【課題を解決するための手段】
【0009】
本発明の目的は、独立請求項の主題によって解決され、さらなる実施形態が、従属請求項の中に組み込まれている。また、以下の説明されている本発明の態様は、物体を撮像するための装置、物体を撮像するためのX線検出器、物体を撮像するための方法、並びに、コンピュータープログラムエレメント及びコンピューター可読媒体にも適用されるということが留意されるべきである。
【0010】
第1の態様によれば、物体を撮像するための装置であって、前記装置は、
X線検出器と、
少なくとも1つのX線供給源と
を含む、装置が提供される。
【0011】
少なくとも1つのX線供給源は、少なくとも1つのX線供給源とX線検出器との間の領域の少なくとも一部が、物体を収容するための検査領域となるように、X線検出器に対して位置決めされるように構成されている。X線検出器は、複数のX線放射検出エリアを含む。複数のX線検出エリアは、複数の第1のピクセルを含む第1のエリアと、複数の第2のピクセルを含む第2のエリアとを含む。少なくとも1つのX線供給源によって放出される第1の放射線は、第1のピクセルの少なくとも一部分によって受け取り可能であり、少なくとも1つのX線供給源によって放出される第2の放射線は、第2のピクセルの少なくとも一部分によって受け取り可能である。X線検出器は、ピクセルによって受け取られるX線放射がそのピクセルの中の信号の発生につながるように構成されている。X線検出器は、第1のエリアに関連付けられている少なくとも1つの第1の複数のストレージノードと、第2のエリアに関連付けられている少なくとも1つの第2の複数のストレージノードとを含む。少なくとも1つの第1の複数のストレージノードは、複数の第1のピクセル上の対応する信号を表す複数の第1の信号を記憶するように構成されており、少なくとも1つの第2の複数のストレージノードは、複数の第2のピクセル上の対応する信号を表す複数の第2の信号を記憶するように構成されている。少なくとも1つの第1の複数のストレージノードが複数の第1の信号を記憶するように構成された後に、少なくとも1つの第2の複数のストレージノードは、複数の第2の信号を記憶するように構成されている。
【0012】
換言すれば、装置は、物体を4D撮像するために使用され得る。ここで、第1の放射線は、少なくとも1つのX線供給源によって放出され得る放射線のパルスを意味しており、第2の放射線は、第1の放射線とは異なる、少なくとも1つのX線供給源によって放出され得る放射線のパルスを意味している。一例では、第1及び第2の放射線は、異なるX線供給源によって放出される。一例では、第1及び第2の放射線は、同じX線供給源によって放出され、そのX線供給源は、拡張された放出エリアを有しており、アパーチャー及び/又はシャッターが使用されている。一例では、第1及び第2の放射線は、同じX線供給源によって放出され、そのX線供給源は、第1の放射線の放出のために1つの空間的位置にあり、また、第2の放射線の放出のために第2の空間的位置にある(換言すれば、X線供給源は、この例では移動可能であり得る)。
【0013】
このように、単一の検出器は、2つの検出器又は3つ以上の検出器の使用を通して必要とされる利点を提供することが可能であるが、しかし、信号がハンドリングされる様式が、単一の検出器の中にこの機能性を提供し、検出器同士の間にデッドエリアが存在しないという追加された利点を伴い、コスト、サイズ、及び電力消費の低減の追加された利点を伴う。1つだけの検出器を有することによって、システムインテグレーションが改善され得る。
【0014】
このように、2つのX線ビームが検出器の一方のハーフを同時に照射し、それに続いて、2つのX線ビームが検出器の第2のハーフを同時に照射する状態で動作するシステムにおいて、クロス散乱は低減され得、動作のサイクル時間は、読み出し時間に等しい。このように、サイクル時間は、ここで、2つの読み出し及び2つの露光時間の総和とは対照的に、2つの露光時間又は1つの読み出し時間のいずれか、どちらか長い方によって支配される。このように、1つのX線ビームが検出器の一方のハーフの第1のパートを照射し、それに続いて、第2のX線ビームが検出器のその第1のハーフの第2のパートを照射し、それに続いて、第3のX線ビームが、検出器の第2のハーフの第1のパートを照射し、それに続いて、第4のX線ビームが検出器の第2のハーフの第2のパートを照射する状態で動作するシステムにおいて、クロス散乱はさらに低減され得、動作のサイクル時間は、1つの露光時間プラス1つの読み出し時間に4を掛けたものとは対照的に、読み出し時間の2倍に等しいか、又は、露光時間(露光の間の読み出し時間)の4倍であるか、どちらか長い方である。したがって、2つのX線ビームが検出器の一方のハーフを同時に照射し、次いで、検出器の他方のハーフを同時に照射するケースに関して、サイクルレートはより遅くなるが、その利点は、散乱が少なくなり、したがって、より良好な信号対ノイズ比となり、また、特定の状況では、たとえば、X線放射のパルスがシーケンシャルに受け取られるときには、クロス散乱が全くないことさえもあるということである。6つのX線ビームが、クロス散乱が低減された状態で検出器を照射し、動作のサイクル時間は、読み出し時間の3倍(又は、上記に議論されているように露光時間の6倍、のいずれか長い方)であり、8つのX線ビームが、クロス散乱が低減された状態で検出器を照射し、ここで、それらの8つのX線ビームのうち、第1のペアのビームが検出器を同時に照射し、第2のペアのビームが検出器を同時に照射し、残りの4つのX線ビームが異なる時間に検出器を照射することによって、さらなる照射可能性が実現され得、動作のサイクル時間は、読み出し時間の3倍に等しいか、又は、サイクル時間は、このケースでは、6つの露光時間プラス1つの読み出し時間であるか、いずれか長い方である。
【0015】
換言すれば、検出器は、半分に区分され得、それらの半分は、さらに半分に区分されており、過剰なフレキシビリティーを提供し、ここでは、露光が、時間的に分離され、クロス散乱の影響を低減及び/又は回避することが可能であり、一方、検出器の半分は、依然として一緒に読み出され得、また、検出器の一方のハーフが照射されている間に、他方のハーフが読み出され得る。
【0016】
このように、フレームトランスファーが検出器の異なるパートに適用される状態で動作する検出器を利用する装置が提供され、検出器の一方のパートのデータの読み出しは、検出器の別のパートの同時の照射に沿って可能になる。
【0017】
フレームトランスファーは、以下のように説明され得る。ピクセルの中に収集された信号は、(リセット又は新しい信号収集のような)任意の他の動作が信号を破壊する前に、読み出されるか又は記憶されなければならない。読み出しフェーズが比較的に長い時間を要するときには、ピクセルの中のストレージノードの上にピクセル信号を記憶することが有益である可能性がある。ストレージノードの上にピクセル信号を記憶することは、通常は、いわゆるサンプルアンドホールド回路によって行われる。コピープロセスが完了したときに、オリジナル信号は破壊され得る。ピクセル信号(電荷)をストレージキャパシターに転送することも可能である。ここで、異なる検出器区分化スキームに関して適用されるように、フレームトランスファーは、ピクセルの中の1つ又は複数のストレージノードにピクセル信号をコピー又は転送するために使用され、後の時間に、信号が読み出されることを可能にする。
【0018】
第1の例によれば、X線検出器は、少なくとも1つのリセットを含み、少なくとも1つのリセットは、複数の第1のピクセルをリセットするように構成されており、また、複数の第2のピクセルをリセットするように構成されている。少なくとも1つのリセットが複数の第2のピクセルをリセットする前に、少なくとも1つのX線供給源によって放出される第1の放射線が第1のピクセルの一部分によって受け取り可能であるように、X線検出器が構成されている。また、少なくとも1つのX線供給源によって放出される第2の放射線が第2のピクセルの一部分によって受け取り可能である前に、少なくとも1つのリセットが複数の第2のピクセルをリセットするように、検出器が構成されている。
【0019】
換言すれば、検出器の第1のエリア(これは、第1のピクセルを有している)が照射され得る。次いで、リセットが、検出器の第2のエリア(これは、第2のピクセルを有している)に適用され得る。このように、第2のエリアの中の任意のクロス散乱信号が消去され得る。次いで、第2のエリアが照射され得、正確な信号が獲得されることを可能にする。また、(第1のエリアの)第1のピクセルの中に発生させられる信号が、少なくとも1つの複数のストレージノード(たとえば、サンプルアンドホールド回路)の中に記憶され得るので、リセットが、検出器の1つのパートに適用され得、一方、サンプルアンドホールドフェーズが検出器の別のパートに適用された状態になっている。したがって、これは、検出器の別のパートが照射されている間に、信号が検出器の一方のパートから読み出されることを可能にする。
【0020】
一例では、X線検出器は、少なくとも1つの第1の複数のストレージノードに関連付けられた少なくとも1つの第1の読み出しと、少なくとも1つの第2の複数のストレージノードに関連付けられた少なくとも1つの第2の読み出しとを含む。少なくとも1つの第1の読み出しは、複数の第1の信号を読み出すように構成されており、少なくとも1つの第2の読み出しは、複数の第2の信号を読み出すように構成されている。複数の第1の信号の読み出しが終了する前に、少なくとも1つのX線供給源によって放出される第2の放射線が第2のピクセルの一部分によって受け取り可能であるように、検出器が構成されている。
【0021】
一例では、少なくとも1つのリセットが複数の第1のピクセルをリセットする前に、少なくとも1つのX線供給源によって放出される第2の放射線が第2のピクセルの一部分によって受け取り可能であるように、X線検出器が構成されており、また、少なくとも1つのX線供給源によって放出される第3の放射線が第1のピクセルの一部分によって受け取り可能である前に、少なくとも1つのリセットが複数の第1のピクセルをリセットするように、X線検出器が構成されている。
【0022】
換言すれば、第1の供給源(又は、アパーチャー及び/若しくはシャッター又は移動式供給源によって拡張されたもの)によって、検出器の第1のエリア(これは、第1のピクセルを有している)が照射され得る。次いで、リセットが、検出器の第2のエリア(これは、第2のピクセルを有している)に適用され得る。このように、第1のエリアの照射に起因する、第2のエリアの中の任意のクロス散乱信号が消去され得る。次いで、第2の供給源(又は、アパーチャー及び/若しくはシャッター又は移動式供給源によって拡張されたもの)によって、第2のエリアが照射され得、正確な信号が獲得されることを可能にする。また、(第1のエリアの)第1のピクセルの中に発生させられる信号が、少なくとも1つの複数のストレージノード(たとえば、サンプルアンドホールド回路)の中に記憶され得るので、リセットが、検出器の1つのパートに適用され得、一方、サンプルアンドホールドフェーズが検出器の別のパートに適用された状態になっている。したがって、これは、検出器の第2のエリアが照射されている間に、信号が検出器の第1のエリアから読み出されることを可能にする。検出器の第2のパートの照射は、第1のエリア(これは、第1のピクセルを有している)の中のクロス散乱信号につながることとなる。したがって、リセットを第1のエリアに適用することによって、第2のエリアの照射に起因する、第1のエリアの中の任意のクロス散乱信号が消去され得る。次いで、第1のエリアは、第1の供給源によって(再び)照射され得、正確な信号が獲得されることを可能にする。また、(第2のエリアの)第2のピクセルの中に発生させられる信号は、少なくとも1つの複数のストレージノード(たとえば、サンプルアンドホールド回路)の中に記憶され得るので、リセットが、検出器の第1のエリアに適用され得、一方、サンプルアンドホールドフェーズが検出器の第2のエリアに適用された状態になっている。このように、装置の検出器が、循環的な様式で動作され得、ムービーのような様式で画像を獲得する。
【0023】
ここで、放射線の第3のパルスは、少なくとも1つのX線供給源によって放出され得る放射線のパルスを意味しており、この放射線は、第1の放射線とは異なっており、また、第2の放射線とは異なっている。
【0024】
一例では、第1及び第3の放射線は、異なるX線供給源によって放出される。一例では、第1及び第3の放射線は、同じX線供給源によって放出される。一例では、第1及び第2の放射線は、同じX線供給源によって放出され、そのX線供給源は、第1の放射線の放出のために1つの空間的位置にあり、また、第2の放射線の放出のために第2の空間的位置にあり、X線供給源は、オリジナル位置に戻り、第3の放射線を放出する(換言すれば、X線供給源は、この例では移動可能であり得る)。
【0025】
一例では、複数の第2の信号の読み出しが終了する前に、少なくとも1つのX線供給源によって放出される第3の放射線が第1のピクセルの一部分によって受け取り可能であるように、X線検出器が構成されている。
【0026】
別の態様では、物体を撮像するためのX線検出器が提供される。X線検出器は、複数のX線放射検出エリアを含む。複数のX線検出エリアは、複数の第1のピクセルを含む第1のエリアと、複数の第2のピクセルを含む第2のエリアとを含む。少なくとも1つのX線供給源によって放出される第1の放射線は、第1のピクセルの少なくとも一部分によって受け取り可能であり、少なくとも1つのX線供給源によって放出される第2の放射線は、第2のピクセルの少なくとも一部分によって受け取り可能である。X線検出器は、ピクセルによって受け取られるX線放射がそのピクセルの中の信号の発生につながるように構成されている。X線検出器は、第1のエリアに関連付けられている少なくとも1つの第1の複数のストレージノードと、第2のエリアに関連付けられている少なくとも1つの第2の複数のストレージノードとを含む。少なくとも1つの第1の複数のストレージノードは、複数の第1のピクセル上の対応する信号を表す複数の第1の信号を記憶するように構成されており、少なくとも1つの第2の複数のストレージノードは、複数の第2のピクセル上の対応する信号を表す複数の第2の信号を記憶するように構成されている。少なくとも1つの第1の複数のストレージノードが複数の第1の信号を記憶するように構成された後に、少なくとも1つの第2の複数のストレージノードは、複数の第2の信号を記憶するように構成されている。X線検出器は、少なくとも1つのリセットを含み、少なくとも1つのリセットは、複数の第1のピクセルをリセットするように構成されており、また、複数の第2のピクセルをリセットするように構成されている。少なくとも1つのリセットが複数の第2のピクセルをリセットする前に、少なくとも1つのX線供給源によって放出される第1の放射線が第1のピクセルの一部分によって受け取り可能であるように、X線検出器が構成されている。また、少なくとも1つのX線供給源によって放出される第2の放射線が第2のピクセルの一部分によって受け取り可能である前に、少なくとも1つのリセットが複数の第2のピクセルをリセットするように、検出器が構成されている。
【0027】
換言すれば、X線検出器は、物体を4D撮像する際に使用され得る。
【0028】
別の態様によれば、物体の撮像のための方法であって、方法は、
X線検出器の第1のエリアの第1のピクセルの少なくとも一部分によって、少なくとも1つのX線供給源によって放出される第1の放射線を受け取るステップa)であって、X線検出器は、ピクセルによって受け取られるX線放射がそのピクセルの中の信号の発生につながるように構成されている、ステップa)と、
第1のエリアに関連付けられた少なくとも1つの第1の複数のストレージノードの中に、複数の第1のピクセル上の対応する信号を表す複数の第1の信号を記憶するステップb)と、
ステップa)の後に、X線検出器の第2のエリアの第2のピクセルの少なくとも一部分によって、少なくとも1つのX線供給源によって放出される第2の放射線を受け取るステップe)と、
第2のエリアに関連付けられた少なくとも1つの第2の複数のストレージノードの中に、複数の第2のピクセル上の対応する信号を表す複数の第2の信号を記憶するステップg)と
を有する、方法が提供される。
【0029】
換言すれば、方法は、物体を4D撮像するために使用され得る。
【0030】
換言すれば、検出器には、検出器の異なるパートに関して区分されたフレームトランスファーが提供されており、1つのパートに関するフレームトランスファーは、第2のパートに関するフレームトランスファーから独立している。
【0031】
このように、異なるX線ビームが物体を通過する間の時間が最小化され得、検査の間の物体移動の有害な影響の低減につながり、クロス散乱の影響が最小化され得る。
【0032】
別の言い方をすれば、一例では、第1のX線ビームは、物体を通過し、検出器の第1のエリアの第1のパートを照射することが可能である。次いで、第1のストレージノード回路(サンプルアンドホールド回路)の一部が、検出器の第1のエリアの第1のパートのピクセルの上に信号を記憶することが可能である。次いで、第2のX線ビームが、物体を通過し、検出器の第1のエリアの第2のパートを照射することが可能である。次いで、第1のストレージノード回路(サンプルアンドホールド回路)の別の一部が、検出器の第1のエリアの第2のパートのピクセルの上に信号を記憶することが可能である。上記に議論されているように、第1のエリアのこの第2のパートは、第1のX線ビームからのクロス散乱によって汚染されることとなる。両方の露光が異なるエリアを照射する場合には、このクロス散乱が除去され得る。次いで、検出器の第1のエリアに関連付けられた信号が読み出され得る。しかし、読み出しと同時に、検出器の第2のエリアが照射され得、ここで、第3のX線ビームが、物体を通過し、検出器の第2のエリアの第1のパートを照射することが可能である。次いで、第2のストレージノード回路(サンプルアンドホールド回路)の一部が、検出器の第2のエリアの第1のパートのピクセルの上に信号を記憶することが可能である。次いで、第4のX線ビームが、物体を通過し、検出器の第2のエリアの第2のパートを照射することが可能である。次いで、第2のストレージノード回路(サンプルアンドホールド回路)の別の一部が、検出器の第2のエリアの第2のパートのピクセルの上に信号を記憶することが可能である。次いで、検出器の第2のエリアに関連付けられた信号が読み出され得、同時に、検出器の第1のエリアの照射が再び開始することが可能である。例では、第1及び第2のX線ビームは、同時期に適用され得るが、ここで、単一のストレージノード回路(サンプルアンドホールド回路)が、関連の信号を記憶するように使用され得る。一例では、第3及び第4のX線ビームは、同時期に適用され得るが、ここで、単一のストレージノード回路(サンプルアンドホールド回路)が、関連の信号を記憶するように使用され得る。
【0033】
このように、検出器の別の一部が照射されているのと同時に、検出器の一部が読み出され得る。
【0034】
このように、良好なイメージ品質(モーションアーチファクト及びクロス散乱が最小化されている)を有する高速撮像が提供される。これは、単一の検出器を備えた幅広い角度の2次元の供給源構成の中で利用され得、また、4D撮像のために使用され得る。
【0035】
別の言い方をすれば、すべてのX線ビームが同じ検出器エリアを使用するわけではないので、第1のビームに関連付けられた情報は、1つの(又は、いくつかの)サブフレームトランスファーの中に記憶され得、それの直後に、第2のビームなどが続く。検出器エリア(必ずしも検出器全体ではない)が露光されると(及び、すべての情報が安全に記憶されると)、検出器エリアが読み出され得る。特定のサブエリアだけが露光され得、検出器全体が、情報を含有する検出器のすべて又はその一部だけのいずれかを読み出す。
【0036】
本方法のこの態様によれば、方法は、
ステップa)の後、及び、ステップe)の前に、複数の第2のピクセルをリセットするステップc)を有する。
【0037】
換言すれば、リセットは、検出器の1つのパートに適用され得、一方、サンプルアンドホールドフェーズが検出器の別のパートに適用された状態になっている。リセット及びサンプルアンドホールドの両方は、特定の量の時間を要し、このように、装置の動作は、スピードアップされる。
【0038】
このように、鼓動する心臓などのような物体の多数のビューが、さまざまなサブエリアの中に検出器エリアが区分されていることを通して、モーションアーチファクトが最小化された状態で、及び、クロス散乱が低減又は回避された状態で提供され得、それによって、それぞれのサブエリアは、それ自身のサブフレームトランスファーを有することが可能であり、それ自身のリセットを有することが可能であり、また、それ自身のサブフレーム読み出しを有することが可能である。
【0039】
一例では、複数の第2のピクセルをリセットすることは、複数の第1のピクセルもリセットする。
【0040】
換言すれば、グローバルリセットが検出器を横切って適用され得、それによって、区分されたリセットを有することを必要としない簡単化されたデバイスにつながる。
【0041】
一例では、方法は、
ステップb)の後に、少なくとも1つの第1の複数のストレージノードに関連付けられた少なくとも1つの第1の読み出しによって、複数の第1の信号を読み出すステップd)を有し、
ステップd)が終了する前に、ステップe)が開始する。
【0042】
換言すれば、区分されたフレームトランスファーを使用することによって、検出器の第1のパートからの信号が、サンプルアンドホールドの中に獲得及び転送され、又は、コピー(記憶)され得、次いで、即座に、第1のパートに関連付けられたサンプルアンドホールドが読み出されている間に、検出器の第2のパートが照射され得る。このように、4D撮像などのような撮像のために使用可能な検出器を獲得及び読み出すためにかかる時間が低減される。
【0043】
別の言い方をすれば、一例では、フレームトランスファーを備えた検出器は、上側パネルハーフA及び下側パネルハーフBに区分されている(デュアルブロックフレームトランスファー)。Aの一部が露光され得、Aの露光が終了し、データがサンプルアンドホールドの中に安全に記憶されると、即座に、サンプルアンドホールドからのAの読み出しが開始することが可能であり、同時に、Bのリセットが、Aの照射の間に引き起こされるクロス散乱を排除するために使用され、それに続いて、Bが露光され得る。Aの読み出しが終了し、露光Bが終了し、サンプルアンドホールドの中に安全に記憶されると、Aのリセットが使用され得、それに続いて、Aが再び露光され得る。例では、検出器パネルは、より多くのサブエリアに区分され得、サブエリアは、それに対応して、適用され得るスイッチングスキームに関してより多くの可能性を与える。
【0044】
例では、方法は、
ステップe)の後に、複数の第1のピクセルをリセットするステップf)と、
ステップf)の後に、X線検出器の第1のエリアの第1のピクセルの一部分によって、少なくとも1つのX線供給源によって放出される第3の放射線を受け取るステップとi)を有する。
【0045】
換言すれば、リセットは、検出器の1つのパートに適用され得、一方、サンプルアンドホールドフェーズが検出器の別のパートに適用された状態になっている。リセット及びサンプルアンドホールドの両方は、特定の量の時間を要し、このように、装置の動作は、スピードアップされる。
【0046】
一例では、方法は、
ステップg)の後に、少なくとも1つの第2の複数のストレージノードに関連付けられた少なくとも1つの第2の読み出しによって、複数の第2の信号を読み出すステップh)を有し、
ステップh)が終了する前に、ステップi)を開始する。
【0047】
一例では、方法は、以下を含む。
ステップa)は、
X線検出器の第1のエリアの第1のピクセルの第1のサブ部分によって、X線供給源によって放出される放射線を受け取るステップa1)と、
X線検出器の第1のエリアの第1のピクセルの第2のサブ部分によって、ステップa1)のX線供給源とは異なるX線供給源によって放出される放射線を受け取るステップa2)とを有し、
少なくとも1つの第1の複数のストレージノードは、少なくとも2つの複数のストレージノードを含み、
ステップb)は、
第1のエリアに関連付けられた複数のストレージノードの中に、第1のピクセルの第1のサブ部分上の対応する信号を表す複数の第1の信号を記憶するステップb1)と、
第1のエリアに関連付けられた複数のストレージノードの中に、第1のピクセルの第2のサブ部分上の対応する信号を表す複数の第1の信号を記憶するステップb2)であって、ステップb2)中の複数のストレージノードは、ステップb1)中の複数のストレージノードとは異なっている、ステップb2)と
を有し、
ステップc)は、
ステップa1)の後に、複数の第1のピクセルをリセットし、ステップa2)の後に、複数の第2のピクセルをリセットするステップc1)を有し、
ステップe)は、
X線検出器の第2のエリアの第2のピクセルの第1のサブ部分によって、X線供給源によって放出される放射線を受け取るステップe1)と、
X線検出器の第2のエリアの第2のピクセルの第2のサブ部分によって、ステップe1)中のX線供給源とは異なるX線供給源によって放出される放射線を受け取るステップe2)とを有し、
少なくとも1つの第2の複数のストレージノードは、少なくとも2つの複数のストレージノードを含み、
ステップg)は、
第2のエリアに関連付けられた複数のストレージノードの中に、第2のピクセルの第1のサブ部分上の対応する信号を表す複数の第2の信号を記憶するステップg1)と、
第2のエリアに関連付けられた複数のストレージノードの中に、第2のピクセルの第2のサブ部分上の対応する信号を表す複数の第2の信号を記憶するステップg2)であって、ステップg2)中の複数のストレージノードは、ステップg1)中の複数のストレージノードとは異なっている、ステップg2)と
を有する。
【0048】
別の態様によれば、以前に説明されている装置を制御するコンピュータープログラムエレメントであって、コンピュータープログラムエレメントは、コンピュータープログラムエレメントが処理ユニットによって実行される際に、以前に説明されているような方法のステップを実施するように適合されている、コンピュータープログラムエレメントが提供される。
【0049】
別の態様によれば、以前に説明されているようなコンピューターエレメントを記憶するコンピューター可読媒体が提供される。
【0050】
有利には、上記の態様のうちのいずれかによって提供される利益は、他の態様のすべてに等しく適用され、その逆もまた同様である。
【0051】
上記の態様及び例は、以降に説明されている実施形態から明らかになることとなり、また、以降に説明されている実施形態を参照して解明されることとなる。
【0052】
例示的な実施形態は、以下の図面を参照して、以下に説明されることとなる。