吸着比表面積(NSA)=250m/g
*9 シランカップリング剤: 「Si69」、Evonic製
*10 プロセスオイル: ナフテン系プロセスオイル、商品名「ダイアナプロセスオイルNS−24」、出光興産製、流動点=−30℃
*11 老化防止剤IPPD: N−イソプロピル−N’−フェニル−p−フェニレンジアミン
*12 樹脂1: C系樹脂: 商品名「Escorez 1102」、東燃化学製
*13 樹脂2: C系以外の樹脂: 商品名「NEOPOLYMER」、日本合成樹脂製
*14 親水性短繊維: 下記の方法で作製した親水性短繊維
*15 加硫促進剤1: ジ−2−ベンゾチアゾリルジスルフィド(MBTS)
*16 加硫促進剤2: N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)
*17 発泡剤: ジニトロソペンタメチレンテトラミン(DNPT)
【0091】
<変性ポリブタジエンゴム1>
(i)触媒の調製
乾燥・窒素置換された、ゴム栓付容積100ミリリットルのガラスびんに、以下の順番に、ブタジエンのシクロヘキサン溶液(15.2質量%)7.11g、ネオジムネオデカノエートのシクロヘキサン溶液(0.56M)0.59ミリリットル、メチルアルミノキサンMAO(東ソ―アクゾ製PMAO)のトルエン溶液(アルミニウム濃度として3.23M)10.32ミリリットル、水素化ジイソブチルアルミ(関東化学製)のヘキサン溶液(0.90M)7.77ミリリットルを投入し、室温で2分間熟成した後、塩素化ジエチルアルミ(関東化学製)のヘキサン溶液(0.95M)1.45ミリリットルを加え室温で、時折撹拌しながら15分間熟成した。こうして得られた触媒溶液中のネオジムの濃度は、0.011M(モル/リットル)であった。
(ii)活性末端を変性した変性ジエン系ゴムの製造
900ミリリットル容積のゴム栓付きガラスびんを乾燥・窒素置換し、乾燥精製されたブタジエンのシクロヘキサン溶液および乾燥シクロヘキサンを各々投入し、ブタジエン12.5質量%のシクロヘキサン溶液が400g投入された状態とした。次に、前記調製した触媒溶液2.28ミリリットル(ネオジム換算0.025mmol)を投入し、50℃温水浴中で1.0時間重合を行った。
(iii)第1次変性処理
第1次変性剤として、3−グリシドキシプロピルトリメトキシシランをヘキサン溶液(1.0M)として、23.5(ネオジム対比のモル当量)投入し、50℃で60分間処理した。
(iv)その後の処理
続いて、多価アルコールのカルボン酸エステルとしてソルビタントリオレイン酸エステルを単体で1.2ミリリットル加えて、さらに50℃で1時間変性反応を行った後、老化防止剤2,2'−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)のイソプロパノール5%溶液2ミリリットルを加えて反応の停止を行い、さらに微量のNS−5を含むイソプロパノール中で再沈殿を行ない、ドラム乾燥することにより活性末端を変性したポリブタジエンゴムを得た。得られた変性ポリブタジエンゴム1は、ガラス転移温度が−110℃であった。
【0092】
<変性ポリブタジエンゴム2>
乾燥し、窒素置換した内容積約900mLの耐圧ガラス容器に、シクロヘキサン283g、1,3−ブタジエン50g、2,2−ジテトラヒドロフリルプロパン0.0057mmol及びヘキサメチレンイミン0.513mmolをそれぞれシクロヘキサン溶液として注入し、これにn−ブチルリチウム(n−BuLi)0.57mmolを加えた後、撹拌装置を備えた50℃の温水浴中で4.5時間重合反応を行った。この際の重合転化率は、ほぼ100%であった。
次に、重合反応系に、四塩化スズ0.100mmolをシクロヘキサン溶液として加え、50℃で30分間撹拌した。その後、反応系に、2,6−ジ−tert−ブチル−p−クレゾール(BHT)のイソプロパノール溶液(BHT濃度:5質量%)0.5mLを加えて、重合反応を停止させ、更に常法に従って乾燥して変性ポリブタジエンゴム2を得た。得られた変性ポリブタジエンゴム2は、ガラス転移温度が−95℃であった。
【0093】
<親水性短繊維>
特開2012−219245号公報に開示の製造例3に従い、二軸押出機を2台用い、ホッパーにポリエチレン[日本ポリエチレン製、ノバテックHJ360(MFR5.5、融点132℃)]40質量部と、エチレン−ビニルアルコール共重合体[クラレ製、エバールF104B(MFR4.4、融点183℃)]40質量部とを投入し、ダイ出口から各々同時に押し出して、常法に従って得られた繊維を長さ2mmにカットして、ポリエチレンからなる被覆層が形成された親水性短繊維を作製した。
【0094】
表1〜表3に示す実施例の結果から、本発明に従うゴム組成物を用いることで、タイヤの氷上性能と耐摩耗性との両方を向上させられることが分かる。
【産業上の利用可能性】
【0095】
本発明のゴム組成物は、タイヤ、特にはスタッドレスタイヤのトレッドゴムに利用できる。また、本発明のタイヤは、スタッドレスタイヤとして有用である。