【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度、国立研究開発法人科学技術振興機構、SIP(戦略的イノベーション創造プログラム)、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限り、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
【0014】
図1は、実施の形態に係る有機ハイドライド製造装置の概略構造を示す断面図である。有機ハイドライド製造装置100は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化する電解セルであり、主な構成として、電解質膜102と、カソード104と、カソード室106と、アノード108と、アノード支持体110と、アノード室112と、一対のセパレータ114a,114bと備える。電解質膜102、カソード104及びアノード108により膜電極接合体が構成される。
【0015】
電解質膜102は、プロトン伝導性を有する材料(アイオノマー)で形成される。電解質膜102は、プロトンを選択的に伝導する一方で、カソード104とアノード108との間で物質が混合したり拡散したりすることを抑制する。プロトン伝導性を有する材料としては、ナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマーが挙げられる。電解質膜102の厚さは、特に限定されないが、好ましくは5〜300μmであり、より好ましくは10〜150μmであり、さらに好ましくは20〜100μmである。電解質膜102の厚さを5μm以上とすることで、電解質膜102のバリア性を確保して、被水素化物、有機ハイドライド及び酸素等のクロスリークの発生をより確実に抑制することができる。また、電解質膜102の厚さを300μm以下とすることで、イオン移動抵抗が過大になることを抑制することができる。
【0016】
電解質膜102には、多孔性のPTFE(ポリテトラフルオロエチレン)等の補強材が混合されてもよい。補強材を導入することで、電解質膜102の寸法安定性の低下を抑制することができる。これにより、電解質膜102の耐久性を向上させることができる。また、被水素化物、有機ハイドライド及び酸素等のクロスオーバーを抑制することができる。また、電解質膜102の表面は、所定の無機物層の被覆等によって親水化してもよい。
【0017】
カソード104は、電解質膜102の一方の側に設けられる。本実施の形態では、カソード104は電解質膜102の一方の主表面に接するように設けられている。カソード104は、カソード触媒層116と、マイクロポーラス層118と、拡散層120とがこの順に積層された構造を有する。より具体的には、カソード触媒層116は、電解質膜102の一方の主表面に接する。マイクロポーラス層118は、カソード触媒層116の電解質膜102とは反対側の主表面に接する。拡散層120は、マイクロポーラス層118のカソード触媒層116とは反対側の主表面に接する。なお、マイクロポーラス層118及び拡散層120は、適宜省略することができる。
【0018】
カソード触媒層116は、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒(還元触媒)を含む。カソード触媒としては、例えばPt、Ru、Pd、Ir及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。カソード触媒は、市販品を用いてもよいし、公知の方法に従って合成したものを用いてもよい。また、カソード触媒は、Pt、Ru、Pd、Irの少なくとも1つからなる第1の触媒金属(貴金属)と、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Sn、W、Re、Pb、Biから選択される1種又は2種以上の第2の触媒金属とを含む金属組成物で構成されてもよい。この場合、当該金属組成物の形態としては、第1の触媒金属と第2の触媒金属との合金、あるいは第1の触媒金属と第2の触媒金属からなる金属間化合物などが挙げられる。
【0019】
カソード触媒は、電子伝導性材料で構成される触媒担体によって担持される。カソード触媒を触媒担体に担持させることで、カソード触媒層116の表面積を拡大することができる。また、カソード触媒の凝集を抑制することができる。触媒担体としては、例えば多孔性カーボン(メソポーラスカーボンなど)、多孔性金属、多孔性金属酸化物のいずれかを主成分として含有する電子伝導性材料を挙げることができる。
【0020】
多孔性カーボンとしては、例えばケッチェンブラック(登録商標)、アセチレンブラック、ファーネスブラック、バルカン(登録商標)などのカーボンブラックが挙げられる。カーボンブラック等の炭素微粒子の平均粒径は、好ましくは0.01μm〜1μmである。多孔性金属としては、例えばPtブラック、Pdブラック、フラクタル状に析出させたPt金属などが挙げられる。多孔性金属酸化物としては、例えばTi、Zr、Nb、Mo、Hf、Ta、Wの酸化物が挙げられる。また、触媒担体には、Ti、Zr、Nb、Mo、Hf、Ta、Wなどの金属の窒化物、炭化物、酸窒化物、炭窒化物、部分酸化した炭窒化物といった、多孔性の金属化合物も用いることができる。
【0021】
カソード触媒を担持した状態の触媒担体は、アイオノマーで被覆される。これにより、カソード104のイオン伝導性を向上させることができる。アイオノマーとしては、例えばナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマー等を挙げることができる。カソード触媒層116に含まれるアイオノマーは、カソード触媒を部分的に被覆していることが好ましい。これによれば、カソード触媒層116における電気化学反応に必要な3要素(被水素化物、プロトン、電子)を効率的に反応場に供給することができる。
【0022】
カソード触媒層116の厚さは、好ましくは1〜100μmであり、より好ましくは5〜30μmである。カソード触媒層116の厚さが増加すると、プロトンの移動抵抗が増大するだけでなく、被水素化物や有機ハイドライドの拡散性も低下する。このため、カソード触媒層116の厚さは、上述した範囲で調整することが望ましい。
【0023】
拡散層120は、外部から供給される液状の被水素化物をカソード触媒層116に均一に拡散させる機能を担う。拡散層120を構成する材料は、被水素化物や有機ハイドライドに対して親和性が高いことが好ましい。拡散層120を構成する材料としては、例えば多孔性導電基材や繊維焼結体等が例示される。これらは、ガス及び液の供給や除去に適した多孔性を有し、且つ十分な電導性を保つことができるため好ましい。拡散層120の厚さは、好ましくは10〜5000μmである。
【0024】
拡散層120を構成する材料のより具体的な例としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等を挙げることができる。カーボンクロスは、数μmの径の細いカーボン繊維を数百本の束とし、この束を織布としたものである。また、カーボンペーパーは、カーボン原料繊維を製紙法にて薄膜の前駆体とし、これを焼結したものである。
【0025】
マイクロポーラス層118は、液体の被水素化物及び有機ハイドライドの、カソード触媒層116の面方向への拡散を促す機能を有する。マイクロポーラス層118は、例えば導電性粉末と撥水剤とを混練して得られるペースト状の混練物を、拡散層120の表面に塗布し、乾燥させることで形成することができる。導電性粉末としては、例えばバルカン(登録商標)等の導電性カーボンを用いることができる。撥水剤としては、例えば四フッ化エチレン樹脂(PTFE)などのフッ素系樹脂を用いることができる。導電性粉末と撥水剤の割合は、所望の導電性及び撥水性が得られる範囲内で適宜定められる。なお、マイクロポーラス層118は、拡散層120と同様にカーボンクロスやカーボンペーパー等で構成することもできる。
【0026】
マイクロポーラス層118の厚さは、好ましくは1〜50μmである。マイクロポーラス層118が拡散層120の表面よりも内部に落ち込むように形成されている場合には、拡散層120に潜っている部分を含めて、マイクロポーラス層118自体の膜厚の平均をマイクロポーラス層118の厚さと定義する。マイクロポーラス層118の表面には、金属成分を共存させてもよい。これにより、マイクロポーラス層118の電子伝導性が向上し、電流の均一化を図ることができる。
【0027】
マイクロポーラス層118と拡散層120とは、それぞれ厚さ方向に圧力が加えられた状態で使用される。したがって、使用時の厚さ方向への加圧によって、それぞれの厚さ方向における導電性が変化することは好ましくない。このため、マイクロポーラス層118及び拡散層120は、予めプレス加工が施されることが好ましい。これにより、各層の厚さ方向における導電性を高め、且つ安定させることができる。また、カソード触媒層116とマイクロポーラス層118との接合度を向上させることも、カソード104の導電性向上に寄与する。また、当該接合度の向上によって、原料物質の供給能力と生成物質の除去能力とが向上する。
【0028】
カソード室106は、カソード104を収容する空間である。カソード室106は、電解質膜102と、セパレータ114aと、電解質膜102及びセパレータ114aの間に配置される枠状のスペーサ122とで画成される。カソード室106には、カソード104だけでなく、流路部124が収容される。
【0029】
流路部124は、拡散層120に隣接して配置される。より具体的には、流路部124は、拡散層120のマイクロポーラス層118とは反対側の主表面に接するように設けられる。したがって、流路部124は、拡散層120とセパレータ114aとの間に配置される。流路部124は、板状の本体部124aの主表面に溝124bが設けられた構造を有する。溝124bは、被水素化物の流路を構成する。本体部124aは、導電性材料からなる。流路部124は、カソード室106内において、カソード104の位置決めをするカソード支持体としても機能する。流路部124は、後述するアノード支持体110により押し付けられる力を受け止めて、セパレータ114aとカソード104との間の電子伝導性を確保する。
【0030】
スペーサ122は、被水素化物及び水素化物を含む有機物がカソード室106の外へ漏洩することを防ぐシール材を兼ねており、好ましくは電子的に絶縁性を有する。スペーサ122を構成する材料としては、例えば4フッ化エチレン樹脂が挙げられる。また、スペーサ122には、カソード室106の内部と外部とを連通する、カソード室入口126及びカソード室出口128が配置される。
【0031】
カソード室入口126は、カソード室106の鉛直方向下方に配置される。カソード室入口126は、一端が流路部124の流路に接続され、他端がカソード液貯蔵槽(図示せず)に接続される。カソード室入口126とカソード液貯蔵槽との間には、ギアポンプやシリンダーポンプ等の各種ポンプ、または自然流下式装置等で構成されるカソード液供給装置(図示せず)が設けられる。
【0032】
カソード液貯蔵槽には、有機ハイドライド製造装置100での電気化学還元反応により水素化される被水素化物が収容される。本実施の形態において用いられる有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されず、アセトン−イソプロパノール系、ベンゾキノン−ヒドロキノン系、芳香族炭化水素系等広く用いることができる。これらの中で、エネルギー輸送時の運搬性、毒性、安全性、保存安定性等の観点から、また、体積あるいは質量当たりに輸送できる水素量、水素添加及び脱水素反応の容易性、Gibbs自由エネルギー変化が著しく大きくない等のエネルギー変換効率の観点から、トルエン−メチルシクロヘキサン系に代表される芳香族炭化水素系が好ましい。
【0033】
被水素化物、すなわち有機ハイドライドの脱水素化体として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物であり、例えば、ベンゼン、アルキルベンゼン、ナフタレン、アルキルナフタレン、アントラセン、ジフェニルエタン等が挙げられる。アルキルベンゼンには、芳香環の1〜4の水素原子が炭素数1〜6の直鎖アルキル基又は分岐アルキル基で置換された化合物が含まれ、例えば、トルエン、キシレン、メシチレン、エチルベンゼン、ジエチルベンゼン等が挙げられる。アルキルナフタレンには、芳香環の1〜4の水素原子が炭素数1〜6の直鎖アルキル基又は分岐アルキル基で置換された化合物が含まれ、例えばメチルナフタレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。
【0034】
被水素化物は、好ましくはトルエン及びベンゼンの少なくとも一方である。なお、ピリジン、ピリミジン、ピラジン、キノリン、イソキノリン、N−アルキルピロール、N−アルキルインドール、N−アルキルジベンゾピロール等の含窒素複素環式芳香族化合物も、被水素化物として用いることができる。有機ハイドライドは、上述の被水素化物が水素化されたものであり、メチルシクロヘキサン、ジメチルシクロヘキサン、ピペリジン等が例示される。
【0035】
被水素化物は、常温で液体であることが好ましい。また、上述の芳香族炭化水素化合物及び/又は含窒素複素環式芳香族化合物の複数種を混合したものを用いる場合は、混合物として液体であればよい。被水素化物が常温で液体である場合、加熱や加圧などの処理を行うことなく、液体の状態で被水素化物を有機ハイドライド製造装置100に供給することができる。以下では適宜、カソード液貯蔵槽に貯蔵される液体を「カソード液」という。カソード液貯蔵槽に貯蔵されたカソード液は、カソード液供給装置によってカソード室106に供給される。
【0036】
カソード室106に供給されるカソード液は、カソード室入口126を介してカソード室106内に導入される。カソード室106に導入されたカソード液は、流路部124の溝124b、拡散層120及びマイクロポーラス層118を経由してカソード触媒層116に供給される。
【0037】
カソード室出口128は、カソード室106の鉛直方向上方に配置される。カソード室出口128は、一端が流路部124の流路に接続され、他端が例えばカソード液貯蔵槽に接続される。カソード室106内の有機ハイドライド、すなわち有機ハイドライド製造装置100により水素化された被水素化物と、未反応の被水素化物とは、カソード室出口128を介してカソード室106の外部に排出される。カソード室出口128とカソード液貯蔵槽との間には、分離槽(図示せず)が設けられる。分離槽において、有機ハイドライド及び被水素化物の混合物から、副生成物である水素ガスや、電解質膜102を介してカソード104側に流入したアノード液等が分離される。分離されたアノード液は再利用される。その後、有機ハイドライド及び被水素化物は、カソード液貯蔵槽に戻される。
【0038】
セパレータ114aは、カソード室106側に配置される。本実施の形態では、セパレータ114aは、流路部124の拡散層120とは反対側の主表面に積層される。セパレータ114aは電子伝導性を有し、給電板としても機能する。セパレータ114aを構成する材料としては、例えば、SUS、Ti等の金属が挙げられる。
【0039】
アノード108は、電解質膜102の一方の側とは反対側、すなわちカソード104とは反対側に設けられる。本実施の形態では、アノード108は電解質膜102の他方の主表面に接するように設けられている。アノード108は、アノード液中の水を酸化してプロトンを生成するためのアノード触媒108aを含む。アノード触媒108aとしては、例えばRu、Rh、Pd、Ir、Pt及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。また、酸性電解液に浸漬された状態で酸素を発生させるアノード触媒108aとしては、白金族貴金属酸化物系触媒の使用が好ましい。中でも、酸化イリジウム系の触媒は電圧損失が少なく、耐久性に優れる。特に、酸化タンタルと固溶体を形成した酸化イリジウム系の触媒は、有機物が混入する系での電圧損失の増加が小さく、アノード触媒108aとして好ましい。
【0040】
アノード108は、アノード触媒108aに加えて、アノード触媒108aを担持する基材108bを有する。基材108bは、電解に必要な電流を流す上で十分な電気伝導性を有する。また、基材108bは、アノード液に対する耐食性に優れることが好ましい。基材108bとしては、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Ta、Wなどの金属、あるいはこれらを主成分とする合金などで構成される。より好ましくは、基材108bは、Ti、Zr、Nb及びTaからなる群から選択される少なくとも一種の金属を20質量部以上含む。
【0041】
基材108bの厚さは、好ましくは0.05mm以上1mm以下である。アノード108の厚さは、実質的に基材108bの厚さと等しい。また、電解質膜102の厚さT1とアノード108の厚さT2との比T1/T2は、好ましくは0.35以上であり、より好ましくは0.6以上であり、さらに好ましくは1以上である。比率T1/T2を0.35以上とすることで、電解質膜102の湾曲を抑制でき、よってカソード104と電解質膜102の剥離を抑制することができる。このため、有機ハイドライド製造装置100の駆動に要するセル電圧をより確実に低減することができる。
【0042】
アノード108は、ガス発生電極である。このため、基材108bは、気泡による抵抗の増大を避けてアノード108へのアノード液の供給を促進するために、多孔体であることが好ましい。本実施の形態の基材108bは、網目状の板状体である。例えば、基材108bはエキスパンドメッシュで構成される。基材108bの網目は、菱形であり、菱形の短目方向中心間距離SW(
図2(B)参照)と長目方向中心間距離LW(
図2(B)参照)との平均値は、好ましくは0.3mm以上3mm以下であり、より好ましくは0.3mm超3mm以下であり、さらに好ましくは1.0mm以上1.5mm以下である。長目方向は、エキスパンドメッシュ製造時のスリットの方向であり、短目方向は、当該スリットに直交する方向である。エキスパンドメッシュは、メッシュ加工後に平滑化処理を行うことが望ましい。
【0043】
SWとLWとの平均値を3mm以下とすることで、有機ハイドライド製造装置100を組み付けた際にアノード108がアノード支持体110から受ける圧力を、より均一に電解質膜102側に与えることができる。また、電解質膜102の湾曲をより確実に抑制することができる。これにより、有機ハイドライド製造装置100の駆動に要するセル電圧をより確実に低減することができる。また、SWとLWとの平均値を0.3mm以上とすることで、アノード108で発生する酸素によりアノード液のアノード108への浸潤が阻害されることをより抑制することができる。これにより、セル電圧の増加をより確実に抑制することができる。
【0044】
基材108bの開口率は、例えば基材108bの投影面積当たりの孔面積で定義され、例えば40%以上90%以下である。開口率を40%以上とすることで、アノード108で発生する酸素の気泡をより速やかに除去することができる。これにより、いわゆる気泡効果によるセル抵抗の増大(言い換えればセル電圧の増大)を抑制することができる。また、開口率を90%以下とすることで、有効な電極面積が過度に減少することを抑制することができる。
【0045】
また、基材108bが有する開口の大きさ、あるいは開口のピッチは、電解質膜102の厚さ以下であることが好ましい。これにより、電解質膜102が歪んでアノード108の開口に陥入することを抑制することができる。この結果、電解質膜102とカソード104との接触を維持でき、セル電圧の増大を抑制することができる。
【0046】
基材108bには、エキスパンドメッシュ以外の、開口を有する平板部材も適宜選択することができる。例えば、金属板の一部を打ち抜いたり溶解させたりして、丸型や角型の開口を設けた板を用いることができる。基材108bに丸穴打ち抜き板を用いる場合、ある一態様では、基材108bの厚さは0.5mm以下であり、孔径は0.1mm以上0.3mm以下であり、孔ピッチは0.2mm以上5mm以下である。
【0047】
また、基材108bは、金属繊維からなる織物メッシュで構成されてもよい。この場合、金属繊維の繊維径は、例えば0.2mm以下であり、メッシュのピッチは例えば0.5mm以下である。また、基材108bは、金属多孔体の焼結体や、発泡成形体、あるいは粉末成形体等で構成されてもよい。金属多孔体は、例えば微細な空孔を有する長繊維やビビリ繊維である。基材108bが織物メッシュや焼結体等で構成される場合、基材108bの空孔率は、例えば40%以上90%以下である。本明細書において、「空孔率」は、全体の体積に占める空孔の体積の割合、すなわち体積空孔率を意味する。体積空孔率は、走査型電子顕微鏡や金属顕微鏡を用いて得られる断面画像から計算により求めることができる。
【0048】
基材108bの表面には、タンタル等の弁金属、弁金属を含む合金、貴金属、貴金属酸化物等の導電性皮膜が設けられてもよい。これにより、アノード108とアノード液との接触によって基材108bの表面に絶縁性の酸化皮膜が形成されることを抑制することができる。よって、アノード触媒108aと基材108bとの間の導電性を良好に維持することができる。
【0049】
アノード108は、好ましくはアノード支持体110よりも大きいヤング率を有する。より好ましくは、アノード108のヤング率は2N/mm
2以上40N/mm
2以下である。
【0050】
アノード支持体110は、アノード108の電解質膜102とは反対側に設けられ、アノード108を支持する。本実施の形態では、アノード支持体110はアノード108の電解質膜102とは反対側の主表面に接するように設けられている。アノード支持体110によって、アノード108は電解質膜102に押し付けられる。アノード支持体110は、板状の弾性多孔体で構成される。アノード支持体110が多孔体であることで、アノード液をアノード108へ供給することができる。
【0051】
アノード支持体110は、アノード液に対する耐食性に優れる材料で構成されることが好ましく、例えば、Ti、Zr、Nb、Taなどの金属、あるいはこれらを主成分とする合金などで構成される。より好ましくは、アノード支持体110は、Ti、Zr、Nb及びTaからなる群から選択される少なくとも一種の金属を20質量部以上含む。アノード支持体110の表面には、基材108bと同様にアノード液に対する耐食処理が施されてもよい。
【0052】
アノード支持体110は電子伝導性を有し、集電板としても機能する。アノード支持体110の厚さは、例えば0.5mm以上5mm以下である。また、アノード支持体110の空孔率は、例えば40%以上95%以下である。
【0053】
アノード支持体110のヤング率は、0.1N/mm
2超43N/mm
2未満である。アノード支持体110のヤング率の下限は、好ましくは0.2N/mm
2以上であり、より好ましくは0.3N/mm
2以上である。アノード支持体110のヤング率の上限は、好ましくは40N/mm
2以下であり、より好ましくは10N/mm
2以下であり、さらに好ましくは7N/mm
2以下である。ヤング率は、以下の方法で算出することができる。すなわち、適切な面積に切り出した支持体試料を2枚の硬い金属板で挟んで積層体を形成する。この積層体にロードセルにて荷重を掛ける。支持体試料の初期の厚さと、荷重を掛けているときの厚さとを、マイクロメーターを用いて測定する。与えた荷重の大きさを支持体試料の面積で除し、得られる値を厚さの変化量で除することで、ヤング率が算出される。
【0054】
アノード支持体110のヤング率を0.1N/mm
2超とすることで、アノード108をより確実に押さえ付けることができる。これにより、カソード104と電解質膜102との剥離を抑制することができるため、有機ハイドライド製造装置100のセル電圧を低減することができる。また、ヤング率が
0.1N/mm
2以下である場合、所望の圧力でアノード108を押さえ付けるために、アノード支持体の厚さを相当大きくしなければならないため好ましくない。
【0055】
また、アノード支持体110のヤング率を43N/mm
2未満とすることで、アノード支持体110の弾性が過度に低下してアノード108に与える圧力が不均一になることを抑制することができる。これにより、アノード108と電解質膜102又はアノード支持体110との間の部分的な接触不良の発生を抑制することができ、有機ハイドライド製造装置100のセル電圧を低減することができる。また、アノード支持体110の変形量が過度に低下して有機ハイドライド製造装置100の組み立てが困難になることを、回避することができる。
【0056】
アノード支持体110を構成する材料としては、微細な空孔を有する長繊維やビビリ繊維の焼結体、発泡成形体、粉末成形体等が例示される。アノード支持体110の構成材料に含まれる繊維は、繊維径が好ましくは10μm以上100μm以下であり、長さが好ましくは1mm以上100mm以下である。アノード支持体110を作製する際の繊維の目付量は、例えば100g/m
2以上5000g/m
2以下である。なお、繊維の寸法及び目付量が同じであっても、熱処理の温度や時間を調整することで、アノード支持体110の抵抗値やヤング率を調整することができる。繊維を焼結して得た積層ウェブは、例えば圧力0.1MPにおいて、0.2mm以上2mm以下の弾性変形量を有する。変形率は、例えば20%以上80%以下である。また、アノード支持体110は、エキスパンドメッシュ等の、複数の開口を有する平板部材で構成されてもよい。つまり、本願における「多孔体」には、複数の開口が設けられた平板部材も含まれる。
【0057】
アノード室112は、アノード108及びアノード支持体110を収容する空間である。アノード室112は、電解質膜102と、セパレータ114bと、電解質膜102及びセパレータ114bの間に配置される枠状のスペーサ130とで画成される。
【0058】
スペーサ130は、アノード液がアノード室112の外へ漏洩することを防ぐシール材を兼ねており、好ましくは電子的に絶縁性を有する。スペーサ130を構成する材料としては、例えば4フッ化エチレン樹脂が挙げられる。また、スペーサ130には、アノード室112の内部と外部とを連通する、アノード室入口132及びアノード室出口134が配置される。
【0059】
アノード室入口132は、アノード室112の鉛直方向下方に配置される。アノード室入口132は、一端がアノード支持体110に接続され、他端がアノード液貯蔵槽(図示せず)に接続される。アノード室入口132とアノード液貯蔵槽との間には、ギアポンプやシリンダーポンプ等の各種ポンプ、または自然流下式装置等で構成されるアノード液供給装置(図示せず)が設けられる。
【0060】
アノード液貯蔵槽には、アノード液が収容される。アノード液としては、20℃で測定したイオン伝導度が0.01S/cm以上である、硫酸水溶液、硝酸水溶液又は塩酸水溶液が例示される。アノード液のイオン伝導度を0.01S/cm以上とすることで、工業的に十分な電気化学反応を起こさせることができる。アノード液貯蔵槽に貯蔵されたアノード液は、アノード液供給装置によってアノード室112に供給される。なお、アノード液として純水を用いることもできる。この場合は、パーフルオロスルホン酸ポリマー等でアノード触媒108aを基材108bに固着させ、気泡発生によるアノード触媒108aの剥離を抑制することが好ましい。
【0061】
アノード室112に供給されるアノード液は、アノード室入口132を介してアノード室112内に導入される。アノード室112に導入されたアノード液は、アノード支持体110を経由してアノード108に供給される。
【0062】
アノード室出口134は、アノード室112の鉛直方向上方に配置される。アノード室出口134は、一端がアノード支持体110に接続され、他端が例えばアノード液貯蔵槽に接続される。アノード室112内のアノード液は、アノード室出口134を介してアノード室112の外部に排出される。
アノード室出口1
34とアノード液貯蔵槽との間には、気液分離部(図示せず)が設けられる。気液分離部において、アノード液の電気分解によって生じる酸素や、電解質膜102を介してアノード液に混入する被水素化物及び有機ハイドライドの気化物等のガスは、アノード液から分離される。未反応のアノード液は、アノード液貯蔵槽に戻される。
【0063】
セパレータ114bは、アノード室112側に配置される。本実施の形態では、セパレータ114bは、アノード支持体110のアノード108とは反対側の主表面に積層される。セパレータ114bは電子伝導性を有し、給電板としても機能する。セパレータ114bを構成する材料としては、例えば、SUS、Ti等の金属が挙げられる。
【0064】
有機ハイドライド製造装置100は、以下のようにして組み立てることができる。すなわち、流路部124、カソード104、電解質膜102、アノード108及びアノード支持体110をこの順に積層して積層体を得る。そして、積層体にスペーサ122,130を嵌め合わせた後、一対のセパレータ114a,114bでこれらを挟み込む。一対のセパレータ114a,114bにより、積層体には適切な締め付け圧力が印加される。
【0065】
例えば、積層体には、1kgf/cm
2以下の圧力がかけられる。有機ハイドライド製造装置100は、アノード支持体110を備えるため、1kgf/cm
2以下の小さい圧力で各層の電気的接続状態を良好に維持することができる。これにより、有機ハイドライド製造装置100の軽量化、低コスト化を図ることができる。また、有機ハイドライド製造装置100の運転中に圧力変動が生じても、アノード支持体110が弾性変形することで、常に一定の圧力を各層に付与することができる。なお、積層体を作製する際、アノード108とアノード支持体110とを予め接合したものを用いてもよい。また、アノード支持体110とセパレータ114bとを予め接合したものを用いてもよい。また、有機ハイドライド製造装置100は、バイポーラセルであってもよい。
【0066】
有機ハイドライド製造装置100には、図示しない電力制御部及び駆動制御部が接続されてもよい。電力制御部は、例えば、電力源の出力電圧を所定の電圧に変換するDC/DCコンバータである。電力制御部の正極出力端子は、アノード108に接続される。電力制御部の負極出力端子は、カソード104に接続される。これにより、アノード108とカソード104との間に所定の電圧が印加される。
【0067】
電力制御部には、正及び負極の電位検知の目的で参照極が設けられていてもよい。この場合、参照極入力端子は、電解質膜102に設けられる参照電極(図示せず)に接続される。参照電極は、カソード104及びアノード108から電気的に隔離される。参照電極は、参照電極電位に保持される。参照電極電位は、例えば可逆水素電極(RHE)に対する電位である。なお、参照電極電位は、Ag/AgCl電極に対する電位であってもよい。カソード104とアノード108との間を流れる電流は、電流検出部(図示せず)によって検出される。電流検出部で検出された電流値は、駆動制御部に入力され、駆動制御部による電力制御部の制御に用いられる。参照電極とカソード104との間の電位差は、電圧検出部(図示せず)によって検出される。電圧検出部で検出された電位差の値は駆動制御部に入力され、駆動制御部による電力制御部の制御に用いられる。
【0068】
駆動制御部は、アノード108又はカソード104の電位が所望の電位となるように、電力制御部の正極出力端子及び負極出力端子の出力を制御する。電力源は、好ましくは太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーであるが、特にこれに限定されない。
【0069】
上述した構造を備える有機ハイドライド製造装置100において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<アノードでの電極反応>
2H
2O→O
2+4H
++4e
−
<カソードでの電極反応>
TL+6H
++6e
−→MCH
<全反応>
2TL+6H
2O→2MCH+3O
2
【0070】
すなわち、アノード108での電極反応と、カソード104での電極反応とが並行して進行する。そして、アノード108における水の電気分解により生じたプロトン(H
+)が、電解質膜102を介してカソード104に供給される。カソード104に供給されたプロトンは、カソード104において被水素化物の水素化に用いられる。これにより、トルエンが水素化されて、メチルシクロヘキサンが生成される。したがって、本実施の形態に係る有機ハイドライド製造装置100によれば、水の電気分解と被水素化物の水添反応とを1ステップで行うことができる。
【0071】
以上説明したように、本実施の形態に係る有機ハイドライド製造装置100は、電解質膜102と、カソード104と、アノード108と、アノード108の電解質膜102とは反対側に設けられるアノード支持体110とを備える。アノード支持体110は、ヤング率が0.1N/mm
2超43N/mm
2未満である、板状の弾性多孔体で構成される。このような弾性且つ多孔性で板状のアノード支持体110を設けることで、有機ハイドライド製造装置100を構成する各部材の電気的接続状態を良好に維持することができる。
【0072】
特に、電解質膜102とカソード104との接触を維持することは重要である。すなわち、トルエンなどの有機化合物からなるカソード液は、導電性が乏しい。このため、電解質膜102とカソード104とが剥離してしまうと、この剥離した部分において電解質膜102からカソード104へのプロトンの供給が阻害される。プロトンの供給が阻害されると、カソード触媒が失活してしまうおそれがある。
【0073】
これに対し、アノード支持体110の設置により、電解質膜102とカソード104との接触をより確実に維持することができる。これにより、有機ハイドライド製造装置100のセル電圧を低減することができる。よって、有機ハイドライドの製造効率を向上させることができる。また、有機ハイドライド製造装置100の長寿命化を図ることもできる。
【0074】
また、アノード支持体110のヤング率は、より好ましくは0.2N/mm
2以上10N/mm
2以下である。これにより、有機ハイドライド製造装置100のセル電圧をより低減することができる。また、電解質膜102の厚さT1とアノード108の厚さT2との比T1/T2は、0.35以上である。これにより、有機ハイドライド製造装置100のセル電圧をより確実に低減することができる。また、アノード108が有する基材108bは、網目状である。網目は菱形であり、菱形の短目方向中心間距離SWと長目方向中心間距離LWとの平均値は、0.3mm以上3mm以下である。これにより、有機ハイドライド製造装置100のセル電圧をより確実に低減することができる。
【0075】
本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
【実施例】
【0076】
以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
【0077】
[アノード支持体のヤング率とセル電圧との関係の評価]
図2(A)は、試験例1〜11に係る有機ハイドライド製造装置が備えるアノード支持体とセル電圧とを示す図である。
図2(B)は、長目方向中心間距離LW、短目方向中心間距離SW及びストランド長さSTを説明するための図である。
図2(C)は、アノード支持体のヤング率とセル電圧との関係を示す図である。
【0078】
(試験例1)
以下の手順によりアノードを作製した。まず、アノードの基材として、所定の網目形状を有するエキスパンドメッシュを用意した。この基材の表面に乾式ブラスト処理を施し、続いて20%硫酸水溶液中で洗浄処理を施した。その後、Ti−Ta合金ターゲットを用いたアークイオンプレーティング装置に基材をセットした。そして、基材温度150℃、真空度1.0×10
−2Torrで、基材の表面にTi−Ta合金の皮膜を形成した。膜厚は2μmとした。その後、コーティング処理を施した基材に対して、四塩化イリジウム/五酸化タンタルの混合水溶液を塗布し、電気炉にて550℃の熱処理を施した。この操作を複数回繰り返して、酸化イリジウムと酸化タンタルを等モル含むアノードを得た。アノードの触媒量は、Ir金属量換算で電極面積当たり12g/m
2とした。アノードのヤング率は、40N/mm
2とした。
【0079】
また、
図2(A)に示すように、繊維径50μmのチタン繊維を、目付量を600g/m
2として炉内に載置した。そして、不活性雰囲気下、炉内温度900℃、加熱時間30分として、適切な荷重を与えながらチタン繊維を焼結させた。これにより、金属繊維の焼結体で構成されるアノード支持体を得た。アノード支持体の厚さは、3mmとした。アノード支持体のヤング率は、0.1N/mm
2とした。
【0080】
また、以下の手順によりカソードと電解質膜の積層体を形成した。まず、PtRu/C触媒TEC61E54(田中貴金属工業社製)の粉末に、5%ナフィオン(登録商標)分散液(デュポン社製)を添加し、適宜溶媒を用いてカソード触媒層用の触媒インクを調製した。触媒インクのナフィオン/カーボン比は0.8とした。この触媒インクを貴金属量(PtRu量)が0.5mg/cm
2となるよう調製し、カーボンペーパーGDL10BC(SGLカーボン社製)にバーコータを用いて塗布した。そして、80℃で加熱して触媒インク中の溶媒成分を乾燥し、カソード触媒層を得た。
【0081】
また、カーボンペーパーにPt粒子を担持させて拡散層を作製した。拡散層に含まれるPt粒子は、カソードにおける副生成物である水素ガスと未反応の被水素化物との化学反応を促進させる役割を果たす。まず、H
2PtCl
6・6H
2Oと、1−プロパノールとを混合して混合溶液を作製した。H
2PtCl
6・6H
2Oの添加量は、カーボンペーパーへのPtの担持量が0.02mg/cm
2となるように調整した。得られた混合溶液に、カーボンペーパーGDL10BC(SGLカーボン社製)を浸漬した。
【0082】
その後、60℃のN
2ガス雰囲気下でカーボンペーパーを完全に乾燥させた。続いて、1mgのNaBH
4水溶液にカーボンペーパーを浸漬し、2時間の還元処理を施した。還元処理の後、カーボンペーパーを純水に漬け込んで洗浄した。その後、カーボンペーパーを乾燥させて、拡散層を得た。また、電解質膜として、ナフィオン(登録商標)117(デュポン社製)を用意した。電解質膜の厚さは、0.175mmとした。この電解質膜に、カソード触媒層と拡散層とを積層し、120℃、1MPaで3分間のホットプレスを実施した。これにより、カソードと電解質膜の積層体を得た。
【0083】
また、カソード側セパレータ及び流路部の複合体と、アノード側セパレータと、カソード用及びアノード用スペーサを用意した。複合体及びアノード側セパレータは、チタン製のものを用いた。そして、当該複合体、カソード用スペーサ、カソードと電解質膜の積層体、アノード、アノード支持体、アノード用スペーサ及びアノード側セパレータをこの順に積層した。続いて、これらの積層体に外部から圧力をかけて組み付けた。アノード支持体の弾性力によって各層を押し付けることで、各層が互いに密着した状態を作り出した。以上の工程により、試験例1の有機ハイドライド製造装置を得た。有機ハイドライド製造装置の電極有効面積は、100cm
2とした。
【0084】
カソード用スペーサのカソード室入口には、被水素化物の供給経路を接続した。カソード用スペーサのカソード室出口には、有機ハイドライドの排出経路を接続した。また、アノード用スペーサのアノード室入口には、アノード液の供給経路を接続した。アノード用スペーサのアノード室出口には、アノード液の排出経路を接続した。
【0085】
この有機ハイドライド製造装置のカソード室に、カソード液としてトルエンを流通させた。また、アノード室に、アノード液として100g/L硫酸水溶液を流通させた。カソード液の流量は、10mL/分とした。アノード液の流量は、10mL/分とした。そして、温度60℃、電流密度0.4A/cm
2で電解反応を実施した。アノード液は、ポンプを用いてアノード液貯蔵槽からアノード室に供給し、またアノード室からアノード液貯蔵槽に戻して循環させた(バッチ運転)。アノード液は、有機ハイドライド製造装置の下部からアノード室に供給した。また、アノード液は、電解により減少する水分を補充しながら循環させた。
【0086】
また、定電流電源の負極をカソードに、正極をアノードにそれぞれ接続した。定電流電源の出力電流を40A(0.4A/cm
2)として、有機ハイドライド製造装置に印加した。そして、有機ハイドライド製造装置のセル電圧を測定した。結果を
図2(A)に示す。
【0087】
(試験例2〜9)
図2(A)に示すように、アノード支持体を構成する繊維の繊維径と目付量、アノード支持体の厚さ及びヤング率を調整し、その他の手順は試験例1に準じて、試験例2〜9の有機ハイドライド製造装置を作製した。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を
図2(A)に示す。
【0088】
(試験例10,11)
図2(A)に示すように、金属繊維の焼結体に代えてエキスパンドメッシュで構成されるアノード支持体を用い、その他の手順は試験例1に準じて、試験例10,11の有機ハイドライド製造装置を作製した。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を
図2(A)に示す。エキスパンドメッシュにおける長目方向中心間距離LW、短目方向中心間距離SW及びストランド長さSTは、
図2(B)に図示される通りであり、これは当業者に周知の事項である。
【0089】
図2(C)に、各試験例に係る有機ハイドライド製造装置における、アノード支持体のヤング率とセル電圧との関係を示す。
図2(C)に示すように、アノード支持体のヤング率が0.1N/mm
2超43N/mm
2未満の場合に、セル電圧が2.2Vを下回ることが確認された。セル電圧2.2Vは、本願のアノード支持体を備えない従来公知の有機ハイドライド製造装置におけるセル電圧である。よって、アノード支持体のヤング率が0.1N/mm
2超43N/mm
2未満であるとき、有機ハイドライドの製造効率を向上できることが確認された。また、アノード支持体のヤング率が0.2N/mm
2以上10N/mm
2以下の場合に、セル電圧が2.0V以下となることが確認された。セル電圧2.0Vは、アルカリ水電解におけるセル電圧である。よって、アノード支持体のヤング率が0.2N/mm
2以上10N/mm
2以下であるとき、有機ハイドライドの製造効率をアルカリ水電解の水素製造効率と同程度かそれ以上まで向上できることが確認された。また、アノード支持体のヤング率が0.3N/mm
2以上1.2N/mm
2以下の場合に、有機ハイドライドの製造効率をさらに向上できることが確認された。
【0090】
[電解質膜及びアノードの厚さの比率とセル電圧との関係の評価]
図3(A)は、試験例2,12〜14に係る有機ハイドライド製造装置が備える電解質膜及びアノードの厚さと、両者の厚さの比と、セル電圧とを示す図である。
図3(B)は、厚さの比とセル電圧との関係を示す図である。
【0091】
(試験例2,12〜14)
図3(A)に示すように、電解質膜の厚さT1を固定し、アノードの厚さT2を調整することで厚さ比T1/T2を異ならせ、その他の手順は試験例1に準じて、試験例2,12〜14の有機ハイドライド製造装置を作製した。全ての試験例において、アノード支持体のヤング率は、0.3N/mm
2とした。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を
図3(A)に示す。
【0092】
図3(B)に、各試験例に係る有機ハイドライド製造装置における、電解質膜の厚さT1及びアノードの厚さT2の比T1/T2と、セル電圧との関係を示す。
図3(B)に示すように、厚さ比T1/T2が0.35以上のとき、セル電圧は2.0V未満であった。よって、厚さ比T1/T2を0.35以上とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率よりも向上できることが確認された。
【0093】
[アノードの開口寸法とセル電圧との関係の評価]
図4(A)は、試験例15〜19に係る有機ハイドライド製造装置が備えるアノードの編目寸法とセル電圧とを示す図である。
図4(B)は、長目方向中心間距離LW及び短目方向中心間距離SWの平均値とセル電圧との関係を示す図である。
【0094】
(試験例15〜19)
図4(A)に示すように、アノード基材における網目の長目方向中心間距離LW及び短目方向中心間距離SWを異ならせ、その他の手順は試験例1に準じて、試験例15〜19の有機ハイドライド製造装置を作製した。全ての試験例において、アノード支持体のヤング率は、0.3N/mm
2とした。そして、各有機ハイドライド製造装置のセル電圧を測定した。結果を
図4(A)に示す。
【0095】
図4(B)に、各試験例に係る有機ハイドライド製造装置における、長目方向中心間距離LW及び短目方向中心間距離SWの平均値と、セル電圧との関係を示す。
図4(B)に示すように、平均値が0.3mm以上3mm以下のとき、セル電圧は2.0V以下であった。よって、平均値を0.3mm以上3mm以下とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率以上に向上できることが確認された。また、平均値を0.3mm超3mm以下のとき、セル電圧は2.0V未満であった。よって、平均値を0.3mm超3mm以下とすることで、より確実に有機ハイドライドの製造効率をアルカリ水電解の水素製造効率よりも向上できることが確認された。