(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6956887
(24)【登録日】2021年10月7日
(45)【発行日】2021年11月2日
(54)【発明の名称】円偏光子を備えた画像光ガイド
(51)【国際特許分類】
G02B 27/02 20060101AFI20211021BHJP
G02B 5/30 20060101ALI20211021BHJP
H04N 5/64 20060101ALI20211021BHJP
【FI】
G02B27/02 Z
G02B5/30
H04N5/64 511A
【請求項の数】21
【全頁数】18
(21)【出願番号】特願2020-541354(P2020-541354)
(86)(22)【出願日】2019年1月28日
(65)【公表番号】特表2021-513102(P2021-513102A)
(43)【公表日】2021年5月20日
(86)【国際出願番号】US2019015420
(87)【国際公開番号】WO2019156839
(87)【国際公開日】20190815
【審査請求日】2020年8月25日
(31)【優先権主張番号】62/628,651
(32)【優先日】2018年2月9日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】516201548
【氏名又は名称】ビュージックス コーポレーション
【氏名又は名称原語表記】Vuzix Corporation
(74)【代理人】
【識別番号】100085556
【弁理士】
【氏名又は名称】渡辺 昇
(74)【代理人】
【識別番号】100115211
【弁理士】
【氏名又は名称】原田 三十義
(74)【代理人】
【識別番号】100153800
【弁理士】
【氏名又は名称】青野 哲巳
(72)【発明者】
【氏名】シュルツ, ロバート ジェイ.
【審査官】
山本 貴一
(56)【参考文献】
【文献】
米国特許出願公開第2017/0176745(US,A1)
【文献】
国際公開第2017/199232(WO,A1)
【文献】
特開2016−018212(JP,A)
【文献】
特開2014−160169(JP,A)
【文献】
特表2016−519322(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/01,27/02
H04N 5/64
(57)【特許請求の範囲】
【請求項1】
周囲環境の光景内に重ね合わされるバーチャル像を形成するためのイメージング装置であって、
第1、第2の面を有する導波路と、
前記第1、第2の面のいずれか一方に配置され、バーチャル像の画像担持光ビームを、前記導波路に導き、前記第1、第2の面での内部反射により前記導波路に沿って伝播させるインカップリング回折光学素子と、
前記導波路の前記第1、第2の面のいずれか一方に配置され、前記導波路からの前記画像担持光ビームを、観察者のアイボックスに向けて方向付けし、これにより、前記アイボックス内からバーチャル像を見ることができるようにしたアウトカップリング回折光学素子と、
少なくとも部分的に透明な外カバーと、
を備え、前記外カバーは、前記導波路と前記外カバーの両方を通して前記アイボックスから周囲環境を見ることをサポートしながら、前記導波路の少なくとも一部を周囲環境の望ましくない影響から保護するものであり、
さらに、前記導波路と前記外カバーとの間に介在され、前記外カバーで反射した迷光が前記導波路内へ戻るのを阻止する円偏光子を備えた、イメージング装置。
【請求項2】
前記円偏光子は、前記導波路の前面を通って出る迷光が前記円偏光子を通って前記外カバーへと伝播し、前記外カバーで反射された少なくとも一部の迷光が前記導波路へ再び入るのを阻止するように配置される、請求項1に記載のイメージング装置。
導波管。
【請求項3】
前記外カバーがフォトクロミック材料で作られ、十分な強度の光にさらされた時に暗くなり、アイボックスに到達する周囲環境からの光の量を減らし、それにより、アイボックス内からのバーチャル像を所望のコントラストに維持する、請求項1に記載のイメージング装置。
【請求項4】
前記外カバーは、前記円偏光子と対面する凹曲面形状を有する、請求項1に記載のイメージング装置。
【請求項5】
前記外カバーが前記円偏光子と対面する内面を含み、前記外カバーの前記内面が反射防止コーティングを有する、請求項1に記載のイメージング装置。
【請求項6】
前記円偏光子が前記導波路と対面する内面を含み、前記円偏光子の前記内面が反射防止コーティングを有する、請求項1に記載のイメージング装置。
【請求項7】
前記導波路の前記第1、第2の面が平坦で互いに平行な面であり、前記円偏光子が、内側および外側の平坦で互いに平行な面を含み、前記導波路からの迷光が前記外カバーに向かう途中で前記内側および外側の平坦で互いに平行な面を通過する、請求項1に記載のイメージング装置。
【請求項8】
前記円偏光子の前記平坦で互いに平行な面が、前記導波路の平坦で互いに平行な面に対して傾斜しており、これにより、迷光が前記円偏光子で反射して前記導波路へと戻るのを低減する、請求項7に記載のイメージング装置。
【請求項9】
前記導波管と前記外カバーが、共通のフレームの開口内に支持されている、請求項1に記載のイメージング装置。
【請求項10】
周囲環境の光景内に重ね合わされたバーチャル像を形成するためのイメージング装置であって、
画像光ガイドを備え、この画像光ガイドは、前面および背面を有する導波路と、前記前面および背面のいずれか一方に配置されたインカップリング回折光学素子と、前記前面および背面のいずれか一方に配置されたアウトカップリング回折光学素子とを含み、
前記インカップリング回折光学素子は、バーチャル像の画像担持光ビームを、前記導波路へと回折し、前記前面と背面での内部反射により前記導波路に沿ってアウトカップリング回折光学素子に向けて伝播させるように構成され、
前記アウトカップリング回折光学素子は、前記画像担持光ビームを、前記導波路の背面を通って観察者のアイボックスに向けて回折するように構成され、これにより、アイボックス内からバーチャル像を見ることができるようにし、
さらに、少なくとも部分的に透明な外カバーを備え、この外カバーは、前記導波路と前記外カバーの両方を通してアイボックスから周囲環境を見ることをサポートしながら、前記導波路の少なくとも一部を周囲環境の望ましくない影響から保護するものであり、
さらに前記導波路と前記外カバーの間に介在された円偏光子を備え、この円偏光子は、前記導波路の前面から出る迷光が前記円偏光子を通って前記外カバーへと伝播し、前記外カバーで反射された迷光の少なくとも一部が前記導波路へ再び入るのを阻止するように配置されている、イメージング装置。
【請求項11】
前記円偏光子は、前記画像担持光ビームが内部反射により前記インカップリング回折光学素子から前記アウトカップリング回折光学素子へと前記導波路に沿って伝播する際に、この内部反射と著しく干渉しないようにして、前記画像光ガイドに支持される、請求項10に記載のイメージング装置。
【請求項12】
前記画像光ガイドと前記外カバーは、共通のフレームの開口内に支持される、請求項10に記載の画像化装置。
【請求項13】
前記外カバーがフォトクロミック材料で作られ、十分な強度の光にさらされた時に暗くなり、アイボックスに到達する周囲環境からの光の量を減らし、それにより、アイボックス内からのバーチャル像を所望のコントラストに維持する、請求項10に記載のイメージング装置。
【請求項14】
前記外カバーは、前記円偏光子に面して凹曲面形状を有する、請求項10に記載のイメージング装置。
【請求項15】
前記外カバーが前記円偏光子に臨む内面を含み、前記外カバーの前記内面が反射防止コーティングを有する、請求項10に記載のイメージング装置。
【請求項16】
前記円偏光子が前記導波路に面する内面を含み、前記円偏光子の前記内面が反射防止コーティングを有する、請求項10に記載のイメージング装置。
【請求項17】
前記導波路の前記前面および背面が平坦で互いに平行な面であり、前記円偏光子が、内側および外側の平坦で互いに平行な面を含み、前記導波路からの迷光が前記外カバーに向かう途中で前記内側および外側の面を通過する、請求項10に記載のイメージング装置。
【請求項18】
前記円偏光子の前記平坦で互いに平行な面が、前記導波路の平坦で互いに平行な面に対して傾斜しており、これにより、迷光が前記円偏光子で反射して前記導波路へと戻るのを低減する、請求項17に記載のイメージング装置。
【請求項19】
バーチャル像を形成するためのイメージング装置であって、
第1、第2の光学サブシステムを備え、
前記第1の光学サブシステムは、画像担持光の第1部分がバーチャル像を見ることができる位置に伝送され、画像担持光の第2部分が迷光として前記第1の光学サブシステムから逃げるように構成され、
前記第2の光学サブシステムは、迷光の一部を反射迷光として前記第1の光学システムに向けて反射する部分反射面を含み、
さらに、前記第1、第2の光学サブシステム間に配置された円偏光子を備え、この円偏光子は、迷光の一部を前記部分反射面へと伝送し、反射迷光の一部が前記第1の光学サブシステムに再び入るのを阻止するように構成されているイメージング装置。
【請求項20】
前記第1の光学サブシステムが、前記画像担持光の前記第1部分を前記バーチャル像と周囲環境の両方が見られる位置に向けるために、インカップリング光学素子とアウトカップリング光学素子を含む画像光ガイドを備えている、請求項19に記載の画像装置。
【請求項21】
前記第1の光学サブシステムの前記画像光ガイドが第1画像光ガイドであり、前記第2の光学サブシステムは第2画像光ガイドを備え、前記第2画像光ガイドは、前記第2画像光ガイドによって伝送される画像担持光ビームの第1部分を、前記バーチャル像および周囲環境の両方が見られる位置に向けるために、インカップリング光学素子とアウトカップリング光学素子を含む請求項20に記載のイメージング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子ディスプレイに関し、特に、画像光ガイドを用いて観察者にバーチャル像コンテンツを伝送するディスプレイに関する。
【背景技術】
【0002】
ヘッドマウントディスプレイ(HMD)は、軍事、商業、工業、消防、および娯楽分野への適用を含め、様々な用途に向けて開発されている。これら適用の多くにおいて、HMDユーザーの視野内において現実世界の像に視覚的に重ね合わせ可能なバーチャル像を形成することは、特に価値がある。画像光ガイドは、観察者が導波路を介して周囲を見ることを妨げることなく、画像担持光を、観察者の視野外の位置から透明な導波路に沿い観察者の瞳にアライメントする位置へと伝送する。
【0003】
このような従来の画像光ガイドでは、画像ソースからの、コリメートされ、相対的に角度的にエンコードされた光ビームは、インカップリング回折光学素子のようなインカップリングによって、板状の導波路内へ導かれる。このインカップリングは、板状導波路の表面に設置または形成することができ、または導波路内に埋め込むこともできる。このような回折光学素子は、回折格子、ホログラフィック光学要素、その他の公知の方法で形成することができる。例えば、回折格子は、表面レリーフによって形成することができる。回折された光は、導波路に沿って伝搬した後、同様のアウトプット格子によって、導波路外へ向けることができる。このアウトプット格子は、バーチャル像の1つの次元に沿って瞳拡大を提供するように構成することができる。加えて、導波路沿いのインプット格子とアウトプット格子との間に回転格子を配置することにより、バーチャル像の第2の直交する次元において瞳拡大を提供することができる。瞳拡大の2つの次元は拡大されたアイボックスを画成する。画像光ガイドにより伝送されたバーチャル像を見るために、このアイボックスに観察者の瞳を位置させることができる。
【0004】
従来の画像光ガイドは、一般に、コリメートされた光の角度的にエンコードされた光ビームを観察者のアイボックスに伝送することにより、光学的無限遠で集束されるバーチャル像を形成する。しかしながら、例えば1mから1.5mの範囲のような、より近い距離に焦点があるように見えるバーチャル像を形成することは、利点がある。近焦点の構成を用いると、現実世界のシーンコンテンツを近距離に配置することが有用なアプリケーションにおいて、観察者が拡張現実イメージングの利点を享受できる。
【0005】
無限遠にある従来のバーチャル像と観察者に近い距離にある別のバーチャル像の両方を形成する画像光ガイドを備えた頭部装着型の光学イメージング装置は、さらなる利点を有する。さらに、装置は、観察者の視野にある現実世界のシーンの良好な可視性を提供する必要がある。
【0006】
過度に明るい環境を含む周囲条件は、そのような環境に重ねられるバーチャル像のコントラストを低下させる可能性がある。ほこり、化学物質、その他の環境上の危険物も、そのような条件に曝されている画像光ガイドの継続的な性能を損なう可能性がある。したがって、拡張現実アプリケーションに使用される光学系の適切な動作を保証するために、そのような環境の危険物に対する保護を提供する必要性がある。
【発明の概要】
【0007】
本開示の実施形態は、コンパクトな頭部装着型の装置および類似のイメージング装置を使用するときのバーチャル像提示の技術を進化させる。例えば、本開示のある実施形態で提供する光学イメージング装置は、光学イメージング装置を出た散乱光の影響を、散乱光が光学イメージング装置に再び入るのを防止することにより低減しながら、バーチャル像を形成する。これにより、画像の品質を低下させる光学的な「ノイズ」の汚染効果なしに、より鮮明なバーチャル像を形成できる。
【0008】
本発明の態様、目的、特徴、および利点は、以下の好ましい実施形態の詳細な説明および添付の特許請求の範囲を検討し、添付の図面を参照することにより、より明確に理解および認識されるであろう。
【0009】
本開示の一態様によれば、周囲環境の光景内に重ね合わされるバーチャル像を形成するためのイメージング装置は、第1、第2の面を有する導波路と、前記第1、第2の面のいずれか一方に配置されたインカップリング回折光学素子と、前記第1、第2の面のいずれか一方に配置されたアウトカップリング回折光学素子とを備えている。インカップリング回折光学素子は、バーチャル像の画像担持光ビームを、前記導波路に導き、前記第1、第2の面での内部反射により前記導波路に沿って伝播させる。アウトカップリング回折光学素子は、前記導波路からの前記画像担持光ビームを、観察者のアイボックスに向けて方向付けし、これにより、前記アイボックス内からバーチャル像を見ることができるようにする。少なくとも部分的に透明な外カバーは、前記導波路と外カバーの両方を通してアイボックスから周囲環境を見ることをサポートしながら、前記導波路の少なくとも一部を周囲環境の望ましくない影響から保護する。前記導波路と前記外カバーとの間に介在された円偏光子は、前記外カバーで反射した迷光が前記導波路内へ戻るのを阻止する。
【0010】
前記円偏光子は、前記導波路の前面を通って出る迷光が前記円偏光子を通って前記外カバーへと伝播し、前記外カバーで反射された少なくとも一部の迷光が前記導波路へ再び入るのを阻止するように配置されている。前記外カバーがフォトクロミック材料で作られ、十分な強度の光にさらされた時に暗くなり、アイボックスに到達する周囲環境からの光の量を減らし、それにより、アイボックス内からのバーチャル像を所望のコントラストに維持する。
【0011】
前記外カバーは、前記円偏光子と対面する凹曲面形状を有し、前記円偏光子と対面する前記外カバーの内面に、反射防止コーティングを施すことができる。同様に、前記導波路と対面する前記円偏光子の内面に、反射防止コーティングを施すことができる。
【0012】
前記導波路の第1、第2の面は、平坦で互いに平行をなす面とすることができ、前記円偏光子は、平坦で互いに平行をなす内側と外側の面を有することができる。前記導波路からの迷光は、前記外カバーへの途中で前記円偏光子の内側および外側の面を通過する。前記円偏光子の平坦で平行な面は、前記導波路の平坦で平行な面に対して傾けることができ、これにより、前記円偏光子で反射した迷光が導波路へ戻るのを低減することができる。導波路および外カバーは、眼鏡フレームなどの共通のフレームの開口内で支持することができる。
【図面の簡単な説明】
【0013】
本発明の主題を特許請求の範囲で特に指摘し明確に主張しているが、本発明は、添付の図面と以下の説明からより良く理解できるであろう。
【0014】
【
図1】透明な板状の導波路とインカップリング回折光学素子とアウトカップリング回折光学素子を有する画像光ガイドの上面図であり、一次元に沿った伝播光ビームの拡大を示す。
【0015】
【
図2】画像光ガイドの正面斜視図であり、2つの直交する次元に沿って伝播光ビームを拡大するために、インカップリング回折光学素子とアウトカップリング回折光学素子との間に回転回折光学素子を追加することを示す。
【0016】
【
図3A】観察者の視野内の無限焦点にバーチャル像を形成するための画像光ガイドを備えたイメージング装置の側面図である。
【0017】
【
図4A】本開示の実施形態に係る、観察者の視野内の近焦点にバーチャル像を形成するための画像光ガイドを備えたイメージング装置の側面図である。
【0018】
【
図5A】画像光ガイドを備えるとともに透明または半透明の外カバーを備えたイメージング装置の側面図である。
【0019】
【
図6A】画像光ガイドを備えるとともに、画像光ガイドと外カバーとの間に介在された円偏光子を備えたイメージング装置の側面図である。
【0020】
【
図7】観察者の視野内の無限焦点および近焦点の両方にバーチャル像を形成するための前側、後側の画像光ガイドを備えたイメージング装置の上面図である。
【0021】
【
図8】前方画像光ガイドと外カバーとの間に介在された円偏光子を備えた
図7のイメージング装置の上面図である。
【0022】
【
図9】眼鏡フレームに取り付けられた画像光ガイドを使用して拡張現実の光景を見るためのヘッドマウントディスプレイシステムの正面斜視図である。
【0023】
【
図10】
図9と同様のヘッドマウントディスプレイシステムの同様の正面斜視図であり、このシステムは、画像光ガイドを覆うようにしてフレームに取り付けられた外カバーを備えている。
【0024】
【
図11】2つの光学サブシステム間に介在された円偏光子を有する光学システムを示す図である。
【発明を実施するための形態】
【0025】
本開示は特に、本発明に係る装置の一部を構成する要素、または本発明に係る装置と直接的に協働する要素に向けられている。具体的に記載されていない要素については、当業者に周知の様々な形態を採用できることを理解されたい。
【0026】
本明細書で使用される場合、「第1」、「第2」等の用語は必ずしも順序、順次または優先関係を示すものではなく、特に明記しない限り、単に1つの要素または要素の集合を他と明確に区別するために用いられる。
【0027】
本開示の文脈において、「見る人」、「操作者」、「観察者」、および「利用者」という用語は均等とみなされ、ニアアイ視覚装置を介してバーチャル像を見る人を指す。
【0028】
光学の分野における「結合(coupled)」及び「カプラ(結合器;coupler)」という用語は、光を、結合を促進する中間構造を介して、1つの光学的媒体又は装置から別の光学的媒体又は装置へと移動させるような結合を意味する。
【0029】
光学システムは、実像投射の代わりに、バーチャル像を表示することができる。実像を結ぶ方法とは対照的に、バーチャル像がディスプレイ面に結ばれることはない。つまり、ディスプレイ面がバーチャル像を知覚する位置にあるとしたら、ディスプレイ面に像は結ばれない。拡張現実表示において、バーチャル像表示には固有の利点が数多くある。例えば、バーチャル像の見かけの大きさはディスプレイ面の寸法や位置によって制限されない。実像を投影するシステムに比べて、ある程度離れたところにあるように見えるバーチャル像を結ぶことによって、よりリアルな視覚体験を提供することができる。また、バーチャル像を提供すれば、実像投影の場合には必要となるスクリーンアーチファクトを補正する必要が無くなる。
【0030】
ここで使用される「光学的無限遠」および「無限遠」という語句は、カメラおよびイメージング技術における従来の使用法に対応するものであり、焦点距離が少なくとも約4mを超えるように実質的にコリメートされた光を用いた画像形成を示す。
【0031】
図1は、単眼タイプの画像光ガイド10を簡略化して示す上面図である。この画像光ガイド10は、板状の導波路22と、インカップリング回折光学素子IDOと、アウトカップリング回折光学素子ODOと、を備えている。板状の導波路22は、透明基板Sと平坦で互いに平行をなす前面12および背面14とを有している。この例では、入射ビームWl(バーチャル像を伝えるために必要な角度的に関連付けられた多くのビームの1つとして図示されている)は、導波路22の前面12を透過し、導波路22の背面14に配置された反射型のインカップリング回折光学素子IDOによって回折される。このようにして、インカップリング回折光学素子IDO(反射型回折格子として構成することができる)は、入射ビームW1を、導波ビームWGとして導波路22に沿って伝搬するように方向転換する。導波ビームWGは、導波路22における平坦かつ平行をなす前面12と背面14との間の全内部反射(TIR)のメカニズムにより、導波路のx軸に沿って、アウトカップリング回折光学素子ODOへと伝搬する。
【0032】
他の様々な構成では、インカップリング回折光学素子IDOは、導波路22の前面12または背面14に配置することができ、入射ビームW1が導波路22に接近する方向に依拠して、透過型または反射型とすることができる。例えば、インカップリング回折光学素子IDOは、導波路の前面12に透過型回折格子として配置することができ、また、体積ホログラム、他のホログラフィック回折要素、他のタイプの光学要素(入射ビームW1を導波路22内で導波路22に沿ってさらに伝搬できる向きに回折する光学要素)など、他の形態をとることができる。
【0033】
画像光ガイド10がバーチャル表示システムの一部として使用される場合、入射ビームW1は、画像ソース(図示せず)からの複数の角度的に関連付けられたビームの1つとして生じ、適切なフロントエンド光学系(図示せず)が、入射ビームW1を含む角度的に関連付けられたビームの導波路22への接近を制御する。インカップリング回折光学素子IDOに到達すると、入射ビームW1は、非ゼロ次回折(例えば、1次回折)を介して、導波ビームWGとして導波路22に沿って伝搬する方向に回折され、アウトカップリング回折光学素子ODOに向かう。
【0034】
アウトカップリング回折光学素子ODOは、導波路22からの導波ビームWGを観察者の瞳の意図された位置に向かって回折する。アウトカップリング回折光学素子ODOは、導波路22の背面14上の透過型格子として示されているが、導波路22の前面12上の反射型格子として配置することもできる。さらに、アウトカップリング回折光学素子ODOは、インカップリング回折光学素子IDOと同様に、他の形式をとることができる。
【0035】
ビーム拡大の目的で、アウトカップリング回折光学素子ODOは、非ゼロ次回折(例えば、1次回折)で導波ビームWGの一部を回折して導波路22からの光を方向付けするとともに、ゼロ次回折で導波ビームWGの他の部分を回折して導波ビームWGの残りの部分を導波路に沿ってさらに伝搬させる。導波ビームWGの残りの部分は、導波路の前面12で反射した後、アウトカップリング回折光学素子ODOに再び遭遇する。ここで、導波ビームWGの別の部分は、非ゼロ次回折で導波路外へと回折され、導波ビームWGの残りの部分は、ゼロ次回折で元の伝搬方向に沿って回折され、アウトカップリング回折光学素子ODOとさらなる遭遇を果たす。このようにして、ガイドビームWGは、別々に回折された一連のビームレットに分割され、これらは一緒になって、導波路22に沿ったx軸の伝搬方向に効果的に拡張された出力ビームWOを構成する。
【0036】
基板Sは、説明を容易にするためにかなりの厚さを有するものとして描かれているが、ビーム拡大を含む目的のために、はるかに薄くし、導波路22の前面12および背面14での導波ビームWGの反射遭遇の数を増やすことができる。アウトカップリング回折光学素子ODOとの一連の遭遇の各々は、導波路22からの誘導ビームWGの別の部分を回折し、それにより、出力ビームWOの拡大に寄与する。バーチャル像を構成する相対的に方向付けられたビームの集合的拡大は、瞳孔サイズを増大させ、バーチャル像の角度的に関連付けられたビームがアイボックス(図示せず)内で重なる。
【0037】
図2の斜視図は、従来の画像光ガイド20を示す。この画像光ガイド20は、導波路22に沿うx軸方向とy軸方向の両方において出射ビームWOを拡大する、二次元瞳拡大器として構成されている。
図1の一次元ビーム拡大器のインカップリング回折光学素子IDOおよびアウトカップリング回折光学素子ODOに加えて、画像光ガイド20は、中間の回転回折光学素子TGを含む。この回転回折光学素子TGは、インカップリング回折光学素子から出た光を、拡大された形態で、アウトカップリング回折光学素子ODOに向けて方向転換する。回転回折光学素子TGは、導波路22の前面および背面のいずれかに配置された反射型回折格子とすることができ、また、導波路22に沿って伝搬する一連のビーム部分を方向転換することができる他のタイプの光学構成要素としてもよい。回折格子として、回転回折光学素子TGのフィーチャは、様々な形状(例えば、傾斜または正方形)に作られ、所望の次数での回折光を集中するためにブレーズされている。
【0038】
図1の画像光ガイド10と同様に、
図2のインカップリング回折光学素子IDOは、画像ソース16によって生成された複数のピクセルのうちの1つを表す入射ビームW1を受け取る。バーチャル像を生成するための角度的エンコードされた全範囲のビームは、集束光学系を備えた実際のディスプレイにより、ビームの角度をより直接的に設定するビームスキャナーにより、またはスキャナーを用いた一次元の実際のディスプレイ等の組み合わせにより、生成することができる。
【0039】
インカップリング回折光学素子IDOを介して導波路22に入った画像担持ビームWGは、回折のメカニズムにより、画像担持ビームW1間の元の角度関係を変更させた形態で、角度的にエンコードすることができる。導波路22に沿って伝搬する画像担持ビームWGのそのようなエンコードは、好ましくは、アウトカップリング回折光学素子ODOを介して、導波路22から出る画像担持ビームWOの間でデコードされ、それにより、バーチャル像をアイボックス内で意図したように見ることができる。このアイボックスは、
図2にアイボックス74として概略的に示されている。このようにして、画像ソース16によって生成された文字「R」の画像は、アイボックス74内で見られるバーチャル像に忠実に再現することができる。
【0040】
インカップリング回折光学素子IDOとアウトカップリング回折光学素子ODOとの間の中間位置に配置される回転回折光学素子TGは、一般に、エンコードされた光に変化を起こさないように構成される。このように、アウトカップリング回折光学素子ODOの設計は、インカップリング回折光学素子の設計を反映することができるため、インカップリング回折光学素子によって導入された画像担持ビームWG間の角度関係のエンコーディングは、アウトカップリング回折光学素子によって除去される。例えば、インカップリング回折光学素子の周期的フィーチャ(例えば、線または溝)は、アウトカップリング回折光学素子の対応するフィーチャの間隔とも一致する周期dで離間する。
【0041】
回転回折光学素子TGの周期は、インカップリング回折光学素子IDOとアウトカップリング回折光学素子ODOの共通の周期を一致させ、回転回折光学素子TGの格子フィーチャを、インカップリング回折光学素子IDOとアウトカップリング回折光学素子ODOの両方の対応フィーチャに対して60°をなすように方向付けすることができる。この配置では、インカップリング回折光学素子IDOとアウトカップリング回折光学素子ODOの格子フィーチャも、互いに60°をなしている。回転回折光学素子TGの1次回折を用いることができ、これにより、導波ビームWGを120°回転し、導波ビームWGをインカップリング回折光学素子IDOとアウトカップリング回折光学素子ODOに対して等しい相対角度に維持する。1次回折は、回転回折光学素子TGの格子ベクトルと平行な導波ビームWGのベクトル成分(すなわち、回転回折光学素子TGの周期フィーチャの方向と直交するベクトル成分)にのみ作用する。このようにして、回転回折光学素子TGは、バーチャル像のエンコードされた角度情報を変更することなく、導波ビームWGを導波路22内で方向転換する。そのような設計されたシステムにおいて結果として得られるバーチャル像は、導波路22に向けられた画像に対して回転されない。
【0042】
回転回折光学素子TGは、x軸方向におけるアウトカップリング回折光学素子ODOのビーム拡大と同様の方法で、y軸方向に導波ビームWGを拡大する。しかしながら、非ゼロ次回折(例えば、1次回折)を用いて導波路22からの導波ビームの一部を導波路22外へ回折する代わりに、回転回折光学素子TGは非ゼロ次回折(例えば、1次回折)を用いて、導波ビームWGの一部を導波路内でアウトカップリング回折光学素子ODOに向かう伝搬経路に沿って方向転換させる。導波ビームWGの光エネルギーの残りの部分は、ゼロ次回折で回折され、元の伝搬方向において導波ビームWGと回転回折光学素子TGとのさらなる遭遇をサポートする。その結果として、アウトカップリング回折光学素子に近づく一連のオフセットされたビームレットにより、ガイドビームWGをy軸方向に効果的に拡大できる。このY軸方向は、導波ビームが回転してアウトカップリング回折光学素子ODOに近づく方向に対して、垂直であると理解されている。拡大されたガイドビームWGのさらなる伝播は、アウトカップリング回折光学素子との多数の遭遇を介して、導波ビームを、導波路22のx軸に沿った第2の次元で拡大する。
【0043】
図1、
図2の従来の画像光ガイド10、20は、見る人に画像コンテンツを提供するために、多くの既存のヘッドマウント装置(HMD)設計で用いることができる。さらに、このような画像光ガイド10、20は、画像コンテンツを、画像光ガイドの透明基板Sを通して見られる現実世界の光景に重ねることができる拡張現実アプリケーションに特によく適している。
【0044】
図3A、
図3B、および
図3Cに示すように、画像光ガイド30を有する従来のバーチャルイメージングシステムは、一般に、略コリメートされた光の角度的に関連付けられたビームからバーチャル像V1を形成し、これにより、バーチャル像V1は光学的無限遠の焦点で形成される。実線で示されるビームは、単一のピクセルが、画像ソース40から画像光ガイド30を通り、見る人の目へ拡大された形態のビームとして到達するまでの経路を表す。破線は、光学的無限遠の焦点でのバーチャル像内のピクセルの見かけの位置を示す。
【0045】
図4A、4B、4Cは、改良された画像光ガイド30を備えたバーチャルイメージングシステムを示す。この画像光ガイド30は、コリメートされたビームを、見る人の目に近づく拡大された発散ビームに変える。破線の光線は、近焦点距離Qでのバーチャル像V2内のピクセルの見かけの位置を表している。このような近距離または有限の焦点距離Qは、約1m以内ないしは約2m以内の距離にある。例えば、画像光ガイド30から約0.6mである。焦点距離は、光学的パワーを追加することによって短縮でき、その結果、コリメートされた角度的に関連付けられたビームのそれぞれは、画像光ガイド30から発散し、有限焦点距離Qでのバーチャル像V2の点から出ているように見える。光学的パワーは、屈折や回折のメカニズムを用いた他の光学素子を付設することによって、又はアウトカップリング回折光学素子のフィーチャを作り変えることによって、追加することができ、これにより、回折光学素子の回折角が中心からの距離に応じて変化するようになっている。
【0046】
図5A、5Bは、透明または半透明の外カバー36と組み合わされた画像光ガイド30を有するバーチャルイメージングシステムを示す。この外カバー36は画像光ガイドおよびその意図された動作を環境の危険から保護するためのものである。図示のように、外カバー36は、凹曲面形状(観察者の視点からの形状)を有し、少なくとも画像光ガイド30の部分を越えて観察者32から離れた位置に配置されている。外カバー36は、一般的な光学ガラスまたはプラスチックなど、少なくとも部分的に透明な材料で作られ、環境条件に物理的な障壁を提供することができるが、紫外線(UV)のように十分な強度を有する特殊な光にさらされると暗くなるフォトクロミック材料で作ることもできる。このような暗くすると、観察者の環境視野に重ねられたバーチャル像のコントラストを維持することができる。活性化光がない場合、フォトクロミック材料はクリアな状態(つまり、より透明な状態)に戻ることができる。この場合、周囲の光が、観察者の目にも伝えられるバーチャル像の望ましいコントラストを圧倒しない。フォトクロミックレンズは、ガラス、ポリカーボネート、又はその他のプラスチックで作ることができ、通常、明るい日光の下では暗くなるように処理されるが、周囲光が弱い条件ではクリアになる。別の実施形態では、外カバーは本質的に平坦であってもよい。
【0047】
図5A、5Bの画像光ガイド30内で、光は、インカップリング回折光学素子IDOからアウトカップリング回折光学素子ODOへと、その導波路に沿って全内部反射(TIR)によって伝搬する。ただし、伝播光の一部は、次のことに起因して迷光となる可能性がある。
(a)導波路内または導波路面上の欠陥からの散乱。
(b)インカップリング回折光学素子IDO、アウトカップリング回折光学素子ODOまたは導波路に沿った他の不連続構造からの望まない角度での回折。
(c) 導波路の周辺境界からの反射。
この散乱、回折、反射された光の一部は、光を導波路内に維持するために必要なTIR条件を満たさず、迷光として導波路から離脱する。実際のところ、バーチャル像に寄与するように意図されながら画像光ガイド30の前面38を通って逃げるいかなる光も、迷光と考えることができる。
【0048】
画像光ガイド30の前面38を通って逃げる迷光34は外カバー36の全方向に伝搬し、迷光34の一部は、外カバー36で反射して反射迷光42になる。迷光34の別の部分は、透過光44としてカバー36を通過する。反射迷光42の一部は、画像光ガイド30に再び入り、アウトカップリング回折光学素子ODOへと伝播し、そこで、迷光は、観察者32が見ることができるバーチャル像を形成することを意図した光と混ざってしまう。観察者32に到達するこのような迷光は、望ましくない視覚的イメージング効果を生成し、観察者32によって見られるバーチャル像を劣化させる。このように、外カバー36は、周囲の環境の危険に対する物理的バリアを提供でき、照らされた環境に重ね合わされるバーチャル像のコントラストを低下させるような周囲の照明条件を補償するように構成できるが、外カバーの反射特性は、観察者に伝送すべきバーチャル像の品質を低下させるような意図しない結果に寄与してしまう可能性がある。
【0049】
外カバー36での迷光42の反射を最小限に抑えるために、外カバー36に反射防止コーティングを施すことができるが、よりしっかりした解決手段が望まれる。
【0050】
図6A、6Bは、画像光ガイド30とカバー36との間に配置された円偏光子46を備えたバーチャルイメージングシステム100を示す。円偏光子46は、円偏光された光を生成し逆の円偏光の光を遮断するために使用される一般的な円偏光フィルタとすることができる。例えば、右旋円偏光子を使用して左旋円偏光された光を遮断することができ、左旋円偏光子を使用して右旋円偏光の光を遮断することができる。円偏光子46は、観察者の目に最も近い内面に反射防止コーティングを含むように構成することができる。図示されるように、円偏光子46は板形状をなし、平坦で互いに平行な内面と外面を有しており、画像光ガイド30の本質的に平坦な前面38と平行に配置される。あるいは、円偏光子46は、円偏光子46に到達する光の少なくとも一部を画像光ガイド30から離れるように反射するために、画像光ガイド30の前面38に対して傾けることができる。別の可能な配置では、円偏光子46は、円偏光子46が存在および近接することによって画像光ガイド30のTIR状態が著しく変化しないようにして、画像光ガイド30により支持することができる。例えば、円偏光子46は、導波路に沿った画像担持光ビームの所望の伝搬をサポートするのに必要な位置で、導波路に少なくとも部分的に接するが接着しないで、配置することができる。
【0051】
画像光ガイド30からその前面38を通って出てきた迷光34は、介在された円偏光子46を通過して円偏光52になる。外カバー36に対して、円偏光52の一部は外カバー36を通過して透過光56となり、円偏光52の別の部分は外カバー36で反射して逆の回転方向の反射円偏光54となる。当業者に知られているように、1つの回転方向(時計回りまたは反時計回り)の円偏光が反射すると、逆の回転方向(反時計回りまたは時計回り)の円偏光になる。逆の回転配向の反射された円偏光54は円偏光子46に戻ると、円偏光子46によって遮断され、画像偏光子30に到達しない。このようにして、画像光ガイド30の前面38から出射され、外カバー36で反射された迷光は、画像導光体30に再入射することを阻止される。したがって、画像光ガイド30と外カバー36との間に介在された円偏光子46は、外カバー36から画像光ガイド30に戻る散乱光の望ましくない影響(バーチャル像形成光学システム100によって形成されるバーチャル像を劣化させる)を減じる。
【0052】
図7は、第1の画像光ガイド30aと第2の画像光ガイド30bを組み合わせた二重イメージング装置200を示す。この二重イメージング装置200は、ODOを用いて、無限焦点でのバーチャル像V1と近焦点位置でのバーチャル像V2の両方を形成する。ビームセパレータ50を使用し、偏光、シャッター、または他の特性のメカニズムにより、無限遠および近焦点の画像の適切なシーンコンテンツを導き、画像光ガイド30a、30bのそれぞれに適切な光を選択することができる。あるいは、2つの画像光ガイド30a、30bは、それぞれのアウトカップリング光学ODOにより、2つの異なる有限焦点距離(すなわち、どちらの焦点距離も光学的無限遠とみなされない)で、バーチャル像を生成するように構成することができる。
【0053】
図8は、
図7の二重イメージング装置200の上面図であり、外カバー36と、円偏光子46とをさらに備えている。円偏光子46は、画像光ガイド30bの前面38bと外カバー36との間に配置されている。反射防止コーティングを外カバー36の内面に施して、散乱光が反射して画像光ガイド30bに戻るのを低減することができる。外カバー36の反射防止コーティングの代わりにまたはこれに追加して、円偏光子46が、観察者32に最も近い表面上に反射防止コーティングを含むことができる。同様の目的で、円偏光子46は、画像光ガイド30bの前面38bに対して傾けることができる。
【0054】
円偏光子46は、置換または選択的使用の目的で、画像光ガイド30bと外カバー36との間のスペースから取り外し可能とすることができる。あるいは、円偏光子は、画像光ガイド30bの前面38bに固定してもよいし、画像光ガイド30bのTIR特性を大幅に変更しないようにして画像光ガイド30bと部分的に接するように配置してもよい。
【0055】
図9の斜視図は、本開示の画像光ガイドを一対使用した3次元(3D)拡張現実表示のためのディスプレイシステム60を示す。ディスプレイシステム60は、左眼用の画像光ガイド1401を有する左眼光学システム64lと、右眼用の画像光ガイド140rを有する右眼光学システム64rと、を備えたHMDとして示されている。ピコプロジェクタまたは同様のデバイスなどの画像ソース152が、各眼のために個別の画像を生成する。これら画像は、バーチャル像として画像光ガイド1401および140rによって観察者の2つの目に別々に伝送される。生成される画像は、3D表示用の立体画像の対にすることができる。観察者の目に伝送されたバーチャル像は、観察者が見る現実世界の光景(画像光ガイド140l、140rを介して観察者にアクセス可能に維持されている)と重ねることができる。拡張現実視覚化技術の当業者によく知られている追加の構成要素もHMDに組み込むことができる。シーンコンテンツまたは観察者の視線追跡を見るためにHMDのフレームに取り付けられた1つまたは複数のカメラなどである。観察者の片目だけに重複するバーチャル像と現実世界の画像を提供するためのディスプレイ装置を含め、代替の構成が可能である。
【0056】
図10の斜視図は、3次元(3D)拡張現実表示のためのディスプレイシステム62を示す。このディスプレイシステム62は、一対の画像光ガイド、一対の外カバー36r、36I、ならびに画像光ガイドと外カバー36r、36Iの間に介在された一対の円偏光子(図示せず、
図8を参照)を用いている。ディスプレイシステム62は、左眼用の画像光ガイド(図示せず、
図9を参照)を有する左眼光学システム64lと、右眼用の画像光ガイド(図示せず、
図9を参照)を有する右眼光学システム64rと、を備えたHMDとして示されている。それぞれの画像光ガイド、円偏光子、および外カバー36r、36Iはすべて、描かれたフレーム156のそれぞれの開口154rおよび1541内に設けられている。ピコプロジェクタまたは同様のデバイスなどの画像ソース152が、フレーム156に設けられ、各眼のために個別の画像を生成する。これら画像は所望の向きのバーチャル像として、画像光ガイドによって観察者の2つの目に別々に伝送される。生成される画像は、3D表示用の立体画像の対にすることができる。
図9のHMDと同様に、観察者の目に伝送されたバーチャル像は、現実世界の光景(画像光ガイド140l、140rを介して観察者にアクセス可能に維持されている)と重ねることができる。拡張現実視覚化技術の当業者によく知られている追加の構成要素もHMDに組み込むことができる。シーンコンテンツまたは観察者の視線追跡を見るためにHMDのフレームに取り付けられた1つまたは複数のカメラなどである。観察者の片目だけに重複するバーチャル像と現実世界の画像を提供するためのディスプレイ装置を含め、代替の構成が可能である。
【0057】
図11は、2つの光学サブシステム310、314を有する光学システム300の簡略図であり、それらの少なくとも1つは、好ましくは画像光ガイドの形態をとる。例えば、光学サブシステム310は、画像担持光の第1の部分がバーチャル像を見ることができる位置に運ばれ、画像担持光の第2の部分が迷光として第1の光学サブシステムから逃げるように構成される。光学システム300はさらに、光学サブシステム310と光学サブシステム314との間に介在された円偏光子316を備えている。光学サブシステム310からの迷光320の一部は、円偏光子316を通過して円偏光322となり、光学サブシステム314の部分反射面312に当たる。光学サブシステム314は、例えば、周囲環境の光景を提供するイメージングシステムの外カバーとして構成することができる。円偏光322の一部は、部分反射面312を透過して、透過光324として光学サブシステム314に入る。円偏光322の別の部分は、部分反射面312で反射され、円偏光322とは逆方向の反射円偏光326となる。円偏光子316は、逆の反射円偏光326が、光学サブシステム310に向かってさらに伝搬するのを阻止する。このように、光学サブシステム310から放出された迷光320は、円偏光子316を通って光学サブシステム314に到達するが、光学サブシステム314での反射の結果として光学サブシステム310に戻ることを禁じられる。
【0058】
円偏光子316は、光学サブシステム310に最も近い面上に反射防止コーティングを備えていてもよく、これにより、円偏光子316からの意図しない光の戻りを回避することができる。同様の目的で、円偏光子316は、光学サブシステム310に対して傾けてもよい。円偏光子316はまた、光学サブシステム310、314のいずれかまたは両方の少なくとも一部と接するようにして取り付けることができる。異なる円偏光子または他の光学部品との置換、または限定的な状況での円偏光子316の選択的使用を含むさまざまな目的のために、円偏光子は、光学サブシステム310、314間のスペースから取り外し可能、交換可能に配置することができる。
【0059】
光学サブシステム314はまた、第2の画像光ガイドとして構成することができる。これにより、画像担持光の第1部分が、第2の画像光ガイドによって、バーチャル像が見られ得る位置に伝送され、第2の画像光ガイドによって伝送された画像担持光の第2部分が、迷光として第2の光学サブシステムから逃げる。円偏光子316は、この迷光が第1の画像光ガイドとしての光学サブシステム310に到達することを許容にするが、第1の画像光ガイドから反射された迷光が第2の画像光ガイドに戻るのを阻止する。このように、第1、第2の画像光ガイドのいずれかからの迷光は、第1および第2の画像光ガイドの他方に到達することができるが、最初に迷光が逃げた光ガイドに戻ることは阻止される。両方の画像光ガイドは好ましくは、画像担持光の第1部分をバーチャル像および周囲環境を見ることができる位置に向けるために、インカップリング光学素子とアウトカップリング光学素子を含む。上記のように迷光を制御することに加えて、2つの画像光ガイド間の円偏光子の同様の配置は、画像光ガイド間の画像担持ビームの所望の一方向透過をサポートすることができる。
【0060】
本発明は、現在の好ましい実施形態を特に参照して詳細に説明されているが、本発明の精神および範囲内で変形および修正が可能であることが理解されるであろう。したがって、ここに開示された実施形態は、すべての点で例示的であり、限定的ではないとみなされる。本発明の範囲は、添付の特許請求の範囲によって示され、その均等の意味および範囲内にあるすべての変更を含むことが意図されている。