特許第6951640号(P6951640)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

特許6951640真空排気装置、真空ポンプおよび真空バルブ
<>
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000002
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000003
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000004
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000005
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000006
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000007
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000008
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000009
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000010
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000011
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000012
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000013
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000014
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000015
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000016
  • 特許6951640-真空排気装置、真空ポンプおよび真空バルブ 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6951640
(24)【登録日】2021年9月29日
(45)【発行日】2021年10月20日
(54)【発明の名称】真空排気装置、真空ポンプおよび真空バルブ
(51)【国際特許分類】
   F04D 19/04 20060101AFI20211011BHJP
   F16K 51/02 20060101ALI20211011BHJP
   F16K 27/04 20060101ALI20211011BHJP
   F16K 27/00 20060101ALI20211011BHJP
【FI】
   F04D19/04 G
   F16K51/02 B
   F16K27/04
   F16K27/00 B
【請求項の数】12
【全頁数】18
(21)【出願番号】特願2018-26333(P2018-26333)
(22)【出願日】2018年2月16日
(65)【公開番号】特開2018-200042(P2018-200042A)
(43)【公開日】2018年12月20日
【審査請求日】2020年7月16日
(31)【優先権主張番号】特願2017-105884(P2017-105884)
(32)【優先日】2017年5月29日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】100121382
【弁理士】
【氏名又は名称】山下 託嗣
(74)【復代理人】
【識別番号】100149009
【弁理士】
【氏名又は名称】古賀 稔久
(72)【発明者】
【氏名】武田 直也
【審査官】 井古田 裕昭
(56)【参考文献】
【文献】 特開昭60−175872(JP,A)
【文献】 特開2007−170666(JP,A)
【文献】 特開2016−031117(JP,A)
【文献】 米国特許出願公開第2011/0006235(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F04D 19/04
F16K 51/02
F16K 27/04
F16K 27/00
(57)【特許請求の範囲】
【請求項1】
バルブボディに設けられたバルブ吸気口フランジと、
前記バルブボディに設けられ、前記バルブ吸気口フランジよりも開口径の大きなバルブ排気口フランジと、
前記バルブボディ内に設けられ、前記バルブ吸気口フランジの開口径に応じたバルブプレートと、
前記バルブプレートを、前記バルブ吸気口フランジの中心軸上に配置される閉位置と前記中心軸上から退避した開位置との間でスライド駆動するバルブ駆動部と、
前記バルブ排気口フランジの開口を含み流路断面積が変化するガス流路領域とを有し、
前記ガス流路領域は、前記バルブプレートの排気下流側において、前記バルブ排気口フランジに形成されており、
前記ガス流路領域上流側領域端の流路断面積が前記バルブ吸気口フランジの開口断面積に設定され、
前記ガス流路領域は、前記バルブ排気口フランジの開口に近づくほど流路断面積が増加し、前記ガス流路領域の壁面がテーパ面となっている、真空バルブ。
【請求項2】
請求項1に記載の真空バルブにおいて、
前記バルブ吸気口フランジの開口と前記バルブ排気口フランジの開口とが同軸に形成されている、真空バルブ。
【請求項3】
請求項2に記載の真空バルブにおいて、
前記バルブボディは、前記バルブ吸気口フランジおよび前記バルブ排気口フランジが設けられた第1ボディ部と、前記開位置における前記バルブプレートの退避領域が設けられた第2ボディ部とを有し、
前記第1ボディ部において前記第2ボディ部と反対側に位置する側壁は、前記バルブ吸気口フランジの中心軸から前記側壁までの距離が、前記バルブ吸気口フランジのフランジ外径の1/2以上かつ前記バルブ排気口フランジのフランジ外径の1/2以下の範囲内の所定値に設定されている、真空バルブ。
【請求項4】
請求項1から請求項3までのいずれか一項に記載の真空バルブと、
ポンプ吸気口フランジが前記バルブ排気口フランジにボルト固定される真空ポンプと、を備える真空排気装置。
【請求項5】
真空バルブと、ポンプ吸気口フランジがバルブ排気口フランジにボルト固定される真空ポンプとを備える真空排気装置であって、
前記真空バルブが、
バルブボディに設けられたバルブ吸気口フランジと、
前記バルブボディに設けられ、前記バルブ吸気口フランジよりも開口径の大きなバルブ排気口フランジと、
前記バルブボディ内に設けられ、前記バルブ吸気口フランジの開口径に応じたバルブプレートと、
前記バルブプレートを、前記バルブ吸気口フランジの中心軸上に配置される閉位置と前記中心軸上から退避した開位置との間でスライド駆動するバルブ駆動部と、
前記バルブ排気口フランジの開口を含み流路断面積が変化するガス流路領域とを有し、
前記ガス流路領域は、上流側領域端の流路断面積が前記バルブ吸気口フランジの開口断面積に設定され、前記バルブ排気口フランジの開口に近づくほど流路断面積が増加しており、
前記ポンプ吸気口フランジを前記バルブ排気口フランジにボルト固定する複数のボルトは、前記ポンプ吸気口フランジの全周の内の所定角度領域に偏在して配置され、
前記ポンプ吸気口フランジおよび前記バルブ排気口フランジは、フランジ中心軸からフランジ外径側端部までの距離が、前記所定角度領域以外の角度領域では前記所定角度領域よりも小さく設定されている、真空排気装置。
【請求項6】
請求項5に記載の真空排気装置において、
前記バルブ駆動部は、前記ポンプ吸気口フランジおよび前記バルブ排気口フランジにおける前記所定角度領域のフランジ側壁に近接するように前記バルブボディに固定されている、真空排気装置。
【請求項7】
請求項5または6に記載の真空排気装置において、
前記バルブ排気口フランジに係合する第1係合部と前記ポンプ吸気口フランジに係合する第2係合部とを有し、前記ポンプ吸気口フランジの周方向の移動を抑制する係合部材を備える、真空排気装置。
【請求項8】
請求項5または6に記載の真空排気装置において、
前記ポンプ吸気口フランジは、前記バルブ排気口フランジと係合して前記ポンプ吸気口フランジの周方向の移動を抑制する係合部を備える、真空排気装置。
【請求項9】
請求項5から請求項8までのいずれか一項に記載の真空排気装置において、
前記バルブ排気口フランジと嵌合して前記ポンプ吸気口フランジの径方向の変形を抑制する嵌合部を前記ポンプ吸気口フランジに備えている、真空排気装置。
【請求項10】
請求項9に記載の真空排気装置において、
前記嵌合部は、前記ポンプ吸気口フランジの全周の内の前記所定角度領域を除く領域に設けられている、真空排気装置。
【請求項11】
請求項5から請求項10までのいずれか一項に記載の真空排気装置に用いられる真空ポンプ。
【請求項12】
請求項5から請求項10までのいずれか一項に記載の真空排気装置に用いられる真空バルブ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空排気装置、真空ポンプおよび真空バルブに関する。
【背景技術】
【0002】
真空機器の真空チャンバにターボ分子ポンプなどの真空ポンプを装着する場合には、一般的に真空ポンプの直上に真空バルブを接続して使用することが多い(例えば、特許文献1参照)。真空バルブの接続フランジには、真空チャンバに接続される吸気側も真空ポンプに接続される排気側も、同一口径のフランジが用いられるのが一般的である。
【0003】
ところで、真空ポンプの吸気口フランジに真空バルブを接続した構成の真空排気装置では、実効排気速度は、真空ポンプの排気速度と真空バルブのコンダクタンスとで決定される。この場合の実効排気速度は、バルブ開度が小さい領域では真空バルブのコンダクタンスの寄与が支配的になり、バルブ開度が大きい領域では真空ポンプの排気速度の寄与が支配的になる。そのため、バルブ開度の大きな領域における実効排気速度をより大きくするためには、同一口径であっても排気速度のより大きな真空ポンプを搭載するのが好ましい。
【0004】
特許文献1に記載の基板処理装置では、APCバルブの排気側に接続される真空ポンプには、外筒の径を吸気口フランジ付近で絞った構成のターボ分子ポンプが用いられている。一般に、外筒の径を吸気口フランジ付近で絞った構成のターボ分子ポンプは、回転翼外径が外筒の径を絞らないターボ分子ポンプの場合よりも大きく設定されており、その分だけ排気速度が大きい。すなわち、外筒の径を吸気口フランジ付近で絞ったターボ分子ポンプを使用することで、真空排気装置の実効排気速度の向上を図ることができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−98514号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、外筒の径を絞った構成のターボ分子ポンプは、同一口径で外筒の径を絞らないターボ分子ポンプと比べてポンプ軸方向寸法が大きい。そのため、真空排気装置が大型化するという問題があった。
【課題を解決するための手段】
【0007】
本発明の好ましい態様による真空バルブは、バルブボディに設けられたバルブ吸気口フランジと、前記バルブボディに設けられ、前記バルブ吸気口フランジよりも開口径の大きなバルブ排気口フランジと、前記バルブボディ内に設けられ、前記バルブ吸気口フランジの開口径に応じたバルブプレートと、前記バルブプレートを、前記バルブ吸気口フランジの中心軸上に配置される閉位置と前記中心軸上から退避した開位置との間でスライド駆動するバルブ駆動部と、前記バルブ排気口フランジの開口を含み流路断面積が変化するガス流路領域とを有し、前記ガス流路領域は、上流側領域端の流路断面積が前記バルブ吸気口フランジの開口断面積に設定され、前記バルブ排気口フランジの開口に近づくほど流路断面積が増加している。
さらに好ましい態様では、前記バルブ吸気口フランジの開口と前記バルブ排気口フランジの開口とが同軸に形成されている。
さらに好ましい態様では、前記バルブボディは、前記バルブ吸気口フランジおよび前記バルブ排気口フランジが設けられた第1ボディ部と、前記開位置における前記バルブプレートの退避領域が設けられた第2ボディ部とを有し、前記第1ボディ部において前記第2ボディ部と反対側に位置する側壁は、前記バルブ吸気口フランジの中心軸から前記側壁までの距離が、前記バルブ吸気口フランジのフランジ外径の1/2以上かつ前記バルブ排気口フランジのフランジ外径の1/2以下の範囲内の所定値に設定されている。
本発明の好ましい態様による真空排気装置は、上記態様の真空バルブと、ポンプ吸気口フランジが前記バルブ排気口フランジにボルト固定される真空ポンプと、を備える。
さらに好ましい態様では、前記ポンプ吸気口フランジを前記バルブ排気口フランジにボルト固定する複数のボルトは、前記ポンプ吸気口フランジの全周の内の所定角度領域に偏在して配置され、前記ポンプ吸気口フランジおよび前記バルブ排気口フランジは、フランジ中心軸からフランジ外径側端部までの距離が、前記所定角度領域以外の角度領域では前記所定角度領域よりも小さく設定されている。
さらに好ましい態様では、前記バルブ駆動部は、前記ポンプ吸気口フランジおよび前記バルブ排気口フランジにおける前記所定角度領域のフランジ側壁に近接するように前記バルブボディに固定されている。
さらに好ましい態様では、前記バルブ排気口フランジに係合する第1係合部と前記ポンプ吸気口フランジに係合する第2係合部とを有し、前記ポンプ吸気口フランジの周方向の移動を抑制する係合部材を備える。
さらに好ましい態様では、前記ポンプ吸気口フランジは、前記バルブ排気口フランジと係合して前記ポンプ吸気口フランジの周方向の移動を抑制する係合部を備える。
さらに好ましい態様では、前記バルブ排気口フランジと嵌合して前記ポンプ吸気口フランジの径方向の変形を抑制する嵌合部を前記ポンプ吸気口フランジに備えている。
さらに好ましい態様では、前記嵌合部は、前記ポンプ吸気口フランジの全周の内の前記所定角度領域を除く領域に設けられている。
本発明の好ましい態様による真空ポンプは、上記態様に記載の真空排気装置に用いられる真空ポンプである。
本発明の好ましい態様による真空バルブは、上記態様に記載の真空排気装置に用いられる真空バルブである。
【発明の効果】
【0008】
本発明によれば、真空排気装置の大型化を抑制しつつ実効排気速度の向上を図ることができる。
【図面の簡単な説明】
【0009】
図1図1は、真空排気装置の概略構成を示す図である。
図2図2は、真空バルブの吸気側を示す平面図である。
図3図3は、真空バルブの排気側を示す平面図である。
図4図4は、真空ポンプの吸気口フランジを示す図である。
図5図5は、係合部材の一例を示す図である。
図6図6は、第2の実施形態における真空ポンプの吸気口フランジを示す図である。
図7図7は、第2の実施形態における真空バルブの排気側を示す平面図である。
図8図8は、係合部材の装着状態を示す図である。
図9図9は、第2の実施形態の変形例を示す図である。
図10図10は、第3の実施形態における真空ポンプの吸気口フランジを示す図である。
図11図11は、第3実施の形態における真空ポンプと真空バルブの接続形態を説明する図である。
図12図12は、吸気側および排気側の開口径が同一の場合の真空バルブの一例を示す図である。
図13図13は、真空排気装置の比較例を示す図である。
図14図14は、第4の実施の形態における真空バルブの構成を示す図である。
図15図15は、図14(a)のH2矢視図である。
図16図16は、第5の実施の形態を示す図である。
【発明を実施するための形態】
【0010】
以下、図を参照して本発明を実施するための形態について説明する。
−第1の実施の形態−
図1は、真空排気装置100の概略構成を示す図である。真空排気装置100は、真空ポンプ1と真空バルブ2とから成る。真空ポンプ1の吸気口フランジ130は、真空バルブ2の排気口フランジ202にボルト固定されている。
【0011】
図1に示す真空ポンプ1は磁気軸受式のターボ分子ポンプであり、ロータ10が取り付けられたシャフト11は、ポンプベース14に設けられた磁気軸受51A,51B,52によって非接触支持されている。シャフト11の浮上位置は、ポンプベース14に設けられたラジアル変位センサ71A,71Bおよびアキシャル変位センサ72によって検出される。なお、磁気軸受が作動していない状態では、シャフト11はメカニカルベアリング37,38によって支持される。
【0012】
シャフト11の下端には円形のロータディスク41が設けられており、このロータディスク41を上下に挟むように隙間を介して磁気軸受52の電磁石が設けられている。磁気軸受52によりロータディスク41を吸引することで、シャフト11がアキシャル方向に浮上する。ロータディスク41はナット部材42によりシャフト11の下端部に固定されている。
【0013】
ロータ10には、回転軸方向に複数段の回転翼18が形成されている。上下に並んだ回転翼18の間には固定翼19がそれぞれ配設されている。これらの回転翼18と固定翼19とにより、真空ポンプ1のタービン翼段が構成される。各固定翼19は、スペーサ12によって上下に挟持されるように保持されている。スペーサ12は、固定翼19を保持する機能とともに、固定翼19間のギャップを所定間隔に維持する機能を有している。
【0014】
固定翼19の後段(図示下方)にはドラッグポンプ段を構成するネジステータ15が設けられており、ネジステータ15の内周面とロータ10の円筒部16との間にはギャップが形成されている。ロータ10と、スペーサ12によって保持された固定翼19とは、吸気口フランジ130が形成された外筒13内に納められている。ロータ10が取り付けられたシャフト11を磁気軸受51A,51B,52により非接触支持しつつモータ17により回転駆動すると、吸気口フランジ130側のガスは背圧側に排気され、背圧側に排気されたガスは排気口36に接続された補助ポンプ(不図示)により排出される。
【0015】
真空バルブ2は、バルブボディ20と、バルブボディ20内に設けられたバルブプレート21と、バルブプレート21を駆動するモータ(不図示)と、モータを収納するモータケーシング22とを備えている。バルブプレート21はモータにより矢印R方向にスライド駆動され、それによりバルブ開度を変えることができる。バルブボディ20は、吸気口フランジ201と排気口フランジ202が設けられた第1バルブボディ20Aと、スライド駆動されるバルブプレート21の退避領域が設けられた第2バルブボディ20Bとから成る。図1の符号FRで示す領域は、排気口フランジ202の開口を含み流路断面積が変化するガス流路領域である。このガス流路領域FRの壁面は、テーパ面203となっている。
【0016】
図2,3は真空バルブ2の外観図である。図2は、吸気口フランジ201が設けられた吸気側を示す平面図である。図3は、排気口フランジ202が設けられた排気側を示す平面図である。なお、図1に示すように、本実施の形態では、排気口フランジ202の開口径(内径)は吸気口フランジ201よりも大きな開口径(内径)に設定され、さらに、吸気口フランジ201の開口と排気口フランジ202の開口とは同軸に形成されている。
【0017】
例えば、吸気口フランジ201をJIS規格(B2290)で呼び径250とした場合、排気口フランジ202をより大きな呼び径のフランジ(例えば呼び径300)に設定される。なお、呼び径250のフランジは、溝形の場合にはVG250、平面座形の場合にはVF250とも称される。以下の説明では呼び径250のフランジを、記号VGを用いてVG250フランジまたはVG250相当フランジと呼ぶことにする。また、JIS規格(B2290)の他にISO規格(1609)の真空フランジも使用されるが、その場合も、本実施の形態の場合には排気口フランジ202の呼び径は吸気口フランジ201の呼び径よりも大きなものが用いられる。
【0018】
図2において、ID1およびOD1は吸気口フランジ201の内径(開口径)および外径であり、PCD1は、ボルトピッチ径(Pitch Circle Diameter)である。吸気口フランジ201がVG250である場合、吸気口フランジ201を真空チャンバ側のフランジに固定する際には、M12のボルトを12本使用する。
【0019】
一方、図3に示す排気側の排気口フランジ202は、VG300に相当するフランジとなっている。排気口フランジ202の内径(開口径)ID2およびボルトピッチ径PCD2は、VG300フランジの内径(開口径)およびボルトピッチ径と同一に設定されている。なお、VG300においては、フランジ固定用のボルトはM12で12本用いられるが、排気口フランジ202においては、ネジ穴204はM16であって、ネジ穴204の個数すなわちボルト本数は8である。テーパ面203は、内径(開口径)ID2のフランジ開口からガス流路の上流側に向けて形成されており、その上流側端部(図1のガス流路領域FRの上流側領域端部)の径寸法は吸気口フランジ201の内径(開口径)ID1と同一に設定されている。なお、二点鎖線L31と二点鎖線L32とで囲まれたリング状領域が、Oリングシールが接触するシール面である。
【0020】
図3の二点鎖線L1で示す円はVG300フランジの外形形状を示しており、その外形寸法はOD2である。第1の実施の形態における真空バルブ2は、VG250相当の真空バルブの排気口フランジをVG300相当の排気口フランジ202に置き換えたものに相当し、バルブプレート21等にはVG250相当の真空バルブと同等のものが用いられる。第1の実施の形態では、図2および図3に示すように、第1バルブボディ20Aの図示左側の領域をVG250相当の吸気口フランジ201が形成可能な最小限度の大きさに抑えるとともに、VG300相当の排気口フランジ202の外形形状を第1バルブボディ20Aの側壁Wの形状に合わせることで、真空バルブ2が大型化するのを防止している。
【0021】
すなわち、第1バルブボディ20Aの図示左側の領域が吸気口フランジ201を形成可能な最小限度の大きさに抑えられるように、第1バルブボディ20Aにおいて第2バルブボディ20Bと反対側に位置する側壁Wは、フランジ中心軸Oからの距離r1が吸気口フランジ201の外径OD1の1/2(すなわち、r1=OD1/2)となるように設定される。また、図3に示すようにラインL21からラインL22までの角度範囲Bにおいては、排気口フランジ202の外形形状は第1バルブボディ20Aの側壁Wとほぼ同一形状となるように構成されている。
【0022】
その結果、第1バルブボディ20Aの外形寸法をVG250の場合と同程度に抑えつつ、排気口フランジ202の開口径を吸気口フランジ201の開口径よりも大きなVG300と同一開口径とすることができる。すなわち、バルブボディ20の大きさを吸気口および排気口がVG250の真空バルブと同程度に抑えつつ、排気口をVG300と同一開口径とすることで、バルブコンダクタンスおよび真空排気装置の実効排気速度の向上を図ることが可能となった。さらに、テーパ面203によってVG250相当の開口径の部分とVG300相当の開口径の部分とを繋ぐことで、実効排気速度のさらなる改善が図れる。
【0023】
図4は、真空ポンプ1の吸気口フランジ130を示す図である。図4(a)は、吸気口フランジ130の平面図、図4(b)はD−D断面図である。吸気口フランジ130は、図3に示す真空バルブ2の排気口フランジ202にボルト固定される。二点鎖線はVG300フランジの外形形状を示すラインであり、外径寸法はOD2である。吸気口フランジ130の外形形状はVG300フランジの標準的な形状と異なっており、図3に示した角度範囲Bと同一の角度範囲Bにおいては、フランジ中心軸Oから吸気口フランジ130の外径側端部までの距離r1は、VG300フランジの外径OD2の1/2よりも小さく設定されている。なお、符号Cで示す領域においても、真空バルブ2のモータケーシング22との干渉を避けるためにフランジ外径側が切り欠かれている。
【0024】
フランジ固定用のボルト穴131は、ボルトピッチ径PCD2上であってフランジ外径(すなわち、フランジ幅)に余裕がある領域に偏在して設けられている。図4では、角度範囲Bの1箇所、角度範囲B以外の範囲では切り欠き領域Cを除く領域の7箇所にボルト穴131を形成した。吸気口フランジ130には、Oリングシール装着用のシール溝132が形成されている。
【0025】
上述した第1の実施の形態によれば、次の作用効果が得られる。
図1〜3に示すように、真空バルブ2においては、排気口フランジ202の開口径は吸気口フランジ201の開口径よりも大きく設定され、排気口フランジ202の開口を含み流路断面積が変化するガス流路領域FRを有し、ガス流路領域FRの壁面はテーパ面203に形成されている。ガス流路領域FRは、上流側領域端の流路断面積が吸気口フランジ201の開口断面積(径寸法はID1)に設定され、排気口フランジ202の開口に近づくほど流路断面積が増加している。
【0026】
このように排気口フランジ202の開口径を吸気口フランジ201の開口径よりも大きく設定することで、開口径がより大きくて排気速度の大きな真空ポンプを真空バルブ2に装着することができる。その結果、真空バルブ2の吸気口における実効排気速度を容易に向上させることができる。さらに、排気口フランジ202から上流にかけて流路壁面をテーパ形状とすることで、吸気口から排気口までのコンダクタンスをより大きく設定することが可能となり、開口径の大きな真空ポンプの排気速度を有効に活用することができる。
【0027】
例えば、図12に示すように吸気口フランジ201および排気口フランジ202が共にVG250相当の真空バルブ2Aでは、排気口フランジ202には一般的にVG250相当の真空ポンプが装着される。ところで、ターボ分子ポンプには、ポンプ吸気口フランジが同一開口径であっても、図1に示すような外筒がストレート形状のものと、図13に示すような外筒の首を絞った形状のものとがある。外筒の首を絞った形状のターボ分子ポンプのロータ径は外筒がストレート形状のものよりも大きく、例えば、VG250相当のポンプにVG300相当のポンプのロータを使用する場合がある。そのため、外筒の首を絞った形状の真空ポンプ(ターボ分子ポンプ)1Aの方がポンプ排気速度が大きく、外筒の首を絞らない同一開口径の真空ポンプ(ターボ分子ポンプ)1を使用した場合に比べて真空排気装置110の排気速度を大きくすることが可能である。
【0028】
真空ポンプ1Aと図1の真空ポンプ1とを比較した場合、吸気口フランジ130Aを有する外筒13Aのみが異なっている。外筒13Aの吸気口フランジ130AはVG250であって、符号Gで示す首を絞った部分が設けられている。その結果、真空ポンプ1Aは、高さ寸法がh2だけ真空ポンプ1よりも大きくなっている。
【0029】
一方、図2,3に示す真空バルブ2のように排気口フランジ202の開口径を吸気口フランジ130の開口径よりも大きくすることで、外筒の首を絞らない形態の開口径の大きな真空ポンプを用いることができる。真空ポンプ1は、首を絞った形態の真空ポンプ1Aよりも排気速度が大きく、かつ、高さ寸法もh2だけ小さい。その結果、真空排気装置100の大型化を抑制しつつ実効排気速度の向上を図ることができる。
【0030】
さらに、吸気口フランジ201の開口と排気口フランジ202の開口とを同軸に形成することで、非同軸の場合に比べてコンダクタンスをより大きくすることができる。
【0031】
また、真空バルブと真空ポンプとから成る真空排気装置を構成する場合、吸気口フランジと排気口フランジとが同一開口径である従来の真空バルブを用いる場合と比較して、より開口径の大きな真空ポンプを使用することができ、真空排気装置の実効排気速度の向上を容易に図ることができる。
【0032】
さらに、図1,3,4に示すように、真空ポンプ1の吸気口フランジ130を真空バルブ2の排気口フランジ202にボルト固定する複数のボルト133は、図4に示すボルト穴131からも分かるように、吸気口フランジ130の全周の内の所定角度領域に偏在して配置される。
【0033】
例えば、図4に示す例では、ほとんどのボルト穴131が、角度範囲Bを除く他の角度範囲に偏在配置されている。そのため、ボルト穴131が設けられていない角度範囲におけるフランジ中心軸Oからフランジ外径側端部までの距離r1を、本来のVG300の場合のフランジ外径OD2の1/2よりも小さくすることができる。この場合、真空バルブ2の排気口フランジ202(VG300相当)の側壁W側のフランジ中心軸Oからの距離r1を、より開口径が小さいVG250フランジの外径OD1の1/2とほぼ同じにすることができる。そのため、吸気口フランジ130の開口と排気口フランジ202の開口とを同軸に設定しても、バルブボディ20の大型化を回避することができる。すなわち、真空排気装置の大型化を抑制しつつ実効排気速度の向上を図ることができる。
【0034】
−第2の実施の形態−
図5〜8は第2実施の形態を説明する図である。図1に示した真空ポンプでは、高速回転しているロータ10が急停止した場合に、吸気口フランジ130が回転しようとするトルクが発生する。その結果、吸気口フランジ130を固定しているボルト133(図1参照)に、大きなせん断応力が生じることになる。そこで、第2の実施の形態では、図5に示すような係合部材30を吸気口フランジ130と排気口フランジ202との両方に係合させ、急停止時に発生する荷重をボルト133だけでなく係合部材30にも担わせるようにした。
【0035】
図5は係合部材30の一例を示す図である。図5(a)は係合部材30を排気口フランジ202の方向から見た図であり、図5(b)は係合部材30を側方から見た展開図である。係合部材30は円弧状の帯状部材であり、幅の広い係合領域301が複数設けられている。係合領域301は、軸方向の一方に突出する第1係合部301aと、軸方向の他方に突出する第2係合部301bとを有している。後述するように、第1係合部301aは真空ポンプ1の吸気口フランジ130の部分に係合し、第2係合部301bは真空バルブ2の排気口フランジ202の部分に係合する。
【0036】
図6は、第2の実施形態における真空ポンプ1の吸気口フランジ130を示す図である。図6(a)は平面図、図6(b)はE−E断面図である。吸気口フランジ130のシール溝132が形成されている面には、図5に示した係合部材30が装着される溝134が形成されている。図6に示す例では、溝134は、ボルト穴131aとボルト穴131bとの間の領域に形成されている。溝134は、深さの深い第1溝部134aと、深さの浅い第2溝部134bを備えている。第1溝部134aには係合部材30の係合領域301が配設され、第2溝部134bには係合部材30の幅の狭い部分が配設される。
【0037】
図7は、真空バルブ2の排気口フランジ202を示す図である。排気口フランジ202には、図6に示した吸気口フランジ130の各第1溝部134aに対向する位置のそれぞれに、凹部205が形成されている。二点鎖線L31と二点鎖線L32とで囲まれたリング状領域が、Oリングシールが接触するシール面である。
【0038】
図8は、互いにボルト固定された吸気口フランジ130および排気口フランジ202と、それらの間に装着された係合部材30とを示す断面図である。吸気口フランジ130と排気口フランジ202とを接続すると、吸気口フランジ130に形成された第1溝部134aと排気口フランジ202に形成された凹部205とが対向し、係合部材30の係合領域301が収納される空間が形成される。係合部材30を装着した状態では、係合領域301の第1係合部301aが吸気口フランジ130の第1溝部134aに係合し、係合領域301の第2係合部301bが排気口フランジ202の凹部205に係合する。また、係合部材30の幅が狭い部分(すなわち、係合領域301以外の部分)は、吸気口フランジ130の第2溝部134bと排気口フランジ202のフランジ面との間の空間に配置される。
【0039】
(変形例)
図9は、第2の実施の形態の変形例を示す図である。上述した第2の実施の形態では係合部材30を別部材で設け、この係合部材30を介して吸気口フランジ130と排気口フランジ202とを係合させるようにした。変形例では、係合部材30を吸気口フランジ130または排気口フランジ202の一方に一体化させた。
【0040】
図9(a)に示す構成は、係合部材30を吸気口フランジ130に一体化させた場合に相当する。すなわち、排気口フランジ202の凹部205に係合する凸部135を、吸気口フランジ130のフランジ面から突出させるように形成した。一方、図9(b)に示す構成は係合部材30を排気口フランジ202に一体化させた場合である。この場合には、吸気口フランジ130のフランジ面に凹部136を形成し、排気口フランジ202のフランジ面に凹部136に係合する凸部206を形成する。凸部206は、排気口フランジ202のフランジ面から突出するように形成される。
【0041】
上述した第2の実施の形態によれば、第1の実施の形態における作用効果に加えて以下のような作用効果が得られる。
図8に示すように、係合部材30は、真空ポンプ1の吸気口フランジ130に係合する第1係合部301aと真空バルブ2の排気口フランジ202に係合する第2係合部301bとを有し、吸気口フランジ130の周方向の移動を抑制する。その結果、ロータ急停止時に生じるトルクを、ボルト133だけでなく排気口フランジ202の係合部材30と係合している部分でも受けることになり、ボルト133へのせん断応力を低減することができる。
【0042】
また、図9に示すように、真空ポンプ1の吸気口フランジ130に、真空バルブ2の排気口フランジ202に係合する係合部としての凸部135(図9(a))や凹部136を設けて吸気口フランジ130の周方向の移動を抑制することでも、ボルト133へのせん断応力を低減することができる。
【0043】
−第3の実施の形態−
上述した第2の実施の形態では、真空ポンプ1のロータ10が急停止した際の周方向の荷重の一部を係合部で受けることによって、フランジ固定用ボルトへのせん断応力を低減するようにした。ところで、高速回転するロータ10が破壊したような場合、ロータ破片が真空ポンプの外筒13や吸気口フランジ130に衝突し、ロータ破片の運動エネルギーによって外筒13や吸気口フランジ130が径方向に大きく変形するおそれがある。第3の実施の形態では、そのような場合の外筒13や吸気口フランジ130の変形を抑えるための構成を設けた。
【0044】
図10,11は第3実施の形態を説明する図である。図10は真空ポンプ1の吸気口フランジ130を示す図であり、(a)は平面図、(b)はF−F断面図である。図10に示す吸気口フランジ130は、図4に示す吸気口フランジ130と比較した場合、吸気口フランジ130のフランジ面から突出する凸部137を設けた点が異なっている。凸部137はフランジ面から寸法hだけ突出している。
【0045】
図11は、第3実施の形態における吸気口フランジ130と排気口フランジ202の接続部の構成を説明する図であり、吸気口フランジ130は図10に示したものと同じものである。排気口フランジ202のフランジ面には、円形状の凹部207が形成されている。二点鎖線で示すように吸気口フランジ130を排気口フランジ202に接続すると、凹部207に凸部137が嵌合する。
【0046】
上述した第3の実施の形態によれば、第1の実施の形態における作用効果に加えて以下のような作用効果が得られる。図11に示すように、真空バルブ2の排気口フランジ202の凹部207と嵌合し、真空ポンプ1の吸気口フランジ130の径方向の変形を抑制する凸部137を吸気口フランジ130に設けることで、ロータ破片衝突の衝撃で外筒13や吸気口フランジ130が径方向外側に変形するのを抑制することができる。
【0047】
真空ポンプ1においては、高速回転するロータ10が破壊した場合であっても、ロータ破片が外筒13の外部に飛び出さないようにすることが望ましい。ロータ破片は遠心力によって径方向に飛散し外筒13に衝突するので、衝突の衝撃で、外筒13や吸気口フランジ130が径方向外側に変形しようとする。特に、図4に示す吸気口フランジ130の場合には、ボルト固定される領域が全周の内の一部に偏っているので、ボルトが設けられない領域はボルトが設けられている領域に比べて径方向の衝撃によって外筒13および吸気口フランジ130が変形しやすい。
【0048】
しかしながら、本実施の形態では凸部137が排気口フランジ202の凹部207に嵌合しているので、凸部137の外周面が凹部207の側面に当接し、吸気口フランジ130の径方向外側への変形が排気口フランジ202によって抑制される。
【0049】
なお、図10,11に示す例では、嵌合部が吸気口フランジ130の全周に亘っているが、一部のみに嵌合部を設けるようにしてもよい。例えば、図4に示す角度範囲B(ボルトがほとんど配置されない角度範囲)の領域のみに、凹部207および凸部137を設けるようにしても良い。これによって、耐衝撃性の低い部分を嵌合部によって補強することができる。
【0050】
−第4の実施の形態−
上述したように、ポンプ急停止時に発生する衝撃力が真空ポンプ1を第2バルブボディ20Bに固定しているボルト133に加わると、ボルト133を介して第2バルブボディ20Bにも大きな衝撃力が加わる。その結果、吸気口フランジ130を固定しているボルト133(図1参照)に、大きなせん断応力が生じることになる。そこで、第2の実施の形態では、図5に示すような係合部材30を吸気口フランジ130と排気口フランジ202との両方に係合させ、急停止時に発生する荷重をボルト133だけでなく係合部材30にも担わせるようにした。
【0051】
ところで、上述した第1の実施の形態では、第1バルブボディ20Aにおいて第2バルブボディ20Bと反対側に位置する側壁W(図2,3参照)は、フランジ中心軸からの距離r1が吸気口フランジ201の外径OD1の1/2(すなわち、r1=OD1/2)となるように設定されている。一方、図3に示す排気口フランジ202側を見ると、側壁WはVG300フランジの外形形状を示す二点鎖線L1の内側に位置している。その結果、角度範囲Bにおける吸気口フランジ201の幅W1はVG300相当フランジの幅W2よりも小さく、角度範囲Bにおけるネジ穴204部分の強度は、角度範囲Bよりも図示右側の第1バルブボディ20Aにおけるネジ穴204部分の強度に比べて小さくなっている。
【0052】
また、通常のVG300におけるボルト本数は12本であるが、第1および第2の実施の形態においては8本と本数が少なくなっている。そのため、衝撃力を全てのボルトで均等に担うと仮定した場合、8本と本数が少ない方が1本当たりの衝撃力が大きくなる。すなわち、第1バルブボディ20Aのボルト133が螺合している雌ネジ部分に加わる衝撃力は、ボルト本数が8本の場合の方が大きいと推定できる。
【0053】
そこで、第4の実施の形態では、ポンプ急停止時の衝撃力に対する第1バルブボディ20Aの強度を重視した構成とした。図14,15は第4の実施の形態における真空バルブ2の構成を示す図である。図14(a)は真空バルブ2の側面図であり、図14(b)は図14(a)のH1矢視図であって真空バルブ2の吸気口フランジ201側を示す図である。なお、図14に示す真空バルブ2は、平面図で見てハッチングを施した領域Jだけ図12に示した真空バルブ2Aよりも大きくなっている。また、図15図14(a)のH2矢視図であって、真空バルブ2の排気口フランジ側を示す平面図である。フランジ201,202は同軸で設けられ、図15の二点鎖線で示すバルブプレート21は、矢印Rで示すようにフランジ201,202の軸上に配置される閉位置(開度0%)と、中心軸上から第2バルブボディ20B方向へと退避した開位置(開度100%)との間で揺動するようにスライド駆動される。
【0054】
図14,15に示す真空バルブ2においても、第1の実施形態の場合と同様に吸気口フランジ201はVG250相当(呼び径250)のフランジであって、排気口フランジ202はVG300相当(呼び径300)のフランジである。吸気口フランジ201側の開口径(内径)はID1であり、排気口フランジ202側の開口径(内径)はID2(>ID1)である。開口径ID1の吸気口側と開口径ID2の排気口側とは、テーパ面203によって繋がっている。その結果、第1の実施の形態の場合と同様に、バルブコンダクタンスおよび真空排気装置の実効排気速度の向上を図ることができる。
【0055】
さらに、図15に示すように、第1バルブボディ20Aにおいて第2バルブボディ20Bと反対側に位置する側壁W(破線Eを施した部分の側壁)は、フランジ中心軸Oからの距離r1がVG300相当の排気口フランジ202が形成可能な最小限度の大きさに抑えられている。すなわち、距離r1はOD2/2またはOD2/2よりも若干大きい程度に設定される。また、VG300相当のフランジの場合には固定用のボルトとしてM12のボルトが12本使用されるが、本実施の形態では第1の実施の形態の場合(M16を8本使用)と同程度のボルト強度が得られるようにM12のボルトを14本使用している。
【0056】
なお、排気口フランジ202については、排気口フランジ202がモータケーシング22と干渉しないように、排気口フランジ202の図示左側の一部を切り欠いている(図5参照)。そのため、ボルト固定用のネジ穴204は、切り欠かれて幅の狭くなったフランジ部分を避けるように配置するようにした。図示は省略するが、第1の実施の形態の場合と同様に、真空ポンプ側の吸気口フランジに関しても排気口フランジ202に合わせた形状に設定される。
【0057】
このように、第4の実施の形態では、第1の実施の形態(M16のボルトを8本使用)や従来のVG300相当の場合(M12のボルトを12本使用)に比べてボルト本数が多いので、ボルト一本が担うべき衝撃力を小さくできる。さらに、図15の破線Eで示す領域の側壁Wのフランジ中心軸Oからの距離r1が第1の実施の形態(図2,3参照)と比べて大きくなるので、第1の実施の形態と比べてネジ穴204が形成されている部分の強度向上を図ることができる。その結果、ポンプ急停止時におけるネジ穴204部分のバルブボディ破損を防止することができる。
【0058】
−第5の実施の形態−
図16は、本発明の第5の実施の形態を示す図である。図16に示す真空バルブ2は、VG300相当の排気口フランジ202がモータケーシング22と干渉しないように、第1バルブボディ20Aの図示左右方向の幅寸法を若干大きくしてモータケーシング22の位置を図示左方向に変更したものである。そのため、図15に示す真空バルブ2と比較した場合、図示上下方向の長手方向寸法は同一寸法であるが、バルブボディ20の図示左右方向の幅寸法は大きくなっている。すなわち、第4の実施の形態の場合と同様に、第1バルブボディ20Aの側壁Wのフランジ中心軸Oからの距離r1は、排気口フランジ202の外形OD2の1/2または1/2よりも若干大きい程度に設定されている。
【0059】
このように、第1バルブボディ20Aの幅寸法を大きくすることで、図15に示す真空バルブ2のように排気口フランジ202の一部を切り欠く必要がない。ネジ穴204は、排気口フランジ202の一周に亘って均等の角度間隔で配置されている。なお、図16に示す例では、ネジ穴204の数を14としているが、ポンプ急停止時の衝撃力に対してボルト強度に余裕が有る場合には、ネジ穴204の数をVG300相当フランジの標準である12としても良い。
【0060】
以上説明したように、排気口フランジ202の開口径ID2を吸気口フランジ201の開口径ID1よりも大きく設定し、ガス流路領域FRの流路断面積を吸気口フランジ201側から排気口フランジ202側へと増加させることで、真空バルブ2の吸気口における実効排気速度を容易に向上させることができる。
【0061】
その際に、真空バルブ2の大きさを、図12に示す一般的なVG250相当の真空バルブと同程度に抑える場合には、第1の実施の形態のように第1バルブボディ20Aの側壁W(すなわち、第2バルブボディ20Bと反対側に位置する側壁)のフランジ中心軸Oからの距離r1をr1=OD1/2のように設定すればよい。OD1は吸気口フランジ201の外径である。一方、第1バルブボディ20Aにおけるネジ穴204部分の強度をより重視する観点からは、排気口フランジ202に適用されるVG300相当フランジのフランジ幅寸法と同程度の幅寸法を第1バルブボディ20Aに確保するのが好ましい。このように設定することで、VG300相当フランジと同程度の強度が期待できる。その場合、第1バルブボディ20Aの側壁Wのフランジ中心軸Oからの距離r1は、第4の実施の形態のようにr1=OD2/2と設定される。
【0062】
もちろん、VG300相当フランジと同程度の強度まで必要とされない場合には、要求強度に応じた距離r1(<OD2/2)に設定しても構わない。すなわち、排気口フランジ202の開口径ID2が吸気口フランジ201の開口径ID1よりも大きく設定される真空バルブ2においては、大きさと強度との兼ね合いから、第1バルブボディ20Aの側壁Wのフランジ中心軸Oからの距離r1は概ねOD1/2≦r1≦OD2/2の範囲内の所定値に設定される。OD1は吸気口フランジ201の外径であり、OD2は排気口フランジ202の外径である。
【0063】
なお、r1<OD2/2は、図3に示すように排気口フランジ202の外径側の一部が切り欠かれている場合に対応する。この場合、OD2は、排気口フランジ202に適用されるフランジ規格であるVG300フランジの外径を表している。このように一部が切り欠かれている場合を考慮して、吸気口フランジ201に適用されるフランジ規格の外径および排気口フランジ202に適用されるフランジ規格の外径をそれぞれ「フランジ外径」と呼ぶことにすれば、条件「OD1/2≦r1≦OD2/2」は、「バルブ吸気口フランジ201のフランジ外径OD1の1/2以上かつバルブ排気口フランジ202のフランジ外径OD2の1/2以下」のように言い換えることができる。
【0064】
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。例えば、真空ポンプ1はターボ分子ポンプに限らず、他の形式の真空ポンプであっても良い。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
【符号の説明】
【0065】
1…真空ポンプ、2…真空バルブ、20…バルブボディ、20A…第1バルブボディ、20B…第2バルブボディ、21…バルブプレート、22…モータケーシング、30…係合部材、100…真空排気装置、130,201…吸気口フランジ、133…ボルト、134…溝、134a…第1溝部、134b…第2溝部、135,137,206…凸部、136,205,207…凹部、202…排気口フランジ、203…テーパ面、301…係合領域、301a…第1係合部、301b…第2係合部、FR…ガス流路領域、W…側壁
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16