特許第6952105号(P6952105)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップの特許一覧

特許6952105脱揮押出および塩化物掃去剤を用いた混合プラスチック熱分解油の脱塩素
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6952105
(24)【登録日】2021年9月29日
(45)【発行日】2021年10月20日
(54)【発明の名称】脱揮押出および塩化物掃去剤を用いた混合プラスチック熱分解油の脱塩素
(51)【国際特許分類】
   C08J 11/12 20060101AFI20211011BHJP
   C10G 1/10 20060101ALI20211011BHJP
   B01J 29/40 20060101ALI20211011BHJP
   B01J 20/04 20060101ALI20211011BHJP
   B01J 20/06 20060101ALI20211011BHJP
   B01J 20/08 20060101ALI20211011BHJP
   B01J 20/12 20060101ALI20211011BHJP
   B01J 20/16 20060101ALI20211011BHJP
   B01J 20/18 20060101ALI20211011BHJP
   B01J 20/20 20060101ALI20211011BHJP
   B01J 20/26 20060101ALI20211011BHJP
   B01D 19/00 20060101ALI20211011BHJP
   B01D 53/14 20060101ALI20211011BHJP
   B01D 53/04 20060101ALI20211011BHJP
   B01D 15/00 20060101ALI20211011BHJP
【FI】
   C08J11/12
   C10G1/10ZAB
   B01J29/40 M
   B01J20/04 A
   B01J20/04 B
   B01J20/04 C
   B01J20/06 A
   B01J20/06 C
   B01J20/08 A
   B01J20/08 B
   B01J20/08 C
   B01J20/12 A
   B01J20/12 B
   B01J20/12 C
   B01J20/16
   B01J20/18 E
   B01J20/20 A
   B01J20/20 D
   B01J20/26 A
   B01D19/00 F
   B01D53/14 210
   B01D53/04
   B01D15/00 K
【請求項の数】10
【全頁数】33
(21)【出願番号】特願2019-505432(P2019-505432)
(86)(22)【出願日】2017年7月17日
(65)【公表番号】特表2019-532118(P2019-532118A)
(43)【公表日】2019年11月7日
(86)【国際出願番号】IB2017054313
(87)【国際公開番号】WO2018025103
(87)【国際公開日】20180208
【審査請求日】2020年6月1日
(31)【優先権主張番号】62/369,379
(32)【優先日】2016年8月1日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】508171804
【氏名又は名称】サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】ジャヴェド,ムハンマド
(72)【発明者】
【氏名】スタニスラウス,アレクサンダー
(72)【発明者】
【氏名】アキーム,アブラル・エイ
(72)【発明者】
【氏名】コリペリー,ギリシュ
(72)【発明者】
【氏名】ナラヤナズワミー,ラヴィチャンダー
(72)【発明者】
【氏名】ラママーシー,クリシュナ・クマール
【審査官】 齊藤 光子
(56)【参考文献】
【文献】 特開2001−107058(JP,A)
【文献】 特開平09−279158(JP,A)
【文献】 特開2012−188663(JP,A)
【文献】 特開平07−062353(JP,A)
【文献】 特開平11−293259(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 11/00−28
C10G 1/10
B09B 1/00−5/00
(57)【特許請求の範囲】
【請求項1】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスであって、前記プロセスが、前記炭化水素流および/または前記炭化水素流前駆体と、第一ゼオライト触媒と、ストリッピングガスとを脱揮押出機(DE)に導入して押出機排出物を生成することを含み、前記炭化水素流および/または前記炭化水素流前駆体が、前記炭化水素流および/または前記炭化水素流前駆体の総重量に対して約10ppm以上の塩化物量の一種以上の塩化物化合物類を含み、前記押出機排出物が、前記炭化水素流および/または前記炭化水素流前駆体中の塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、
掃去容器内において前記押出機排出物の少なくとも一部を脱塩素して仕上げ炭化水素流を生じさせることであって、前記仕上げ炭化水素流が前記仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことをさらに含み、
脱塩素が、前記押出機排出物の少なくとも一部を塩化物吸着体に接触させることを含み、前記押出機排出物が前記第一ゼオライト触媒の少なくとも一部を含み、前記塩化物吸着体および/または前記第一ゼオライト触媒が前記押出機排出物の一種以上の塩化物化合物類の少なくとも一部の除去を提供するプロセス。
【請求項2】
前記第一ゼオライト触媒が、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライト、金属担持ゼオライトまたはそれらの組み合わせを含む請求項1に記載のプロセス。
【請求項3】
前記第一ゼオライト触媒が100マイクロメートル未満の平均粒径を特徴とする請求項1から2のいずれか一項に記載のプロセス。
【請求項4】
前記第一ゼオライト触媒が、前記炭化水素流および/または前記炭化水素流前駆体の前記総重量に対して、約5重量%未満の量で存在する請求項1から3のいずれか一項に記載のプロセス。
【請求項5】
前記ストリッピングガスが、窒素、水素、アルゴン、ヘリウム、C〜Cガス状炭化水素類、アルカン類、メタン、エタン、プロパン、ブタン、イソブタンまたはそれらの組み合わせを含む請求項1から4のいずれか一項に記載のプロセス。
【請求項6】
前記DEが約150℃〜約450℃の温度を特徴とする請求項1から5のいずれか一項に記載のプロセス。
【請求項7】
前記DEが約1気圧(絶対圧)(atma)〜約10−14Torrの圧力を特徴とし、前記DEが、約0.1分間〜約1時間以上の滞留時間を特徴とする請求項1から6のいずれか一項に記載のプロセス。
【請求項8】
押出機排出物の沸点の端点が約370℃未満であることを提供するために有効な前記押出機排出物の量を前記DEへ再利用することをさらに含む請求項1から7のいずれか一項に記載のプロセス。
【請求項9】
前記塩化物吸着体が、アタパルジャイト、活性炭、ドロマイト、ベントナイト、酸化鉄、針鉄鉱、赤鉄鉱、磁鉄鉱、アルミナ、ガンマアルミナ、シリカ、アルミノケイ酸塩類、イオン交換樹脂類、ハイドロタルサイト類、スピネル類、各種酸化銅、酸化亜鉛、酸化ナトリウム、酸化カルシウム、酸化マグネシウム、金属担持ゼオライト類、モレキュラーシーブ13Xまたはそれらの組み合わせを含む請求項1から8のいずれか一項に記載のプロセス。
【請求項10】
前記仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることをさらに含む請求項1から9のいずれか一項に記載のプロセスであって、前記仕上げ炭化水素流が、沸点の端点が約370℃未満であり、前記高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、プロセス。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、脱塩素を含むプロセスによる炭化水素流の処理に関する。
【背景技術】
【0002】
廃プラスチックは、ポリ塩化ビニル(PVC)および/またはポリ塩化ビニリデン(PVDC)を含む場合がある。熱分解プロセスによって、廃プラスチックを気体生成物および液体生成物に転化することができる。これらの液体生成物は、数百ppmの濃度の有機塩化物と共にパラフィン類、イソパラフィン類、オレフィン類、ナフテン類、および芳香族成分類を含む可能性がある。しかし、塩素の非常に低い濃度および限定されたオレフィン含有量という供給要件により、熱分解プロセスの液体生成物(熱分解油)を蒸気分解器のための供給原料として用いることができない場合があった。しかるに、ある種の蒸気分解器供給要件を満たすために廃プラスチックから得られる炭化水素供給原料のための処理方法を開発する必要性が継続している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第9212318号明細書
【特許文献2】米国特許公開第2015/053589号明細書
【発明の概要】
【0004】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスであって、前記炭化水素流および/または前記炭化水素流前駆体と、第一ゼオライト触媒と、ストリッピングガスとを脱揮押出機(DE)に導入して押出機排出物を生成することを含み、前記炭化水素流および/または前記炭化水素流前駆体が、前記炭化水素流および/または前記炭化水素流前駆体の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含み、前記押出機排出物が、前記炭化水素流および/または前記炭化水素流前駆体中の塩化物量よりも少ない量の一種以上の塩化物化合物類を含む、プロセスが、本明細書において開示される。
【0005】
(a)混合プラスチック廃棄物を熱分解反応器に導入して、液相の炭化水素流と気体流とを生成することであって、前記熱分解反応器が約300℃〜約400℃の温度を特徴とし、前記炭化水素流が前記炭化水素流の総重量に対して約10ppm以上の塩化物量の一種以上の塩化物化合物類を含む、ことと、(b)前記炭化水素流の少なくとも一部とゼオライト触媒とストリッピングガスとを脱揮押出機(DE)に導入して、押出機排出物と使用済みストリッピングガスとを生成することであって、前記DEが約150℃〜約450℃の温度を特徴とし、前記DEが約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、前記DEが約0.1分間〜約1時間以上の滞留時間を特徴とし、前記押出機排出物が前記炭化水素流中において前記塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、前記押出機排出物の粘度が前記炭化水素流の粘度よりも低く、前記使用済みストリッピングガスが前記ストリッピングガスの少なくとも一部と前記炭化水素流の一種以上の塩化物化合物類の少なくとも一部とを含む、ことと、(c)前記押出機排出物の少なくとも一部を接触分解器に導入して、液相の炭化水素生成物流と気体生成物流とを生成することであって、前記炭化水素生成物流の粘度が前記押出機排出物の粘度よりも低く、前記接触分解器が約350℃〜約730℃の温度を特徴とする、ことと、(d)前記炭化水素生成物流の少なくとも一部を脱塩素して、仕上げ炭化水素流(polished hydrocarbon stream)と塩素含有気体流とを生じさせることであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、前記仕上げ炭化水素流が、前記仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(e)前記仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることであって、前記高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ことと、(f)前記DEからの前記使用済みストリッピングガスの少なくとも一部、前記熱分解反応器からの前記気体流の少なくとも一部、前記接触分解器からの前記気体生成物流の少なくとも一部、またはそれらの組み合わせを苛性溶液に接触させて、前記使用済みストリッピングガス、前記気体流、前記気体生成物流またはそれらの組み合わせから一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成することと、(g)前記処理された使用済みストリッピングガスの少なくとも一部、および/または、前記塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、前記処理された使用済みストリッピングガスから前記塩化物の少なくとも一部を除去し、かつ/または、前記塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成することと、(h)前記処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供することと、(i)前記DEへ、ストリッピングガスとして、前記処理気体流の少なくとも一部、および/または、前記分離された処理ガス流の少なくとも一部を再利用することと、を含む、混合プラスチック廃棄物を処理するプロセスも本明細書において開示される。
【0006】
(a)混合プラスチック廃棄物を熱分解反応器に導入して、液相の炭化水素流と気体流とを生成することであって、前記熱分解反応器が約350℃〜約730℃の温度を特徴とし、前記炭化水素流が前記炭化水素流の総重量に対して約10ppm以上の塩化物量の一種以上の塩化物化合物類を含む、ことと、(b)前記炭化水素流の少なくとも一部とゼオライト触媒とストリッピングガスとを脱揮押出機(DE)に導入して、押出機排出物と使用済みストリッピングガスとを生成することであって、前記DEが約150℃〜約450℃の温度を特徴とし、前記DEが約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、前記DEが約0.1分間〜約1時間以上の滞留時間を特徴とし、前記押出機排出物が前記炭化水素流中において前記塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、前記押出機排出物の粘度が前記炭化水素流の粘度よりも低く、前記使用済みストリッピングガスが前記ストリッピングガスの少なくとも一部と前記炭化水素流の一種以上の塩化物化合物類の少なくとも一部とを含む、ことと、(c)前記押出機排出物の少なくとも一部を脱塩素して、仕上げ炭化水素流と塩素含有気体流とを生じさせることであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、前記仕上げ炭化水素流が、前記仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(d)前記仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることであって、前記高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ことと、(e)前記DEからの前記使用済みストリッピングガスの少なくとも一部、および/または、前記熱分解反応器からの前記気体流の少なくとも一部を苛性溶液に接触させて、前記使用済みストリッピングガス気体流(spent stripping gas gaseous stream)から一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成することと、(f)前記処理された使用済みストリッピングガスの少なくとも一部、および/または、前記塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、前記処理された使用済みストリッピングガスから前記塩化物の少なくとも一部を除去し、かつ/または、前記塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成することと、(g)前記処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供することと、(h)前記DEへ、ストリッピングガスとして、前記処理気体流の少なくとも一部、および/または、前記分離された処理ガス流の少なくとも一部を再利用することと、を含む、混合プラスチック廃棄物を処理するプロセスが、本明細書においてさらに開示される。
【図面の簡単な説明】
【0007】
図1A】混合プラスチック廃棄物を処理するための脱塩素システムの各種構成を示す図
図1B】混合プラスチック廃棄物を処理するための脱塩素システムの各種構成を示す図
図1C】混合プラスチック廃棄物を処理するための脱塩素システムの各種構成を示す図
図1D】混合プラスチック廃棄物を処理するための脱塩素システムの各種構成を示す図
図2】脱塩素(declorination)システムについてのプロセスフロー図
図3】異なる型の処理されたプラスチック廃棄物の塩化物レベルのグラフを示す図
図4】温度の関数としての溶融粘度のグラフを示す図。
図5A】実施例4についてのデータ表
図5B】実施例4についてのデータ表
図5C】実施例4についてのデータ表
図6A】実施例4についての溶融粘度データ
図6B】実施例4についての溶融粘度データ
図6C】実施例4についての溶融粘度データ
図6D】実施例4についての溶融粘度データ
図6E】実施例4についての溶融粘度データ
図6F】実施例4についての溶融粘度データ
図6G】実施例4についての溶融粘度データ
【発明を実施するための形態】
【0008】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスおよびシステムであって、脱揮発分押出(devolatilization extrude)(DE)内で炭化水素流および/または炭化水素流前駆体をゼオライト触媒およびストリッピングガスに接触させて押出機排出物を生じさせることを含むプロセスおよびシステムが本明細書に開示される。このプロセスは、押出機排出物から仕上げ炭化水素流を生成することであって、仕上げ炭化水素流が、炭化水素流および/または炭化水素流前駆体中の塩化物化合物類の量と比較して量が減少した塩化物化合物類を有する、ことを含んでもよい。
【0009】
動作例または他に示される場合を除き、本明細書および請求項に用いられる成分量、反応条件および同種のものを指す全ての数字または表現は、「約」という用語によって全ての例において修正されると理解されるものとする。本明細書において、各種の数値範囲が開示される。これらの範囲は連続的であるので、それらは最小値と最大値との間のあらゆる値を含む。同じ特性または構成要素を列挙する全ての範囲の両端は、独立して組み合わせることが可能であり、列挙された端を含む。特に明示的に示されない限り、本出願において特定される各種数値範囲は近似値である。同じ構成要素または特性に向けられた全ての範囲の両端は、端を含み、独立して組み合わせることが可能である。「X以上」という用語は、示された構成要素が、値XおよびXを超える値の量で存在することを意味する。
【0010】
「a」、「an」および「the」という用語は、量の限定を示すものではなく、むしろ参照された項目の少なくとも一つの存在を示すものである。本明細書において用いられる場合、単数形「a」、「an」および「the」は複数形の指示物を含む。
【0011】
本明細書において用いられる場合、「それらの組み合わせ」は、任意に、列挙されない同種の要素と共に、列挙された要素の内の一つ以上を含み、たとえば、任意に、実質的に同じ機能を有するとは具体的に示されない一つ以上の他の構成要素と共に、示された構成要素の内の一つ以上の組み合わせを含む。本明細書において用いられる場合、「組み合わせ」という用語は、配合物、混合物、合金、反応生成物および同種のものを含む。
【0012】
図1A図1B図1Cおよび図1Dを参照して、炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスをさらに詳細に説明する。
【0013】
図1Aは、蒸気分解器40への導入の要件を満たす、脱塩素された供給物を提供するために、塩化物化合物類を脱塩素し、追加的にオレフィン類を水素添加することが可能な脱塩素システム100を示す。システム100は、供給装置5と、脱揮押出機(DE)10と、塩化物ストリッピング部20と、掃去容器(またはタンク)30と、蒸気分解器40とを含む。
【0014】
図1Bは、蒸気分解器40への導入の要件を満たす、脱塩素された供給物を提供するために、塩化物化合物類を脱塩素し、追加的にオレフィン類を水素添加することが可能な脱塩素システム101を示す。システム101は、供給装置5と、反応器7と、DE10と、塩化物ストリッピング部20と、接触分解器25と、掃去容器またはタンク30と、蒸気分解器40とを含む。
【0015】
図1Cは、蒸気分解器40への導入の要件を満たす、脱塩素された供給物を提供するために、塩化物化合物類を脱塩素し、追加的にオレフィン類を水素添加することが可能な脱塩素システム102を示す。システム102は、供給装置5と、反応器7と、DE10と、塩化物ストリッピング部20と、掃去容器またはタンク30と、蒸気分解器40とを含む。
【0016】
図1Dは、蒸気分解器40への導入の要件を満たす、脱塩素された供給物を提供するために、塩化物化合物類を脱塩素し、追加的にオレフィン類を水素添加することが可能な脱塩素システム103を示す。システム103は、供給装置5と、DE10と、塩化物ストリッピング部20と、接触分解器25と、掃去容器またはタンク30と、蒸気分解器40とを含む。
【0017】
DE10に炭化水素流および/または炭化水素流前駆体を導入することができる。図1Aおよび図1Dを参照すると、混合プラスチック廃棄物を含む炭化水素流前駆体流6(たとえば、固形廃プラスチック、混合プラスチック流)を供給装置5からDE10に搬送することができる。供給装置は、押出機または反応器のための任意の適切な固形物供給装置、たとえば、供給ホッパ、高密度化装置、容量供給装置、重量測定供給装置、オーガー式供給装置、振動供給装置、ベルト供給装置、容積測定配合機、バッチ重量測定配合機、ロスインウェイト配合機(たとえば、標的速度、標的重量)、毛羽供給装置、回転弁付き供給ホッパ、パルス供給システム、スラグ供給装置、空気圧供給装置、および同種のもの、またはそれらの組み合わせを含むことができる。
【0018】
炭化水素流前駆体流6を介してDE10または反応器7内に載荷することができるか、または供給することができる廃プラスチックとしては、混合プラスチック廃棄物などの消費後廃プラスチックを挙げることができる。混合廃プラスチックは、塩素化プラスチック(たとえば、塩素化ポリエチレン)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、非塩素化プラスチック(たとえば、ポリオレフィン類、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリスチレン、コポリマーなど)、および同種のもの、またはそれらの混合物を含むことができる。本明細書において開示される通りの廃プラスチックとしては、使用済タイヤを挙げることもできる。混合プラスチック廃棄物は、PVC、PVDC、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリオレフィン類、ポリスチレン類、および同種のもの、またはそれらの組み合わせを含むことができる。概して、廃プラスチックは、長鎖分子またはポリマー炭化水素類を含む。
【0019】
炭化水素流前駆体流6(たとえば、混合プラスチック廃棄物)は、炭化水素流前駆体流6の総重量に対して、約10ppm以上、代替的に約100ppm以上、代替的に約200ppm以上、代替的に約300ppm以上、または代替的に約400ppm以上の量の塩化物を含むことができる。炭化水素流前駆体流6は、炭化水素流前駆体流6の総重量に対して、約400ppm以上、代替的に約700ppm以上、または代替的に約1000ppm以上の量のPVCおよび/またはPVDCを含むことができる。本明細書においてさらに詳細に考察されるように、炭化水素流8を生成するために、炭化水素流前駆体流6を、直接、(たとえば、図1Aおよび図1Dに示されるように)DE10に供給することができるか、または、代替的に、(たとえば、図1Bおよび図1Cに示されるように)反応器7に供給することができる。
【0020】
図1Bおよび図1Cに示されるように、混合プラスチック廃棄物を含む炭化水素流前駆体流6を供給装置5から反応器7に搬送することができる。反応器7は、任意の適切な熱分解反応器(たとえば、熱的熱分解反応器、温度制御撹拌タンクバッチ反応器、連続回転窯、二軸押出機反応器、流動接触分解器と同様の循環流動床反応器、バブリング流動床反応器など)であることができる。概して、廃プラスチックは、それらが、高温で、酸素の非存在下で、より小さい炭化水素分子(たとえば、炭化水素流)、気体およびカーボンブラックに分解されうる反応器7などの熱分解反応器に導入されうる。反応器7などの熱分解反応器は、約300℃〜約400℃、代替的に約310℃〜約390℃、または代替的に約325℃〜約375℃の温度を特徴とすることができる。反応器7などの熱分解反応器を用いることの長所の内の一つは、熱分解反応器供給物中の無機汚染物(たとえば、重金属;分解に関して不活性な化合物などの不活性化合物など)を、熱分解反応器内の熱分解反応器供給物を処理するステップにおいて除去することが可能であり、かつ、汚染物を実質的に含まない生成物(たとえば、純粋な生成物)を熱分解反応器から回収し、熱分解反応器の下流の他の処理部、たとえばDE、接触分解器などにさらに送ることが可能である、ということである。
【0021】
炭化水素流8(たとえば、溶融物流)を、さらなる処理のために反応器7からDE10に給送することができる。炭化水素流8は、概して、一種以上の炭化水素類と一種以上の塩化物化合物類とを含むことができる。炭化水素流8は、追加的に水素を含んでもよい。炭化水素流8は、概して、溶融相(たとえば、粘性溶融物)である。水素(H)含有流、C〜C炭化水素流、不活性ガス流、および同種のもの、またはそれらの組み合わせは、DE10に入る前に炭化水素流8に加えられうる。追加的にまたは代替的には、たとえば、炭化水素流8から独立してDEに直接供給されたストリッピングガスを介して、DE環境のHを高めるために、H含有流をDE10に加えることができる。
【0022】
炭化水素流8中に含まれてもよい塩化物化合物類としては、脂肪族塩素含有炭化水素類、芳香族塩素含有炭化水素類、および他の塩素含有炭化水素類が挙げられるが、これらに限定されるものではない。塩素含有炭化水素類の例としては、1−クロロヘキサン(C13Cl)、2−クロロペンタン(C11Cl)、3−クロロ−3−メチルペンタン(C13Cl)、(2−クロロエチル)ベンゼン(CCl)、クロロベンゼン(CCl)またはそれらの組み合わせが挙げられるが、これらに限定されるものではない。炭化水素流8中の塩化物の量は、炭化水素流8の総重量に対して、5ppm、6ppm、7ppm、8ppm、9ppm、10ppm、15ppm、20ppm、30ppm、40ppm、50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、600ppm、700ppm、800ppm、900ppm、1000ppm、1100ppm、1200ppm、1300ppm、1400ppm、1500ppm、1600ppm、1700ppm、1800ppm、1900ppm、2000ppm、またはそれ以上であってもよい。
【0023】
炭化水素流8中に含まれてもよい一種以上の炭化水素の例としては、パラフィン類(n−パラフィン、イソパラフィン(i−パラフィン)またはその両方)、オレフィン類、ナフテン類、芳香族炭化水素類、またはそれらの組み合わせが挙げられる。一種以上の炭化水素類が、列挙された炭化水素類の全てを含む場合、炭化水素類の群を、まとめてPONA供給物(パラフィン、オレフィン、ナフテン、芳香族化合物類)またはPIONA供給物(n−パラフィン、i−パラフィン、オレフィン、ナフテン、芳香族化合物類)と称する場合がある。炭化水素流8の特定の実施形態は、混合固形廃プラスチックの熱分解から回収された熱分解油、たとえば、熱分解反応器(たとえば、反応器7)から回収された流れである。
【0024】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、炭化水素流および/または炭化水素流前駆体と、第一ゼオライト触媒と、ストリッピングガスとをDEに導入して、押出機排出物を生成することを含むことができる。
【0025】
概して、DE10などのDEは、除去しなければならない揮発性成分を含む供給物(たとえば、炭化水素流および/または炭化水素流前駆体)を受けることができる。DE供給物が固形(たとえば、図1Aおよび図1Dの炭化水素流前駆体流6)である場合、DEは、固形供給物を、それを溶融させ、かつ、押出機内に存在する条件(たとえば、温度、圧力、滞留時間など)の下で溶融供給物を流すために有効な温度に加熱する。DE供給物が押出機に入る前に既に溶融している場合(たとえば、図1Bおよび1Cの炭化水素流8)、DEは、溶融供給物を、押出機内に存在する条件の下で溶融供給物を流すために有効な温度に加熱する。供給物から除去するべき揮発物(たとえば、HClなどの塩化物化合物)の沸騰温度を超えてDE温度を維持して、使用済みストリッピングガス流12による揮発物の回収を容易にすることができる。DEは、典型的には、一つ以上のベントと一つ以上の回転スクリューとを含む伸長室(通常「押出機バレル」と称される)を含むことができる。溶融供給物が押出機出口点(たとえば、押出機ダイ)の方へ押出機バレルの長さに沿って移動する際、揮発した化合物はベントを通って(たとえば、使用済みストリッピングガス流12を介して)押出機バレルから流出することができる。(一つまたは複数の)押出スクリューは、溶融供給物を、強制的に押出機バレルを通過させ、続いて押出機出口点を通過させるのに必要な機械力を提供することができる。
【0026】
DE10は、約150℃〜約450℃、代替的に約175℃〜約425℃、または代替的に約200℃〜約400℃の温度を特徴とすることができる。
【0027】
DE10は、約1気圧(絶対圧)(atma)〜約10−14Torr、代替的に約0.5atma〜約10−7Torr、または代替的に約0.1atma〜約10−3Torrの圧力を特徴とすることができる。別の場合、真空条件下で、すなわち、周囲の圧力を下回る(たとえば、1atmを下回る)圧力でDE10を動作させることができる。
【0028】
DE10は、約0.1分間(分)〜約1時間以上、代替的に約1分〜約30分、または代替的に約5分〜約15分の滞留時間を特徴とすることができる。概して、押出機の滞留時間は、分子が押出機内で費やす平均時間量、たとえば、炭化水素流および/または炭化水素流前駆体の炭化水素分子がDE内で費やす平均時間量を指す。
【0029】
DE10は、DE10に供給される炭化水素流8および/または炭化水素流前駆体流6の成分を脱塩素するように、(たとえば、水素が供給物流および/またはストリッピングガスを介してDEに加えられる)いくつかの実施形態において、追加的に水素添加するように構成されうる。DE10内において、任意には水素添加反応を容易にするためにDE10に導入することができる水素の存在下で、DE供給物を第一ゼオライト触媒と接触させて、押出機排出物11を生じさせることができる。
【0030】
DE10は、水素の存在下におけるDE供給物の成分の任意の反応、または水素とのDE供給物の成分の任意の反応を促進することができる。反応は、不飽和分子(たとえば、オレフィン類、芳香族化合物類)の二重結合への水素原子の付加として生じる可能性があり、それによって飽和分子(たとえば、パラフィン類、i−パラフィン類、ナフテン類)が生じる。追加的にまたは代替的には、DE10内の反応は、ヘテロ原子の水素との後続の反応および/または置換を伴う有機化合物の結合の破壊を引き起こす可能性がある。DE10内で生じる可能性がある反応の例としては、オレフィン類の水素添加、ヘテロ原子含有炭化水素類からのヘテロ原子の除去(たとえば、脱塩素)、一つ以上の芳香族化合物類の一つ以上のシクロパラフィン類への転化、一つ以上の直鎖パラフィン類の一つ以上のi−パラフィン類への異性化、一つ以上のシクロパラフィン類の一つ以上のi−パラフィン類への選択的開環、短鎖長分子への長鎖長分子の分解、またはそれらの組み合わせが挙げられるが、これらに限定されるものではない。
【0031】
DE10にストリッピングガスを導入して、押出機を通って流れる溶融供給物中に同伴する揮発物の除去を促進することができる。当業者によって理解されるように、本開示によれば、ストリッピングガスは、押出機を通って流れる溶融供給物に概して不溶である。上昇流、下降流、半径流またはそれらの組み合わせのDE供給物とストリッピングガスを接触させてもよいと考えられる。理論によって限定されることを望むものではないが、ストライピングガス(striping gas)は、塩化物が(たとえば、再結合反応により)反応して、ストリッピングガスを用いることによっては容易に除去することができない、より重い塩素含有化合物を生成する機会を有する前に、塩化物の除去を可能にしてもよい。
【0032】
本開示のDE内における使用のために適切なストリッピングガスの非限定的な例としては、窒素、水素、アルゴン、ヘリウム、C〜Cガス状炭化水素類、アルカン類、メタン、エタン、プロパン、ブタン、イソブタン、および同種のもの、またはそれらの組み合わせが挙げられる。
【0033】
ストリッピングガスは、たとえばDEの中において水素添加反応を促進するために水素を含むことができる。したがって、DE10は、水素の存在下における炭化水素流8および/または炭化水素流前駆体流6の成分の任意の反応、または水素との炭化水素流8および/または炭化水素流前駆体流6の成分の任意の反応を容易にすることができる。不飽和分子(たとえば、オレフィン類、芳香族化合物類)の二重結合への水素原子の付加などの反応が生じる可能性があり、それによって飽和分子が生じる(たとえば、パラフィン類、i−パラフィン類、ナフテン類)。追加的にまたは代替的には、DE10内の反応は、ヘテロ原子の水素との後続の反応および/または置換を伴う有機化合物の結合の開裂を引き起こす可能性がある。DE10内で生じる可能性がある反応の例としては、オレフィン類の水素添加、ヘテロ原子含有炭化水素類からのヘテロ原子の除去(たとえば、脱塩素)、一つ以上の芳香族化合物類の一つ以上のシクロパラフィン類への転化、一つ以上の直鎖パラフィン類の一つ以上のi−パラフィン類への異性化、一つ以上のシクロパラフィン類の一つ以上のi−パラフィン類への選択的開環、および同種のもの、またはそれらの組み合わせが挙げられるが、これらに限定されるものではない。
【0034】
有機塩化物の分解を促進するためにゼオライトの触媒をDE10に導入することができる。ゼオライト触媒は、DE供給物中に存在する他の化合物の分解をさらに促進することが可能であり、それによってDEを流れる流体(たとえば、溶融供給物)の粘度が低下する。
【0035】
ゼオライト触媒は、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライト、金属担持ゼオライト(たとえば、一種以上の金属を担持したゼオライト)、および同種のもの、またはそれらの組み合わせを含むことができる。
【0036】
本明細書における本開示の目的のために、DE10に導入されるゼオライト触媒を「第一ゼオライト触媒」と称することもできる。第一ゼオライト触媒は、各ゼオライト触媒が、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から独立して選択されうる、二種以上の異なるゼオライト触媒の混合物であることができる。
【0037】
本明細書において、後にさらに詳細に記載されるように、接触分解を促進するために、新鮮な触媒としてゼオライト触媒を接触分解器25に導入することもできる。本明細書における本開示の目的のために、接触分解器25に(押出機排出物11を介してDE10から接触分解器25に給送される第一ゼオライト触媒とは対照的に)別々に導入されるゼオライト触媒を、「第二ゼオライト触媒」と称することもできる。第二ゼオライト触媒は、二種以上の異なるゼオライト触媒をマトリックス内に埋込むことによって得られる統合触媒粒子を含むことが可能であって、各ゼオライト触媒は、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から独立して選択されうる。マトリックスは、触媒活性材料(たとえば、活性アルミナ材料、バインダー材料、たとえばアルミナやシリカ)と、カオリンなどの不活性充填剤と、から形成されうる。ゼオライト触媒のマトリックス内に埋込まれたゼオライト成分は、ゼオライト触媒の5〜90重量%、代替的に10から80重量%の間、または代替的に10から50重量%の間の量でゼオライト触媒中に存在することができる。別の場合、第二ゼオライト触媒は、上記に記載された通りのゼオライト触媒の内のいずれか一種であることができるか、または、上記に記載されたゼオライト触媒の内の二種以上の物理的混合物であることができる。マトリックス内に埋込まれたゼオライトを含むゼオライト触媒は、全体が参照により本明細書に組み込まれる米国特許第9212318号明細書(特許文献1)にさらに詳細に記載されている。
【0038】
ゼオライト触媒(たとえば、第一ゼオライト触媒、第二ゼオライト触媒)は、100マイクロメートル未満、代替的に10マイクロメートル未満、または代替的に5マイクロメートル未満の平均粒径を特徴とすることができる。
【0039】
第一ゼオライト触媒は、炭化水素流および/または炭化水素流前駆体の総重量に対して、約10重量%未満、代替的に約5重量%未満、代替的に約3重量%未満、代替的に約2重量%未満、代替的に約1重量%未満、または代替的に約0.5重量%未満の量でDE中に存在することができる。当業者によって理解されるように、本開示によれば、DE内で、より多量(たとえば、10重量%超)の、より大きな(たとえば、100マイクロメートル超)触媒粒子を使用すると、押出機の内部に対して摩耗性となる可能性があり、押出機内部のために用いられる材料の費用を上昇させる可能性がある。
【0040】
DE10から押出機排出物11を回収することができる。押出機排出物は、押出機溶融物排出物または押出機液体排出物であることができる。DE供給物が固形供給物(たとえば、図1Aおよび図1Dの炭化水素流前駆体流6)を含む場合、押出機排出物は、粘性溶融物などの押出機溶融物排出物であることができる。DE供給物が溶融供給物(たとえば、図1Bおよび図1Cの炭化水素流8)を含む場合、押出機排出物は押出機液体排出物であることができる。理論によって限定されることを望むものではないが、押出機排出物の液体状態は、長鎖ポリマー溶融物の短鎖炭化水素への分解によるものである。たとえば、押出機排出物11の粘度は、炭化水素流8の粘度よりも低い可能性がある。理論によって限定されることを望むものではないが、DE10内の分解反応によって、押出機排出物中には、DE供給物中の分子の大きさと比較した場合により小さい分子が生じる可能性があり、それによって粘度の低下が生じる。当業者によって理解されるように、本開示によれば、DE供給物の粘度が低くなればなるほど、得られた押出機排出物の粘度は低くなる。たとえば、DE供給物が固形物である場合、押出機排出物は、DE内における所定の滞留時間、粘性溶融物排出物であることができ、一方で、DE供給物が(たとえば、すでに、たとえば反応器7内で分解されている)溶融供給物である場合、押出機排出物は、同じ所定の滞留時間、粘性がより低い液体排出物であることができる。
【0041】
押出機排出物11は、炭化水素流8および/または炭化水素流前駆体6中における塩化物量よりも少ない量の一種以上の塩化物化合物類を含むことができる。押出機排出物11中の塩化物化合物類の量は、押出機排出物11の総重量に対して、100ppm未満、50ppm未満、25ppm未満または10ppm未満であってもよい。
【0042】
DE10内の水素添加反応のため、ストリッピングガスが水素を含む場合、押出機排出物11は、押出機排出物11の総重量に対して、約1重量%未満の量の一つ以上のオレフィンを含んでもよい。押出機排出物11中の芳香族炭化水素の量は、DE供給物中の芳香族炭化水素の少なくとも一部の水素添加のため、DE供給物(たとえば、炭化水素流8、炭化水素流前駆体流6)中の芳香族炭化水素の量よりも少ないと考えられる。たとえば、芳香族炭化水素は、押出機排出物11の総重量に対して、1重量%未満またはそれ以上(less than 1 or more wt.%)の量で、押出機排出物11中に存在してもよい。
【0043】
押出機排出物11は、第一ゼオライト触媒の少なくとも一部を含むことができる。
【0044】
図1Aに示されるように、押出機排出物11の一部1laをDE10へ再利用することができる。理論によって限定されることを望むものではないが、DE供給物が(たとえば、図1Aに示されるように)固形物である場合、押出機排出物は、分子の大きさが比較的より大きく沸点がより大きいため、所定の滞留時間において、粘性溶融物排出物でありうる一方で、DE供給物が(たとえば、図1Bおよび図1Cに示されるように、たとえば反応器7内ですでに分解されている)溶融供給物である場合、押出機排出物は、分子の大きさが比較的より小さく沸点がより低いため、同じ所定の滞留時間において、粘性がより低い液体排出物でありうる。押出機排出物11の成分の大きさを小さくし、結果的に押出機排出物11の沸点を低下させるために、押出機排出物11の一部11aをDE10に戻して、沸点がより低く、大きさがより小さい分子を生成するための分解反応にさらに供することができる。いくつかの実施形態において、押出機排出物11は、沸点の端点が約370℃未満であることを特徴とすることができる。たとえば、押出機排出物の約98重量%以上、代替的に99重量%、または代替的に99.9重量%は、370℃未満で沸騰する。
【0045】
本明細書において開示される通りの炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、押出機排出物11の量(11a)であって、押出機排出物の沸点の端点が約370℃未満であることを提供するために有効な押出機排出物11の量(11a)をDE10へ再利用することをさらに含むことができる。たとえば、押出機排出物11の約1容量%〜約80容量%、代替的に約3容量%〜約70容量%、または代替的に約5容量%〜約60容量%が、一部11aを介してDE10へ再利用されうる。
【0046】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、DE10から使用済みストリッピングガス流12を回収することを含むことが可能であって、使用済みストリッピングガスは、ストリッピングガスの少なくとも一部と、一種以上の塩化物化合物類とを含み、この一種以上の塩化物化合物類は、炭化水素流8および/または炭化水素流前駆体流6の塩化物の少なくとも一部を含む。
【0047】
使用済みストリッピングガス流12の少なくとも一部を塩化物ストリッピング部20に導入して、使用済みストリッピングガス流12から塩化物化合物類の少なくとも一部を除去することができる。塩化物ストリッピング部20は、処理された使用済みストリッピングガスを生じさせるために、使用済みストリッピングガス流12から塩化物の第一の一部(たとえば、塩素含有ガス)を(たとえば、反応、吸着、吸収またはそれらの組み合わせにより)除去することができる苛性溶液(たとえば、水酸化ナトリウム水溶液および/または水酸化カリウム水溶液)を含むスクラビング部を含むことができる。処理された使用済みストリッピングガスの少なくとも一部を塩化物吸着体にさらに接触させて、処理された使用済みストリッピングガスから塩化物の第二の一部を除去して、処理気体流を生成することができる。処理気体流の少なくとも一部をストリッピングガスとしてDE10へ再利用することができる。
【0048】
本開示における使用に適切な塩化物吸着体の非限定的な例としては、アタパルジャイト、活性炭、ドロマイト、ベントナイト、酸化鉄、針鉄鉱、赤鉄鉱、磁鉄鉱、アルミナ、ガンマアルミナ、シリカ、アルミノケイ酸塩類、イオン交換樹脂類、ハイドロタルサイト類、スピネル類、各種酸化銅、酸化亜鉛、酸化ナトリウム、酸化カルシウム、酸化マグネシウム、金属担持ゼオライト類、モレキュラーシーブ13X、および同種のもの、またはそれらの組み合わせが挙げられる。
【0049】
図1Bおよび図1Dに示されるように、炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、(たとえば、第一ゼオライト触媒を含む)押出機排出物11の少なくとも一部を接触分解器25に導入して炭化水素生成物流26を生成することをさらに含むことが可能であり、炭化水素生成物流26の粘度は押出機排出物11の粘度よりも低い。接触分解器25は、第二ゼオライト触媒を含むことが可能であり、第二ゼオライト触媒は、本明細書に記載される任意のゼオライト触媒を含むことができる。第一ゼオライト触媒および第二ゼオライト触媒は、同一または異なることができる。第一ゼオライト触媒および第二ゼオライト触媒は、押出機排出物11内に存在する化合物群(たとえば、炭化水素類)の分解を促進することが可能であり、それによって、接触分解器25を通って流れる流れの粘度および沸点が低くなる。接触分解器25は、熱反応器7について上記記載された任意の適切な反応器の型を含むことができる。
【0050】
接触分解器25は、約350℃〜約730℃、代替的に約375℃〜約700℃、または代替的に約400℃〜約650℃の温度を特徴とすることができる。
【0051】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、(たとえば、第一ゼオライト触媒を含む)押出機排出物11の少なくとも一部を熱分解反応器へ導入して炭化水素生成物流を生成することをさらに含むことが可能であり、炭化水素生成物流の粘度は押出機排出物11の粘度よりも低い。たとえば、図1Bおよび図1Dに示される接触分解器25は、熱分解反応器と置き換えられることが可能である。熱分解反応器は、反応器7について記載される熱分解反応器などの任意の適切な熱分解反応器を含むことができる。押出機排出物11内に存在する第一ゼオライト触媒と、熱分解反応器内の高温(たとえば、約300℃〜約730℃)とによって、押出機排出物11中に存在する化合物群(たとえば、炭化水素類)の分解が促進される可能性があり、それによって、熱分解反応器を通って流れる流れの粘度および沸点が低くなる。
【0052】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、(たとえば、図1Aおよび図1Cに示される通りの)押出機排出物11の少なくとも一部または(たとえば、図1Bおよび図1Dに示される通りの)炭化水素生成物流26の少なくとも一部を掃去容器30に導入して仕上げ炭化水素流31を生じさせることをさらに含むことができる。掃去容器30は、押出機排出物11または炭化水素生成物流26を「仕上げて」塩化物含有量をさらに減少させる仕上げ段階と考えることができる。押出機排出物11および/または炭化水素生成物流26は、蒸気分解器40についての要件を満たさない可能性がある、それぞれ押出機排出物11および/または炭化水素生成物流26の重量に対して、約10ppm超の量の塩化物を含んでもよい。そのようなものとして、押出機排出物11または炭化水素生成物流26は、掃去容器30から流れる仕上げ炭化水素流31が蒸気分解器40の要件を満たす一種以上の塩化物類の量を有するように、さらなる塩化物の除去のために掃去容器30に導入されうる。いくつかの態様において、複数のDE部が存在する場合、一部のDE部は押出機排出物を接触分解器25に送ることが可能であるが、他のDE部は押出機排出物を掃去容器30に送ることが可能であり、掃去容器30に直接供給するDE部は、接触分解器25に直接供給する他のDE部と比較して、より高い温度および触媒苛酷性(catalytic severity)で作動する必要がある。
【0053】
仕上げ炭化水素流31は、仕上げ炭化水素流31の総重量に対して、約10ppm未満の塩化物、代替的に約5ppm未満の塩化物、代替的に約3ppm未満の塩化物、代替的に約1ppm未満の塩化物、または代替的に約0.5ppm未満の塩化物の量の一種以上の塩化物化合物類を含むことができる。
【0054】
仕上げ炭化水素流31は、約370℃未満の沸点の端点を特徴とすることができる。たとえば、仕上げ炭化水素流31の約98重量%以上、代替的に99重量%、または代替的に99.9重量%は、370℃未満で沸騰する。
【0055】
押出機排出物11または炭化水素生成物流26を脱塩素すること(たとえば、仕上げること)は、吸着脱塩素により、それぞれ押出機排出物11または炭化水素生成物流26中に残留する一種以上の塩化物化合物類の少なくとも一部を除去して、仕上げ炭化水素流31を生じさせることを含んでもよい。残留する塩化物化合物類の除去は、一つ以上の吸着部の形態の掃去容器30内で起こってもよい。一つ以上の吸着部は、仕上げ炭化水素流31を介して吸着部から流れる仕上げ炭化水素生成物を生じさせるために押出機排出物11または炭化水素生成物流26から一種以上の残留塩化物化合物類の一部を(たとえば、反応、吸着、吸収またはそれらの組み合わせにより)除去することが可能な一種以上の塩化物吸着体を含んでもよい。本開示によって、本技術分野で知られているプロセス(たとえば、同時に動作する吸着部の再生)を介して、吸着部内において収着剤(たとえば、塩化物吸着体)によって除去される一種以上の塩化物化合物類を(一つまたは複数の)吸着部から回収してもよい。掃去容器30内における使用のために適切な吸着プロセスの例は、参照により本明細書に組み込まれる米国特許公開第2015/053589号明細書(特許文献2)に見出される。
【0056】
押出機排出物11または炭化水素生成物流26を脱塩素すること(たとえば、仕上げること)は、押出機排出物11または炭化水素生成物流26の少なくとも一部を塩化物吸着体に接触させることを含むことが可能であり、押出機排出物11は第一ゼオライト触媒の少なくとも一部を含み、炭化水素生成物流26は第一ゼオライト触媒および/または第二ゼオライト触媒の少なくとも一部を含み、塩化物吸着体、第一ゼオライト触媒、第二ゼオライト触媒またはそれらの組み合わせは押出機排出物11または炭化水素生成物流26の一種以上の塩化物化合物類の少なくとも一部の除去を提供することができる。
【0057】
押出機排出物11または炭化水素生成物流26を脱塩素すること(たとえば、仕上げること)は、約25℃〜約225℃、代替的に約50℃〜約200℃、または代替的に約75℃〜約175℃の温度で起きる可能性がある。
【0058】
押出機排出物11または炭化水素生成物流26を脱塩素すること(たとえば、仕上げること)は、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起きる可能性がある。
【0059】
押出機排出物11または炭化水素生成物流26を脱塩素すること(たとえば、仕上げること)は、掃去容器30から塩素含有気体流を回収することをさらに含むことができる。たとえば、塩素含有気体流の少なくとも一部を塩化物ストリッピング部20に導入することによって、塩化物の少なくとも一部を塩素含有気体流の少なくとも一部から除去して、処理気体流を生成することができる。処理気体流の少なくとも一部をストリッピングガスとしてDE10へ再利用することができる。
【0060】
掃去容器30から塩化物吸着体および/またはゼオライト触媒を固形残渣として除去することが可能であり、仕上げ炭化水素流31は、塩化物吸着体および/またはゼオライト触媒などの固形物を実質的に含まない可能性がある。固形残渣は、流れ11および/または流れ26からの塩化物類を含む。固形残渣をさらに廃棄物処理ステップに供することができる。
【0061】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスは、仕上げ炭化水素流31の少なくとも一部を蒸気分解器40に供給して高値生成物を生じさせることをさらに含むことが可能であり、仕上げ炭化水素流31は、沸点の端点が約370℃未満であり、高値生成物は、エチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類、および同種のもの、またはそれらの組み合わせを含む。
【0062】
蒸気分解器40は、概して、個別の蒸気分解器の操作制約によって決まる供給物仕様要件を有する(たとえば、低オレフィン含有量の脱塩素供給物を必要とする)。第一に、蒸気分解器40は、蒸気分解器40への供給物中における塩化物化合物類の量が非常に小さいこと、たとえばppmレベル(たとえば、10ppm未満)であることを必要とする。第二に、蒸気分解器40は、蒸気分解器40に供給される流れの中のオレフィン類の量が重量%において小さい(たとえば、1重量%未満)ことを必要とする。蒸気分解器40は、分子を分解するか、または蒸気の存在下で仕上げ炭化水素流31中の成分の炭素−炭素結合を高温で切断して、高値生成物を生じさせる。
【0063】
混合プラスチック廃棄物を処理するプロセスは、(a)ゼオライト触媒と、ストリッピングガスと、炭化水素流前駆体流6(たとえば、供給装置5からの混合プラスチック廃棄物流)とをDE10に導入して、押出機排出物11および使用済みストリッピングガス12を生成するステップであって、炭化水素流前駆体流6が炭化水素流前駆体流6の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含み、DE10が約150℃〜約450℃の温度を特徴とし、DE10が約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DE10が約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物11が炭化水素流前駆体流6中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、使用済みストリッピングガス12がストリッピングガスの少なくとも一部と炭化水素流前駆体流6の一種以上の塩化物化合物類の少なくとも一部とを含むステップと、(b)押出機排出物11の沸点の端点が約370℃未満であることを提供するために有効な押出機排出物11の量11aをDE10へ再利用するステップと、(c)掃去容器30内において押出機排出物11の少なくとも一部を脱塩素して仕上げ炭化水素流31と塩素含有気体流とを生じさせるステップであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流31が、仕上げ炭化水素流31の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(d)仕上げ炭化水素流31の少なくとも一部を蒸気分解器40に供給して高値生成物を生じさせるステップであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ステップと、(e)DE10からの使用済みストリッピングガス12の少なくとも一部をストリッピング部20内の苛性溶液に接触させて、使用済みストリッピングガス12から一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成するステップと、(f)処理された使用済みストリッピングガスの少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ、処理気体流を生成するステップと、(g)処理気体流から高値生成物としてのオレフィン類のガスを分離して、分離された処理ガス流を提供するステップと、(h)DE10へ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用するステップと、を含むことができる。たとえば、脱塩素プロセスは、DEおよび化学的掃去ステップによる脱塩素溶融物への固形の混合プラスチック廃棄物(MPW)供給物の転化のために用いることができる、図1Aに示される通りの脱塩素システム100を用いることによって実施されうる。脱塩素システム100は、塩化物除去効率が高い適切な触媒(たとえば、ゼオライト触媒)および水素/窒素(たとえば、ストリッピングガス)の存在下における固形MPW供給物の直接の脱塩素のために使用されうる。
【0064】
混合プラスチック廃棄物を処理するプロセスは、(a)炭化水素流前駆体流6(たとえば、供給装置5からの混合プラスチック廃棄物流)を熱分解反応器7に導入して、液相の炭化水素流8と気体流とを生成するステップであって、熱分解反応器7が約300℃〜約400℃の温度を特徴とし、炭化水素流8が炭化水素流8の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(b)炭化水素流8の少なくとも一部とゼオライト触媒とストリッピングガスとをDE10に導入して、押出機排出物11と使用済みストリッピングガス12とを生成するステップであって、DE10が約150℃〜約450℃の温度を特徴とし、DE10が約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DE10が約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物11が炭化水素流8中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、押出機排出物11の粘度が炭化水素流8の粘度よりも低く、使用済みストリッピングガス12がストリッピングガスの少なくとも一部と炭化水素流8の一種以上の塩化物化合物類の少なくとも一部とを含む、ステップと、(c)押出機排出物11の少なくとも一部を接触分解器25に導入して、液相の炭化水素生成物流26と気体生成物流とを生成するステップであって、炭化水素生成物流26の粘度が押出機排出物11の粘度よりも低く、接触分解器25が約350℃〜約730℃の温度を特徴とする、ステップと、(d)掃去容器30内における炭化水素生成物流26の少なくとも一部を脱塩素して、仕上げ炭化水素流31と塩素含有気体流とを生じさせるステップであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流31が、仕上げ炭化水素流31の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(e)仕上げ炭化水素流31の少なくとも一部を蒸気分解器40に供給して、高値生成物を生じさせるステップであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ステップと、(f)DE10からの使用済みストリッピングガス12の少なくとも一部、熱分解反応器7からの気体流の少なくとも一部、接触分解器25からの気体生成物流の少なくとも一部、またはそれらの組み合わせを塩化物ストリッピング部20内における苛性溶液に接触させて、使用済みストリッピングガス12、気体流、気体生成物流またはそれらの組み合わせから一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成するステップと、(g)処理された使用済みストリッピングガスの少なくとも一部、および/または、塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ/または、塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成するステップと、(h)処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供するステップと、(i)DE10へ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用するステップと、を含むことができる。たとえば、脱塩素プロセスは、熱分解、脱揮押出、接触分解および化学的掃去ステップによる脱塩素液体(たとえば、仕上げ炭化水素流31)への固形のMPW供給物の転化のために最後まで用いることができる、図1Bに示される通りの脱塩素システム101を用いることによって実施されうる。PETの存在下でHClの遊離の間に有機塩化物化合物類が形成されることが知られている。故に、かなりの量(5〜10重量%)のPETを有するMPW供給物を扱うために、脱塩素システム101の使用が有利である可能性がある。いくつかの実施形態において、混合プラスチック廃棄物供給物は、(i)混合プラスチック廃棄物の総重量に対して約400ppm以上、代替的に約700ppm以上、または代替的に約1000ppm以上の量のPVCおよび/またはPVDCと、(ii)混合プラスチック廃棄物の総重量に対して約400ppm以上、代替的に約700ppm以上、または代替的に約1000ppm以上の量のPETと、を含むことができる。熱分解のステップ(a)の間、固形MPW供給物は、固形触媒(たとえば、ゼオライト触媒)とN、H、C〜C炭化水素類またはそれらの組み合わせを含むガスパージ(たとえば、ストリッピングガス)との存在下でDE10を用いることによってステップ(b)の間に脱揮されうる粘性溶融物に転化されうる。しかし、触媒粒子はDE構成材料(MOC)に対して摩耗性である可能性があるので、DE内の大量の触媒の使用は回避されるべきである。熱分解ステップ(a)およびDEステップ(b)の間に形成されるほとんどの塩素含有化合物類は、HClの形態で流出する可能性がある。理論によって限定されることを望むものではないが、PETはHClと相互作用することができ、テレフタル酸および安息香酸のクロロエチルエステルなどの有機塩化物類を形成することができるので、接触分解ステップ(c)を用いてこれらの有機塩化物類をさらに分解する必要がある。接触分解ステップ(c)の間に塩化物化合物類のほとんどを除去することができるが、接触分解器25から得られる凝縮性蒸気留分(たとえば、炭化水素生成物流26)中に1ppmレベル以下の微量レベルの塩化物類が依然として存在する可能性がある。掃去ステップ(d)は、生成される最終液体流(たとえば、仕上げ炭化水素流31)を生じさせるための塩化物の完全な除去のための仕上げステップとして有用でありうる。図1Bに示される通りの一連の組み合わせの複数のステップの使用によって、総塩化物分析器の検出限界を下回るMPW供給物を脱塩素する可能性が増加しうる。
【0065】
脱塩素システム101は、熱分解、DE、接触分解、化学的掃去などのプロセスを組み合わせる、図2に示される通りの脱塩素システム101aを含むことができる。図2に示されるように、これらのプロセスは、必要に応じて、プロセス部の上流または下流の流体温度を独立して調節するために、複数の熱交換器(HE)を利用する。温度制御撹拌タンクバッチ反応器、連続回転キルン、二軸押出機反応器、流動接触分解器と同様の循環流動床反応器、またはバブリング流動床反応器のいずれかを含むことができる反応器7内で、PVCおよびPETを含むMPWの熱分解を行うことができる。MPWは、MPW供給物流6によって供給装置5から反応器7に給送されうる。熱分解プロセスから得られた生成物(たとえば、炭化水素流8)は、反応器7内における熱的分解が200〜400℃の温和な温度条件の下で生じて粘性溶融物(たとえば、炭化水素流8)を形成する、部分的に分解された炭化水素流であることができる。いくつかの実施形態において、PVCは約240℃程度で劣化し始めることが知られているので、塩化物腐食から反応器機器および他の有用物を保護するために低温を熱分解反応のために用いることができる。DE10および真空ポンプ13を用いることによって、熱分解から形成される塩化水素をストリッピングすることができる。脱揮および分解反応における促進のために、高い真空圧力(10−9Torr〜10−12Torr)と共に、DE10内の温度を200〜450℃程度で維持することができる。DE10内の温度は、熱反応器7内の温度よりも高い。DE10内の脱揮の間、溶融物(たとえば、炭化水素流8)の粘度を約1桁減少させて、自由に流動する流体(たとえば、押出機排出物11)を生成することができる。DE10から得られた蒸気流12から無機塩化物類をスクラブするために、NaOH溶液またはKOH溶液を用いる苛性床スクラバ20aを用いることができる。しかし、DE10からの気相12中における軽い揮発性有機塩化物化合物類(VOCC)および/またはHClのいずれのキャリオーバ(carry over)も、別の型の吸着剤、または苛性床スクラバ20aに対して下流側のカラム床もしくは掃去剤床20bで処理して処理気体流21を生成することができる。処理気体流21は、ストリッピングガスとしてDE10に再利用されうる。有機塩化物類の分解を確実にするために、固定床反応器または流動床反応器の構成内におけるZSM−5および/または流動接触分解触媒などの適切なゼオライト触媒を用いて、350〜730℃の温度範囲の下で、接触分解器25内で、DE10から得られる液体の流れ(たとえば、押出機排出物11)をさらに分解することができる。接触分解器部25から得られる蒸気凝縮流(たとえば、炭化水素生成物流26)を撹拌タンク反応器(たとえば、掃去容器30)内における化学的掃去ステップに供することができる。この掃去ステップは、任意の適切な掃去剤、たとえば、フラー土、活性炭、ドロマイト、ベントナイト、酸化鉄、さらに、使用済み触媒などの低費用の掃去剤を、独立して、または、任意の適切な組み合わせで用いることができる。ppmレベルおよびサブppmレベルの塩化物を有する最終炭化水素液流(たとえば、仕上げ炭化水素流31)を形成するために、効率的な掃去および残余の塩化物の除去を確保するために、掃去容器30内のバッチ型システム内において、100〜200℃の温和な温度および激しい混合条件を用いることができる。仕上げ炭化水素流31を蒸気分解器40内でさらに分解して、高値生成物を生成することができる。塩素含有気体流32を掃去容器30から回収し、さらなる処理のために清浄剤床20bに送ることができる。掃去容器30内で用いられる使用済み掃去剤を掃去容器30から固形残渣流33として回収することが可能であり、廃棄物処理ステップに送ることが可能である。
【0066】
混合プラスチック廃棄物を処理するプロセスは、(a)炭化水素流前駆体流6(たとえば、供給装置5からの混合プラスチック廃棄物流)を熱分解反応器7に導入して、液相の炭化水素流8と気体流とを生成するステップであって、熱分解反応器7が約300℃〜約400℃の温度を特徴とし、炭化水素流8が炭化水素流8の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(b)炭化水素流8の少なくとも一部とゼオライト触媒とストリッピングガスとをDE10に導入して、押出機排出物11と使用済みストリッピングガス12とを生成するステップであって、DE10が約150℃〜約450℃の温度を特徴とし、DE10が約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DE10が約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物11が炭化水素流8中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、押出機排出物11の粘度が炭化水素流8の粘度よりも低く、使用済みストリッピングガス12がストリッピングガスの少なくとも一部と炭化水素流8の一種以上の塩化物化合物類の少なくとも一部とを含む、ステップと、(c)接触分解器25および/または掃去容器30内の押出機排出物11の少なくとも一部を脱塩素して、仕上げ炭化水素流31と塩素含有気体流とを生じさせるステップであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流31が、仕上げ炭化水素流31の総重量に対して約10ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(d)仕上げ炭化水素流31の少なくとも一部を蒸気分解器40に供給して、高値生成物を生じさせるステップであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ステップと、(e)DE10からの使用済みストリッピングガス12の少なくとも一部、および/または、熱分解反応器7からの気体流の少なくとも一部を塩化物ストリッピング部20内における苛性溶液に接触させて、使用済みストリッピングガス12、および/または、気体流から一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成するステップと、(f)処理された使用済みストリッピングガスの少なくとも一部、および/または、塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ/または、塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成するステップと、(g)処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供するステップと、(h)DE10へ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用するステップと、を含むことができる。たとえば、脱塩素プロセスは、熱分解、DEおよび化学的掃去による脱塩素液体への固形のMPW供給物の転化のために最後まで用いることができる、図1Cに示される通りの脱塩素システム102を用いることによって実施されうる。脱塩素システム102は、熱分解およびDEステップの間の有機塩化物の形成の可能性を低くするためのPETを有さない供給物のために有用である可能性がある。
【0067】
混合プラスチック廃棄物を処理するプロセスは、(a)ゼオライト触媒とストリッピングガスと炭化水素流前駆体流6(たとえば、供給装置5からの混合プラスチック廃棄物流)とをDE10に導入して、押出機排出物11と使用済みストリッピングガス12とを生成するステップであって、炭化水素流前駆体流6が炭化水素流前駆体流6の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含み、DE10が約150℃〜約450℃の温度を特徴とし、DE10が約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DE10が約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物11が炭化水素流前駆体流6中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、使用済みストリッピングガス12がストリッピングガスの少なくとも一部と炭化水素流前駆体流6の一種以上の塩化物化合物類の少なくとも一部とを含む、ステップと、(b)押出機排出物11の少なくとも一部を接触分解器25に導入して、液相の炭化水素生成物流26と気体生成物流とを生成するステップであって、炭化水素生成物流26の粘度が押出機排出物11の粘度よりも低く、接触分解器25が約350℃〜約730℃の温度を特徴とする、ステップと、(c)掃去容器30内における炭化水素生成物流26の少なくとも一部を脱塩素して、仕上げ炭化水素流31と塩素含有気体流とを生じさせるステップであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流31が、仕上げ炭化水素流31の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ステップと、(d)仕上げ炭化水素流31の少なくとも一部を蒸気分解器40に供給して、高値生成物を生じさせるステップであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ステップと、(e)DE10からの使用済みストリッピングガス12の少なくとも一部、接触分解器25からの気体生成物流の少なくとも一部、またはそれらの組み合わせを塩化物ストリッピング部20内における苛性溶液に接触させて、使用済みストリッピングガス12、気体生成物流またはそれらの組み合わせから一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成するステップと、(f)処理された使用済みストリッピングガスの少なくとも一部、および/または、塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ/または、塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成するステップと、(g)処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供するステップと、(h)DE10へ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用するステップと、を含むことができる。たとえば、脱塩素プロセスは、脱揮押出、接触分解および化学的掃去ステップによる脱塩素液体(たとえば、仕上げ炭化水素流31)への固形のMPW供給物の転化のために最後まで用いることができる、図1Dに示される通りの脱塩素システム103を用いることによって実施されうる。
【0068】
本明細書に開示される通りの混合プラスチック廃棄物を処理するプロセスは、触媒およびストリッピングガスの存在下でプラスチック廃棄物を処理するための脱揮押出機を組み込まない他の同様のプロセスと比較した場合、有利には、一つ以上のプロセス特性の向上を示すことができる。本明細書に開示される通りの混合プラスチック廃棄物を処理するプロセスは、有利には、熱分解油中の総塩化物含有量をパーセントレベルからppmレベルに減少させることが可能であり、そのことは、単一ステッププロセス(たとえば、DE)において機器の腐食の問題を伴わずに達成することが困難である可能性がある。本明細書に開示される通りの混合プラスチック廃棄物を処理するプロセスは、有利には、低費用の掃去剤(たとえば、ゼオライト触媒類、塩化物吸着体類)を用いて、混合プラスチック廃棄物の熱分解から生成された汚染炭化水素流の高脱塩素効率を達成することができる。
【0069】
図1Aに示される通りの脱塩素システム100は、有利には、最小数の処理ステップを利用することが可能であり、したがって、有利には、資本的支出および運営的支出の両方を最小限に抑えることによって、MPW供給物からの塩化物の除去に対して費用効果的でありうる。当業者によって理解されるように、本開示によれば、脱塩素システム100は、DEのために、より高価なMOCを必要としてもよいが、その理由は、それが脱塩素の負荷の大部分を取り扱うためである。さらに、当業者によって理解されるように、本開示によれば、溶融粘度の低下と掃去/仕上げステップの前に形成される有機塩化物類の分解とを同時に行うことを促進するために、DE中の溶融物の滞留時間が増加することが必要である可能性があり、したがって、押出機排出物の一部をDEへ再利用してもよい。
【0070】
図1Bに示される通りの脱塩素システム101は、無機化合物類および有機化合物類の両方を含む複数ステップの分解および塩化物除去能力のため、有利には、PETを多く含むMPW供給物を処理するために使用されうる。掃去ステップは、全体的プロセススキームにおける高脱塩素効率を達成するための仕上げステップであることができる。
【0071】
DEによって溶融粘度を低くすることによって、PVCを多く含むMPW供給物を処理するために、有利には、図1Cに示される通りの脱塩素システム102を用いることができる。理論によって限定されることを望むものではないが、供給物の性質のため、脱塩素システム102は、たとえば、脱塩素システム101と比較した場合、より少ない有機塩化物類の形成を可能にする。図3で分かるように、PVC含有MPW供給物は、PVCおよびPET含有MPW供給物よりも著しく低いppmの塩化物類を形成することができる。脱塩素システム102における熱分解ステップの後、DEは、二次的半接触分解ステップと考えることができる。掃去容器における仕上げステップは、有利には、非分解有機塩化物類を除去することができる。
【0072】
図1Dに示される通りの脱塩素システム103は、熱反応器の使用を回避することが可能であり、したがって、有利には、所望のレベルの脱塩素を達成しつつ本明細書に開示される通りの混合プラスチック廃棄物を処理するプロセスから一つのステップを取り除くことが可能である。本明細書に開示される通りの混合プラスチック廃棄物を処理するプロセスの追加的な長所は、本開示を確認する当業者にとって明らかでありうる。
【実施例】
【0073】
主題については概して記載したが、以下の実施例は、本開示の特定の実施態様として示すものであって、その実施および長所を示すためのものである。実施例は、例示として示されるものであって、いかなる仕方によっても続く請求項の記載事項を限定することを意図するものではないことが理解される。
【0074】
〔実施例1〕
19gの高密度ポリエチレン(HDPE)と、21gの低密度ポリエチレン(LDPE)と、24gのポリプロピレン(PP)と、18gの直鎖状低密度ポリエチレン(LLDPE)と、11gのポリスチレン(PS)と、7gのポリエチレンテレフタレート(PET)と、2gのポリ塩化ビニル(PVC)とを含む混合プラスチック廃棄物(MPW)の熱分解について検討した。供給物中に存在するPVCで低苛酷性熱分解を行った。PVCを含む上記通りの102gの量の混合プラスチック廃棄物を2重量%のZSM−5ゼオライト触媒粉末と混合し、凝縮器を装着した丸底フラスコ内で加熱した。360℃で1時間、丸底フラスコを維持した。液体生成物は、60重量ppmの塩化物を有した。Chlora M−シリーズ分析器(単色波長分散方式X線蛍光手法、ASTM D7536)を用いて液体生成物塩化物含有量を測定した。Nガスで丸底フラスコの上部空間のパージングを行って実施した同様の実験によって、検出可能な塩化物含有量のない液体生成物が提供された。これらの結果は、脱塩素を高めるための脱揮押出機(DE)部内における上部空間のパージングがもたらしうる有利な効果を示す。
【0075】
〔実施例2〕
熱的熱分解および触媒熱分解について、混合プラスチック廃棄物から得られた熱分解生成物の粘度を検討した。(触媒がある、実施例1に記載された通りの)接触分解からの熱分解生成物を必要温度に加熱し、その温度でBrookfieldデジタル粘度計を用いて粘度を測定した。図4は、温度の関数としての溶融粘度の変化の例を示し、(触媒がない、実施例1に記載された通りの)熱分解についての結果が1000s−1の剪断速度でGoettfrert高剪断キャピラリーレオメータ6000内においてその場(in situ)で得られ、MPWから生成された溶融物の粘度がレオメータセル温度の関数として減少することが分かる。理論によって限定されることを望むものではないが、図4において示される測定値は、DE10内の溶融流動挙動と類似する可能性がある。図4に示されるように、熱分解については、温度が250℃から290℃に上昇した場合、溶融物の粘度低下のパーセント値は40.63%であった。しかし、接触分解については、2%のZSM−5触媒の存在下で、粘度低減は、温度が270℃から310℃へ上昇するにつれて非常に高くなった(88.89%)。このことは、少量の触媒の使用が著しく溶融粘度の低下を促進する可能性があり、そのため、さらなる脱揮および掃去ステップにおいてMPW供給物の脱塩素を効率的に達成することができることを明確に示している。
【0076】
〔実施例3〕
水素化処理の後、さらなる塩化物除去のための後続の仕上げステップを行うことによって、プラスチック廃棄物の処理を行った。
【0077】
3ゾーンスプリットチューブ炉の中に位置する固定床反応器内でプラスチック廃棄物の水素化処理を行った。反応器内径は13.8mmであり、同心状に位置する外径3mmの床サーモウェルを有した。反応器は、長さが48.6cmであった。アルミナ上の、市販の水素化処理触媒であるCo−Mo(8gの無水重量)を長さに沿って長さ1.5mmの粒子に分解し、40%の触媒に対して60%のSiCの比率のSiCで希釈して、0.34mmの平均粒径を得た。これは、小径反応器内の壁面スリップまたはチャネリングによる塩化物のスリップを回避するために行った。予熱床およびポスト触媒不活性床を1mmのガラスビーズの形態で提供した。制御炉ゾーン表面温度を変化させることによって触媒床温度を等温性に制御した。ヘキサデカン中における3重量%のSを用いて水素化処理触媒を硫化した(Sはジメチルジスルフィドとして導入した)。液体供給物(すなわち、炭化水素流)を、定量ポンプを通して供給し、マスフローコントローラーを用いてHガスを供給した。(たとえば、(一種または複数種の)塩化物、塩素、硫化水素またはそれらの組み合わせを含む)凝縮されないガスを分離させつつ、加圧下で反応器排出物ガス(たとえば、炭化水素生成物)を冷却して液体(すなわち、液体生成物の形態の処理炭化水素流)を凝縮する。液体の凝縮後、液体の圧力を低下させ、排出物ガス流を苛性スクラバ内でスクラブし、ドラム型湿式ガスメータを用いて測定した。精油所ガス分析器(M/s AC Analyticals BVの特別仕様ガス分析器)を用いて排出物ガス流を分析した。実施例1に記載されるように塩化物含有量を測定した。
【0078】
混合プラスチック熱分解油の水素化処理の後で充填床反応器から得られた生成物は、総塩化物含有量が2.94重量ppmであった。これを蒸気分解器供給物についての境界値とみなすことができるので、その吸着性能をモニタするために、室温で1時間、5gのこの生成物を1gのγ−アルミナと混合することによって、仕上げステップを行った。この仕上げステップからの上清を分析し、1.46重量ppmの塩化物を有することが分かったが、このことは約50%の減少を示した。さらに、掃気タンク気相からの揮発性有機塩化物化合物類(VOCC)のいずれのキャリオーバも苛性スクラバの下流の掃去剤床/カラムを経由することが可能であった。
【0079】
〔実施例4〕
混合プラスチック供給物の熱分解を検討した。さらに具体的には、金属担持触媒および非金属担持触媒の存在下でPVC含有プラスチック供給混合物を加熱することによる係中での塩化物類の掃去とともに、熱分解生成物の粘度を分解温度の関数として検討した。
【0080】
《供給物の調製》
廃プラスチックモデル供給混合物を用いて丸底フラスコ(RBF)内で一連の熱接触分解実験を行った。この試験で用いられる供給混合物の組成物は、図5Aに示されるデータ表1に示される。Run#5を除いて、Run#1〜#7の全てについて、供給混合物においてPETを用いた。RBF内において、金属担持の有無にかかわらず、5gのZSM−5ゼオライト触媒#1(CAT−1)を、HDPE、LDPE、LLDPE、PVC、PS、PPおよびPETを含む約100gのプラスチック供給混合物に加えて配置した。供給物および触媒の完全な混合を確保するために各Runの実行前に供給物および触媒の上記混合物をステンレス鋼(SS)スパチュラでRBF内において完全に混合して、適切な供給物の分解を確保した。ZSM−5 CAT−1は、Bruker製装置で行った固体状態核磁気共鳴(NMR)分光法(400MHz、室温、4mmマジックアングルスピニング(MAS)プローブ、スピニング10KHz、パルス4.2μs、遅延時間5秒)で測定された、Si/Al比3.4を特徴とした。
【0081】
《供給物の加熱》
磁気撹拌による補助と共にPID温度制御器を有する外部マントルヒータを用いて、供給混合物を加熱に供した。さらに、プラスチック供給混合物を、目標とする温度条件に達した後、20分の反応保持時間で360℃の最大分解温度に加熱した。漸増的ステップ加熱を用いることによって、RBF内における過加熱を回避した。初期温度(周囲)から300℃への加熱の間は50℃の漸増的ステップを用い、次いで、360℃の最大供給物分解温度まで10℃の漸増的ステップを用いた。
【0082】
《触媒担持》
Run#1について、触媒ZSM−5 CAT−1をベースライン触媒(たとえば、ベース触媒)として用いた。しかし、図5Bに示されるデータ表2に示される通りの全ての他のRunについて、排他的に、またはベース触媒との組み合わせにおいて、Mg担持ZSM−5 CAT−1を用いた。各Runの間に用いた触媒担持および分解温度条件は、図5Bに示される表2に示される通りである。Run#1および#2について、脱揮押出プロセスにおいて一般的な軸方向温度条件と類似させるために、360℃の分解温度に達する前に、300℃、320℃および340℃で20分間保持する追加的保持時間を設けた。
【0083】
《オフガス処理》
無酸素反応環境と、供給混合物から遊離した塩化物類のストリッピングとを確保するために、各Runの間、窒素の一定のパージを維持するためにガラスバブラ装置を用いた。窒素と軽い揮発性炭化水素類とを含むガス混合物は、10℃の水冷温度を有するガラス凝縮器を通過させた。さらに、熱触媒分解の間に形成された塩化物類をトラップするために、新たに調製されたNaOH溶液(20重量%)を含む苛性浴を用いた。RBF温度300℃付近において、(RBFからのガスのバブリングによって)塩化物類が苛性浴内にトラップされたことにより、透明から黄緑への可視変色が観察された。
【0084】
《物質収支》
RBFから苛性装置への凝縮器への揮発性炭化水素類のキャリオーバのため、視認できる凝縮は(バブラ内の苛性溶液より上の分離炭化水素層として)観察されなかった。図5Bに示される表2に示されるように、全てのRunについての物質収支は89.23重量%〜97.32重量%の範囲だった。喪失は、主に、2.68重量%〜10.77重量%の範囲の漏出の間にRBFから流出する炭化水素類のガスまたは揮発物類と考えられた。
【0085】
《試料の回収および分析》
分解反応が完了した後、ロウおよびコークスの付着物を有する触媒粒子を主に含む底層から上部溶融物層をデカントすると共に、RBFからの熱溶融物を石英ペトリ皿の上に注いだ。室温まで冷却した後、上層は固形ケークになり、それを粘度および塩化物の分析のために再加熱した。有機蒸気のフラッシングとバブルの形成とを防止するために、溶融物のデカント操作をフード内で慎重に行った。
【0086】
《プラスチック溶融粘度》
5号スピンドルを有するBrookfield RV DV II粘度計を用いて、200℃から350℃までのセル温度の関数としてプラスチック溶融粘度を測定した。測定の開始前に100mLのビーカー内で試料を200℃で20分間調整した。測定スピンドル(5号スピンドル)を試料内に挿入し、それぞれの温度(200℃)に加熱した。粘度測定セル内で200℃の定常状態温度を達した後に試料を均質化するために予備剪断を2分間行った。均質化した試料において測定を行った。次いで、粘度データを、350℃の最大セル温度まで、測定可能なトルク限界の範囲内で連続的に記録した。温度を200℃から350℃まで増加させ、各測定値温度で粘度を記録した。
【0087】
《塩化物分析》
分解プラスチック溶融物(上記のように上層から得られる固形ケーク)と、触媒粒子と、触媒粒子の溶媒洗浄から得られた液体留分とについて、総塩化物分析を行った。110℃のエチルベンゼン(EB)を用いて触媒粒子の底層を加熱し、アセトン洗浄による二次的洗浄のために触媒粒子を回収した。濾過から固形触媒を回収した後、使用済み溶媒を乾燥した後、総塩化物含有率についてエチルベンゼンおよびアセトンの洗浄混合物を独立して分析した。
【0088】
《溶融粘度の結果》
Run#1〜#7についての溶融粘度データを図6A図6B図6C図6D図6E図6Fおよび図6Gに示す。図6A図6B図6C図6D図6E図6Fおよび図6Gは、それぞれRun#1、#2、#3、#4、#5、#6および#7についての、セル温度の関数としての溶融粘度を示す。最小粘度は、Run#1について、対応する310℃の測定セル温度で8cPであることが観察された。最大粘度は、Run#3について、対応する225℃の測定セル温度で3700cPであることが観察された。図6Aに示されるように、Run#1についての粘度プロファイルは、セル温度が200℃から310℃に増加した場合に188cPから8cPまでの急激な低下(95.74%の変化)を示した。この傾向は、金属担持のないベース触媒が、触媒にMgを担持させた他の三つのRunと比較して最も高い分解活性を有することを示す。理論によって限定されることを望むものではないが、Mgを加えることによって、ZSM−5 CAT−1の酸性度は潜在的に減少し、それ故、低下した分解活性が観察された。Run#2についての粘度プロファイルは図6Bに示され(Run#2についての試験条件は、温度に関してはRun#1と同じであるが、Run#2は、Run#1において用いられたベースライン触媒の代わりにMg担持ZSM−5 CAT−1を用いた)、粘度が200℃における972cPから310℃における188cPに低下したことを示す。このことは、Run#2における分解の程度が、Run#1よりも低かったことを示す。図6B図6C図6Dおよび図6Eの比較もまた、分解温度の増加と共に生成物の粘度が減少することを示す。360℃のより高い分解温度のため、Run#2からの溶融物について200℃で測定した初期粘度は、Run#3および#4からの溶融物よりも少なくとも3.45倍低かった。コークスおよびロウの形成は、Run#2〜#4において、より苛酷であることが観察された。また、図5Bに示される表2から分かるように、RBF温度がより低かった場合、ガス(揮発物%)としての生成物の喪失は減少し、溶融物/液体生成物の、より良好な収率が得られた。しかし、Mg担持触媒の塩化物掃去は、Run#5について図5Cに示されるデータ表3において総塩化物分析データによって確認されるように、非常に、より高かった。Run#3および#4の場合、実験の間のガスパージは、ガラス接合部からの漏出のために頻繁に中断され、その結果、これらの場合の塩化物含有率は、期待されるものよりも高いレベルを示した。故に、金属担持ZSM−5 CAT−1は、ベース触媒と比較して、良好な脱塩素と良好な液体収率とをもたらした。ベース触媒によって、脱塩素が良好になるが、より高い転化のため、揮発物の喪失のために液体生成物収率が劣った。
【0089】
故に、脱揮押出機内における金属担持触媒を用いた処理部は、下流分解部へ進む、塩化物含有率が低下した液体供給物を最大化することになった。しかるに、下流分解部内の選択分解から全体的生成物収率を高めることができた。また、液体供給物塩化物含有率の低下のため、下流分解部は、ガス上の低分子量オレフィン類および芳香族化合物類などの高値化学物質の収率の増大ための、より苛酷な分解条件を用いることが可能であった。さらに、下流部への供給物の塩化物含有率が非常に低下することになったので、下流部は、より従来の、かつ、より低価格の構成材料を用いることが可能であり、腐食の可能性が低くなるので耐用年数がより長くなる可能性があった。
【0090】
Run#6および#7から分かるように、分解、粘度低下および塩化物掃去を達成するために、ZSM−5 CAT−1およびMg/金属担持ZSM−5 CAT−1の混合物を用いることも可能である。Run#6は、ZSM−5 CAT−1および10%Mg−ZSM−5 CAT−1の4:1の重量比の混合物を用いる場合であっても、生成物中の塩化物類を1ppmレベル未満に減少させることが可能であることを示す。図6F(Run#6)と図6B(Run#2)とのデータの比較は、10%Mg担持ZSM−5 CAT−1に対するZSM−5 CAT−1の4:1の質量比によって、Mg担持ZSM−5 CAT−1のみの使用と比較して、分解がより大きくなる結果、粘度の全体的低下がより大きくなることを示す。Run#4からの液体生成物に対して分解環境内で提供される追加的滞留時間の効果を試験するために、Run#7を行った。この場合は、押出機からの触媒と共に下流の接触分解器または熱分解器に進むロウを含む脱揮押出機生成物の場合と類似している。この場合についての塩化物の結果から分かるように、Run#4における100ppm超からRun#7における約4ppmへの塩化物類の著しい減少が起きる。図6D(Run#4)と図6G(Run#7)とのデータの比較は、追加的保持時間および追加的分解による粘度の著しい低下を示す。故に、脱揮押出機の下流の分解部は追加的滞留時間を提供することができたが、追加的滞留時間は、著しい脱塩素をもたらす可能性があり、所望の特性を有する生成物を提供する可能性があった。脱揮押出機の下流の分解部は、必ずしも新鮮な触媒を必要とするというわけではなく(そのような部内で新鮮な触媒を用いることは可能であったものの)、押出機排出物流(たとえば、脱揮押出機排出物)中に存在する触媒(たとえば、残留触媒)のみを用いることによって分解を提供することが可能であった。
【0091】
以下の実施形態によって本開示をさらに示すが、それらの実施形態は、いかなる形であれ、その範囲に限定を課すものとして解釈されないものとする。逆に、本明細書における記載を読んだ後で本発明の精神または添付の特許請求の範囲を逸脱することなく当業者に対して示唆することができる各種の他の態様、実施形態、修正およびそれらの均等物を為すことができることが明確に理解される。
【0092】
〔追加的開示〕
以下は、非限定的な例として提供される、列挙された態様である。
【0093】
炭化水素流および/または炭化水素流前駆体の脱塩素のためのプロセスであって、プロセスが、炭化水素流および/または炭化水素流前駆体と、第一ゼオライト触媒と、ストリッピングガスとを脱揮押出機(DE)に導入して押出機排出物を生成することを含み、炭化水素流および/または炭化水素流前駆体が、炭化水素流および/または炭化水素流前駆体の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含み、押出機排出物が、炭化水素流および/または炭化水素流前駆体中の塩化物量よりも少ない量の一種以上の塩化物化合物類を含む、プロセスである、第一の態様。
【0094】
押出機排出物が押出機溶融物排出物または押出機液体排出物である、第一の態様に記載のプロセスである第二の態様。
【0095】
第一ゼオライト触媒が、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライト、金属担持ゼオライトまたはそれらの組み合わせを含む、第一および第二の態様のいずれか一項に記載のプロセスである第三の態様。
【0096】
第一ゼオライト触媒が100マイクロメートル未満の平均粒径を特徴とする、第一の態様から第三の態様のいずれか一項に記載のプロセスである第四の態様。
【0097】
第一ゼオライト触媒が10マイクロメートル未満の平均粒径を特徴とする、第一の態様から第四の態様のいずれか一項に記載のプロセスである第五の態様。
【0098】
第一ゼオライト触媒が、炭化水素流および/または炭化水素流前駆体の総重量に対して、約5重量%未満の量で存在する、第一の態様から第五の態様のいずれか一項に記載のプロセスである第六の態様。
【0099】
ストリッピングガスが、窒素、水素、アルゴン、ヘリウム、C〜Cガス状炭化水素類、アルカン類、メタン、エタン、プロパン、ブタン、イソブタンまたはそれらの組み合わせを含む、第一の態様から第六の態様のいずれか一項に記載のプロセスである第七の態様。
【0100】
DEが約150℃〜約450℃の温度を特徴とする、第一の態様から第七の態様のいずれか一項に記載のプロセスである第八の態様。
【0101】
DEが約1気圧(絶対圧)(atma)〜約10−14Torrの圧力を特徴とする、第一の態様から第八の態様のいずれか一項に記載のプロセスである第九の態様。
【0102】
DEが、約0.1分間〜約1時間以上の滞留時間を特徴とする、第一の態様から第九の態様のいずれか一項に記載のプロセスである第十の態様。
【0103】
押出機排出物の一部をDEへ再利用する、第一の態様から第十の態様のいずれか一項に記載のプロセスである第十一の態様。
【0104】
押出機排出物の沸点の端点が約370℃未満であることを提供するために有効な押出機排出物の量をDEへ再利用することをさらに含む、第一の態様から第十一の態様のいずれか一項に記載のプロセスである第十二の態様。
【0105】
掃去容器内において押出機排出物の少なくとも一部を脱塩素して仕上げ炭化水素流を生じさせることであって、仕上げ炭化水素流が仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことをさらに含む、第一の態様から第十二の態様のいずれか一項に記載のプロセスである第十三の態様。
【0106】
脱塩素が、吸着脱塩素によって一種以上の塩化物化合物類の少なくとも一部を除去して、仕上げ炭化水素流を生じさせることを含む、第十三の態様に記載プロセスである第十四の態様。
【0107】
仕上げ炭化水素流が、仕上げ炭化水素流の総重量に対して約1ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、第一の態様から第十四の態様のいずれか一項に記載のプロセスである第十五の態様。
【0108】
脱塩素が、押出機排出物の少なくとも一部を塩化物吸着体に接触させることを含み、押出機排出物が第一ゼオライト触媒の少なくとも一部を含み、塩化物吸着体および/または第一ゼオライト触媒が押出機排出物の一種以上の塩化物化合物類の少なくとも一部の除去を提供する、第一の態様から第十五の態様のいずれか一項に記載のプロセスである第十六の態様。
【0109】
塩化物吸着体が、アタパルジャイト、活性炭、ドロマイト、ベントナイト、酸化鉄、針鉄鉱、赤鉄鉱、磁鉄鉱、アルミナ、ガンマアルミナ、シリカ、アルミノケイ酸塩類、イオン交換樹脂類、ハイドロタルサイト類、スピネル類、各種酸化銅、酸化亜鉛、酸化ナトリウム、酸化カルシウム、酸化マグネシウム、金属担持ゼオライト類、モレキュラーシーブ13Xまたはそれらの組み合わせを含む、第十六の態様に記載のプロセスである第十七の態様。
【0110】
仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることをさらに含む、第一の態様から第十七の態様のいずれか一項に記載のプロセスであって、仕上げ炭化水素流が、沸点の端点が約370℃未満であり、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、プロセスである第十八の態様。
【0111】
脱塩素が、(i)約25℃〜約225℃の温度で、および/または、(ii)かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起きる、第一の態様から第十八の態様のいずれか一項に記載のプロセスである第十九の態様。
【0112】
(i)掃去容器から塩素含有気体流を回収することと、(ii)塩素含有気体流の少なくとも一部から塩化物の少なくとも一部を除去して処理気体流を生成することと、(iii)DEへ、ストリッピングガスとして処理気体流の少なくとも一部を再利用することと、をさらに含む、第一の態様から第十九の態様のいずれか一項に記載のプロセスである第二十の態様。
【0113】
(i)押出機排出物の少なくとも一部を接触分解器に導入して炭化水素生成物流を生成することであって、炭化水素生成物流の粘度が押出機排出物の粘度よりも低い、ことと、(ii)炭化水素生成物流の少なくとも一部を脱塩素して仕上げ炭化水素流を生成することであって、仕上げ炭化水素流が、仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことと、をさらに含む、第一の態様から第二十の態様のいずれか一項に記載のプロセスである第二十一の態様。
【0114】
押出機排出物が第一ゼオライト触媒の少なくとも一部を含み、接触分解器が第二ゼオライト触媒を含み、第一ゼオライト触媒および第二ゼオライト触媒が同一または異なり、第一ゼオライト触媒および第二ゼオライト触媒の両方が押出機排出物の接触分解を提供して炭化水素生成物流を生成する、第二十一の態様に記載のプロセスである第二十二の態様。
【0115】
第一ゼオライト触媒が二種以上の異なるゼオライト触媒の混合物であり、各ゼオライト触媒が流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から独立して選択されうる、第一の態様から第二十二の態様のいずれか一項に記載のプロセスである第二十三の態様。
【0116】
第二ゼオライト触媒が二種以上の異なるゼオライト触媒をマトリックス内に埋込むことによって得られる統合触媒粒子を含み、各ゼオライト触媒が流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から独立して選択されうる、第一の態様から第二十三の態様のいずれか一項に記載のプロセスである第二十四の態様。
【0117】
第二ゼオライト触媒が、流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から選択される、第一の態様から第二十四の態様のいずれか一項に記載のプロセスである第二十五の態様。
【0118】
第二ゼオライト触媒が二種以上のゼオライト触媒の物理的混合物であり、各ゼオライト触媒が流動接触分解触媒、モレキュラーシーブ、ゼオライト、疎水性ゼオライト、ZSM−5ゼオライトおよび金属担持ゼオライトからなる群から独立して選択されうる、第一の態様から第二十五の態様のいずれか一項に記載のプロセスである第二十六の態様。
【0119】
接触分解器が、約350℃〜約730℃の温度を特徴とする、第一の態様から第二十六の態様のいずれか一項に記載のプロセスである第二十七の態様。
【0120】
(i)押出機排出物の少なくとも一部を熱分解反応器に導入して炭化水素生成物流を生成することであって、炭化水素生成物流の粘度が押出機排出物の粘度よりも低い、ことと、(ii)炭化水素生成物流の少なくとも一部を脱塩素して仕上げ炭化水素流を生成することであって、仕上げ炭化水素流が、仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類をさらに含む、第一の態様から第二十七の態様のいずれか一項に記載のプロセスである第二十八の態様。
【0121】
(i)DEから使用済みストリッピングガスを回収することであって、使用済みストリッピングガスがストリッピングガスの少なくとも一部と一種以上の塩化物化合物類とを含み、一種以上の塩化物化合物類が、炭化水素流および/または炭化水素流前駆体の塩化物の少なくとも一部を含む、ことと、(ii)使用済みストリッピングガスの少なくとも一部を苛性溶液に接触させて、使用済みストリッピングガスから塩化物の第一の一部を除去し、処理された使用済みストリッピングガスを生成することと、(iii)処理された使用済みストリッピングガスの少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の第二の一部を除去して処理気体流を生成することと、(iv)DEへ、ストリッピングガスとして処理気体流の少なくとも一部を再利用することと、をさらに含む、第一の態様から第二十八の態様のいずれか一項に記載のプロセスである第二十九の態様。
【0122】
炭化水素流前駆体が混合プラスチック廃棄物を含む、第一の態様から第二十九の態様のいずれか一項に記載のプロセスである第三十の態様。
【0123】
混合プラスチック廃棄物が、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリオレフィン類、ポリスチレン類またはそれらの組み合わせを含む、第三十の態様に記載のプロセスである第三十一の態様。
【0124】
混合プラスチック廃棄物が、混合プラスチック廃棄物の総重量に対して約200ppm以上の量の塩化物を含む、第一の態様から第三十一の態様のいずれか一項に記載のプロセスである第三十二の態様。
【0125】
混合プラスチック廃棄物が、混合プラスチック廃棄物の総重量に対して約400重量ppm以上の量のPVCおよび/またはPVDCを含む、第一の態様から第三十二の態様のいずれか一項に記載のプロセスである第三十三の態様。
【0126】
炭化水素流前駆体の少なくとも一部を熱分解反応器に導入して炭化水素流を生成することであって、熱分解反応器が約300℃〜約400℃の温度を特徴とする、ことをさらに含む、第一の態様から第三十三の態様のいずれか一項に記載のプロセスである第三十四の態様。
【0127】
押出機排出物の粘度が炭化水素流の粘度よりも低い、第一の態様から第三十四の態様のいずれか一項に記載のプロセスである第三十五の態様。
【0128】
(a)混合プラスチック廃棄物を熱分解反応器に導入して、液相の炭化水素流と気体流とを生成することであって、熱分解反応器が約300℃〜約400℃の温度を特徴とし、炭化水素流が炭化水素流の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(b)炭化水素流の少なくとも一部とゼオライト触媒とストリッピングガスとを脱揮押出機(DE)に導入して、押出機排出物と使用済みストリッピングガスとを生成することであって、DEが約150℃〜約450℃の温度を特徴とし、DEが約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DEが約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物が炭化水素流中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、押出機排出物の粘度が炭化水素流の粘度よりも低く、使用済みストリッピングガスがストリッピングガスの少なくとも一部と炭化水素流の一種以上の塩化物化合物類の少なくとも一部とを含む、ことと、(c)押出機排出物の少なくとも一部を接触分解器に導入して、液相の炭化水素生成物流と気体生成物流とを生成することであって、炭化水素生成物流の粘度が押出機排出物の粘度よりも低く、接触分解器が約350℃〜約730℃の温度を特徴とする、ことと、(d)炭化水素生成物流の少なくとも一部を脱塩素して、仕上げ炭化水素流と塩素含有気体流とを生じさせることであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流が、仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(e)仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ことと、(f)DEからの使用済みストリッピングガスの少なくとも一部、熱分解反応器からの気体流の少なくとも一部、接触分解器からの気体生成物流の少なくとも一部、またはそれらの組み合わせを苛性溶液に接触させて、使用済みストリッピングガス、気体流、気体生成物流またはそれらの組み合わせから一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成することと、(g)処理された使用済みストリッピングガスの少なくとも一部、および/または、塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ/または、塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成することと、(h)処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供することと、(i)DEへ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用することと、を含む、混合プラスチック廃棄物を処理するプロセスである第三十六の態様。
【0129】
混合プラスチック廃棄物が、約400重量ppm以上のポリ塩化ビニルおよび/またはポリ塩化ビニリデンと、約400重量ppm以上のポリエチレンテレフタレートとを含む、第三十六の態様に記載のプロセスである第三十七の態様。
【0130】
(a)混合プラスチック廃棄物を熱分解反応器に導入して、液相の炭化水素流と気体流とを生成することであって、熱分解反応器が約350℃〜約730℃の温度を特徴とし、炭化水素流が炭化水素流の総重量に対して約10ppm以上の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(b)炭化水素流の少なくとも一部とゼオライト触媒とストリッピングガスとを脱揮押出機(DE)に導入して、押出機排出物と使用済みストリッピングガスとを生成することであって、DEが約150℃〜約450℃の温度を特徴とし、DEが約1気圧(絶対圧)〜約10−14Torrの圧力を特徴とし、DEが約0.1分間〜約1時間以上の滞留時間を特徴とし、押出機排出物が炭化水素流中において塩化物量よりも少ない量の一種以上の塩化物化合物類を含み、押出機排出物の粘度が炭化水素流の粘度よりも低く、使用済みストリッピングガスがストリッピングガスの少なくとも一部と炭化水素流の一種以上の塩化物化合物類の少なくとも一部とを含む、ことと、(c)押出機排出物の少なくとも一部を脱塩素して、仕上げ炭化水素流と塩素含有気体流とを生じさせることであって、脱塩素が、約25℃〜約225℃の温度で、かつ、かき回し、撹拌、磁気撹拌、吸着剤の固定吸着床もしくは流動吸着床の通過、またはそれらの組み合わせの下で起き、仕上げ炭化水素流が、仕上げ炭化水素流の総重量に対して約3ppm未満の塩化物の量の一種以上の塩化物化合物類を含む、ことと、(d)仕上げ炭化水素流の少なくとも一部を蒸気分解器に供給して、高値生成物を生じさせることであって、高値生成物がエチレン、プロピレン、ブテン、ブタジエン、芳香族化合物類またはそれらの組み合わせを含む、ことと、(e)DEからの使用済みストリッピングガスの少なくとも一部、および/または、熱分解反応器からの気体流の少なくとも一部を苛性溶液に接触させて、使用済みストリッピングガス気体流から一種以上の塩化物化合物類の一部を除去し、かつ、処理された使用済みストリッピングガスを生成することと、(f)処理された使用済みストリッピングガスの少なくとも一部、および/または、塩素含有気体流の少なくとも一部を塩化物吸着体に接触させて、処理された使用済みストリッピングガスから塩化物の少なくとも一部を除去し、かつ/または、塩素含有気体流から塩化物の少なくとも一部を除去し、かつ、処理気体流を生成することと、(g)処理気体流から高値生成物としてオレフィン類のガスを分離して、分離された処理ガス流を提供することと、(h)DEへ、ストリッピングガスとして、処理気体流の少なくとも一部、および/または、分離された処理ガス流の少なくとも一部を再利用することと、を含む、混合プラスチック廃棄物を処理するプロセスである第三十八の態様。
【0131】
混合プラスチック廃棄物が約400重量ppm以上のポリ塩化ビニルおよび/またはポリ塩化ビニリデンを含む、第三十八の態様のプロセスである第三十九の態様。
【0132】
本開示の態様を図面と共に記載したが、本発明の精神および教示を逸脱することなくその修正を為すことができる。本明細書に記載されている態様および実施例は、ただ例示的であるのみであって、限定することを意図するものではない。本明細書に開示される本発明の多くの変更および修正が可能であり、本発明の範囲内である。
【0133】
したがって、保護の範囲は、上記で述べられた記載によって限定されるものではないが、以下の請求項によって限定されるだけであり、その範囲は請求項の主題の全ての均等物を含む。いずれの請求項も本発明の一態様として本明細書に組み込まれる。しかるに請求項は、さらなる記載であり、かつ、本発明の「発明を実施するための形態」への追加である。本明細書において引用される全ての特許、特許出願および刊行物の開示は、参照により本明細書に組み込まれる。
図1A
図1B
図1C
図1D
図2
図3
図4
図5A
図5B
図5C
図6A
図6B
図6C
図6D
図6E
図6F
図6G