【実施例】
【0044】
以下に実施例を挙げて本発明の詳細を説明するが、本発明は以下の実施例に限定されるものではない。
【0045】
(試料の分析)
以下に示す試験例においては、下記手法を用いて各試料の(1)RVAピーク粘度、(2)粒子径分布波形(ピーク数)、(3)平均粒子径、(4)最大粒子径及び最小粒子径を測定した。
【0046】
(1)RVAピーク粘度
ラピッドビスコアナライザー(RVA)(Perten Instruments社製)を用いて下記の通り測定した。
【0047】
各試料を10質量%となるように水に分散させて分散液を30g調製し、パドルにて160rpmの回転数で撹拌しながら50℃にて1分間保持し、50℃から3分42秒間で95℃に至る連続的な加温状態を与え、2分30秒間95℃で保温し、3分48秒間で50℃に至る連続的な冷却状態を与え、50℃にて2分間保持する条件によりピーク粘度(最高粘度)を測定した。
【0048】
(2)粒子径分布波形(ピーク数)
動的光散乱測定器(大塚電子株式会社製ELSZ−2000ZS)を用いて、下記の通り、粒子径分布を分析した。
【0049】
ラピッドビスコアナライザー(RVA)による測定直後の糊液を固形分濃度が0.02質量%となるまで蒸留水で希釈して分散液を調製し、ガラス製標準セルに充填し、積算回数25回、室温の条件にて、また、溶媒の屈折率、粘度、誘電率は水の値を使用して、測定を実施した。得られた粒子径分布波形からピーク数を求めた。
【0050】
(3)平均粒子径
上記(2)の粒子径測定において、キュムラント解析により算出し、平均粒子径を求めた。
【0051】
(4)最大粒子径及び最小粒子径
上記(2)の粒子径分布測定により得られた粒子径分布波形から最大粒子径値及び最小粒子径値を求めた。
【0052】
[試験例1](コーンスターチ原資の各試験区)
水20質量部に表1に示した割合(対澱粉質量当たり)となるように塩化カルシウムを添加し、予め溶解させた。塩化カルシウム水溶液をコーンスターチ100質量部に添加して、ブレンダーを用いて均質になるまで攪拌した。攪拌後、ステンレスバット上に移し、10mm以下の厚さとなるように澱粉を分散させた(いずれの試料も澱粉の水分は30質量%)。予め130℃に加温したオーブンに、アルミバットを移し、表1に示した通り加熱変性処理を実施した。加熱変性処理後、室温中で30分間放冷した。放冷後、澱粉の乾燥質量100質量部に対して2000質量部の水を加え、水洗、脱水した後、乾燥させ、比較試料1−2、及び試料1−1〜試料1−9の変性澱粉を得た。
【0053】
得られた変性澱粉について上記測定による分析を行った。その結果を表1に示す。また、
図1には、評価した試料のうち、典型例として、試料1−2、試料1−6及び比較試料1−1のそれぞれの澱粉試料について得られた粒子径分布波形を示す。
【0054】
【表1】
【0055】
表1に示されるように、塩化カルシウムを添加して一定程度の加熱変性処理を施すことで、生コーンスターチである未変性澱粉(比較試料1−1)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下である変性澱粉が得られた。また、当該パラメータを有する変性澱粉は、粒子径分布波形が単一ピークを示すものであった(
図1参照)。一方で、未変性澱粉(比較試料1−1)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下であるというパラメータを満たさない変性澱粉は、粒子径分布波形が単一ピークを示すものではなかった(
図1参照)。特に、特開2001−275585号公報の実施例に記載された変性澱粉である比較試料1−2は、ピーク粘度比が5%以下であったが、B−Aが2000nmを上回る値であり、粒子径分布波形は単一ピークを示すものではなかった。よって、特開2001−275585号公報に記載の変性澱粉は本発明のパラメータを満たす澱粉ではないことが示された。
【0056】
[試験例2](ワキシーコーンスターチ原資の各試験区)
水20質量部に表2に示した割合(対澱粉質量当たり)となるように塩化カルシウムを添加し、予め溶解させた。塩化カルシウム水溶液をワキシーコーンスターチ100質量部に添加して、ブレンダーを用いて均質になるまで攪拌した。攪拌後、ステンレスバット上に移し、10mm以下の厚さとなるように澱粉を分散させた(いずれの試料も澱粉の水分は30質量%)。予め130℃に加温したオーブンに、アルミバットを移し、表2に示した通り加熱変性処理を実施した。加熱変性処理後、室温中で30分間放冷した。放冷後、澱粉の乾燥質量100質量部に対して2000質量部の水を加え、水洗、脱水した後、乾燥させ、比較試料2−2〜比較試料2−3、及び試料2−1〜試料2−4の変性澱粉を得た。
【0057】
得られた変性澱粉について上記測定による分析を行った。その結果を表2に示す。
【0058】
【表2】
【0059】
表2に示されるように、塩化カルシウムを添加して一定程度の加熱変性処理を施すことで、生ワキシーコーンスターチである未変性澱粉(比較試料2−1)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下である変性澱粉が得られた。また、当該パラメータを有する変性澱粉は、粒子径分布波形が単一ピークを示すものであった。一方で、塩化カルシウムを添加せずに変性処理を行った変性澱粉(比較試料2−2、比較試料2−3)は前記パラメータを満たさず、粒子径分布波形が単一ピークを示すものではなかった。
【0060】
[試験例3](タピオカ原資の各試験区)
水20質量部に表3に示した割合(対澱粉質量当たり)となるように塩化カルシウムを添加し、予め溶解させた。塩化カルシウム水溶液をタピオカ澱粉100質量部に添加して、ブレンダーを用いて均質になるまで攪拌した。攪拌後、ステンレスバット上に移し、10mm以下の厚さとなるように澱粉を分散させた(いずれの試料も澱粉の水分は30質量%)。予め130℃に加温したオーブンに、アルミバットを移し、表3に示した通り加熱変性処理を実施した。加熱変性処理後、室温中で30分間放冷した。放冷後、澱粉の乾燥質量100質量部に対して2000質量部の水を加え、水洗、脱水した後、乾燥させ、比較試料3−2、及び試料3−1〜試料3−2の変性澱粉を得た。
【0061】
得られた変性澱粉について上記測定による分析を行った。その結果を表3に示す。
【0062】
【表3】
【0063】
表3に示されるように、塩化カルシウムを添加して一定程度の加熱変性処理を施すことで、生タピオカである未変性澱粉(比較試料3−1)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下である変性澱粉が得られた。また、当該パラメータを有する変性澱粉は、粒子径分布波形が単一ピークを示すものであった。一方で、未変性澱粉(比較試料3−1)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下であるというパラメータを満たさない変性澱粉は、粒子径分布波形が単一ピークを示すものではなかった。また、塩化カルシウムを添加せずに変性処理を行った変性澱粉(比較試料3−2)も同様に前記パラメータを満たさず、粒子径分布波形が単一ピークを示すものではなかった。
【0064】
[試験例4](塩の種類を変更した各試験区)
水20質量部に表4に示した割合(対澱粉質量当たり)となるように各塩を添加し、予め溶解させた。各塩の水溶液をコーンスターチ100質量部に添加して、ブレンダーを用いて均質になるまで攪拌した。攪拌後、ステンレスバット上に移し、10mm以下の厚さとなるように澱粉を分散させた(いずれの試料も澱粉の水分は30質量%)。予め130℃に加温したオーブンに、アルミバットを移し、表4に示した通り加熱変性処理を実施した。加熱変性処理後、室温中で30分間放冷した。放冷後、澱粉の乾燥質量100質量部に対して2000質量部の水を加え、水洗、脱水した後、乾燥させ、試料4−1〜試料4−9の変性澱粉を得た。
【0065】
得られた変性澱粉について上記測定による分析を行った。その結果を表4に示す。
【0066】
【表4】
【0067】
表4に示されるように、塩化アンモニウムや塩化マグネシウムを添加して一定程度の加熱変性処理を施すことで、生コーンスターチである未変性澱粉(比較試料4)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下である変性澱粉が得られた。また、当該パラメータを有する変性澱粉は、粒子径分布波形が単一ピークを示すものであった。一方で、未変性澱粉(比較試料4)とのピーク粘度比が5%以下であり、かつB−Aが2000nm以下であるというパラメータを満たさない変性澱粉は、粒子径分布波形が単一ピークを示すものではなかった。
【0068】
これらの結果より、塩化カルシウムに限らずハロゲン化塩であれば所望の変性処理により前記パラメータを満たす変性澱粉が得られることが確認された。
【0069】
[試験例5](フラワーペースト)
全卵をガラスボウルに入れ、砂糖を入れてかき混ぜた後、乳性蛋白、牛乳、菜種油、水飴、クエン酸を入れホイッパーで撹拌した。ミキサーボウルに移して加熱しながらホモミキサーにて5000rpmで5分間ホモジナイズした。その後、上記液に澱粉素材を少しずつ加え均一に分散するまで撹拌し、90℃以上で4〜5分間加熱し歩留まり90%となるように煮上げ、火からおろしてバニラオイルを添加した。得られたフラワーペーストを真空包装し、流水で冷却した。各原料の配合比を表5に示した。
【0070】
【表5】
【0071】
澱粉素材としては、試験例1で調製した試料1−3(変性澱粉)、比較試料1−1(未変性のコーンスターチ)、及び市販の低粘度化澱粉であるアセチル化酸化澱粉(TSK−13、日本食品化工社)を用いた。
【0072】
得られたフラワーペーストについて、製造後(常温)及び7日間冷蔵後に官能評価を実施した。官能評価は、以下の基準に基づき5名のパネラーで実施し、各パネラーの評価点の平均点を算出した。
【0073】
<口どけ>
フラワーペーストを口に入れた際の口どけを1点〜6点の6段階で評価した(評価点が高いほど口どけが良い)。
【0074】
<滑らかさ>
フラワーペーストを口に入れた際の滑らかさを1点〜6点の6段階で評価した(評価点が高いほど滑らか)。
【0075】
<離水抑制効果>
フラワーペースト自体の離水抑制効果を1点〜4点の4段階で評価した(評価点が高いほど離水が少ない)。なお、製造直後は離水が生じないため、冷蔵後のフラワーペーストのみ離水抑制効果を評価した。
【0076】
各澱粉素材を添加したフラワーペーストの官能評価結果を表6に示した。
【0077】
【表6】
【0078】
表6に示されるように、試料1−3の変性澱粉を用いたフラワーペーストは、製造直後の口どけ及び滑らかさが未変性のコーンスターチ(比較試料1−1)を用いた場合と比べて優れたものであった。また、市販の低粘度化澱粉(アセチル化酸化澱粉)と比較しても優れた性能であった。さらに、冷蔵保存後の評価においても、試料1−3の変性澱粉を用いたフラワーペーストは、口どけ及び滑らかさのいずれも未変性のコーンスターチ(比較試料1−1)を用いた場合と比べて顕著に優れたものであり、離水性も優れていた。
【0079】
[試験例6](グミキャンディー)
ゼラチン及び溶解水を量り取り20分間湯煎してゼラチンを溶解させ、鍋に水飴、上白糖、澱粉素材(予め糊化させた糊液)を加え、117℃まで加熱した。鍋底を水で冷却して液温を100℃に調整し、溶解したゼラチンを加えて撹拌し、クエン酸溶液、オレンジ果汁、香料を加え、3分間撹拌した。得られたグミ液を脱気用ビニール袋に移し入れ、80℃に設定したオーブン内に20分間静置し、脱気した。脱気したグミ液をシリコン丸型に15gずつ分注し、上からコーンスターチを茶こしで濾しながら振りかけ、冷蔵庫内で冷却固化させた。一晩冷却固化後、型から抜き、グミを得た。各原料の配合比を表7に示した。
【0080】
【表7】
【0081】
澱粉素材としては、試験例1で調製した試料1−3(変性澱粉)、比較試料1−1(未変性のコーンスターチ)、及び市販の低粘度化澱粉であるアセチル化酸化澱粉(TSK−13、日本食品化工社)を用いた。
【0082】
得られたグミについて、下記通り破断荷重の測定及び官能評価を実施した。なお、硬さ及び弾力の評価は、以下の基準に基づき5名のパネラーで実施して各パネラーの評価点の平均点を算出し、作業性の評価は、以下の基準に基づきグミの製造者が判断した。
【0083】
<破断荷重>
直径3cmのセルクルで楕円状のグミをカットし、測定に供した。測定は、クリープメーター(製品名:山電REONERIICREEP METER RE2−33005B、山電社製)を用いて以下の条件で実施した(n=3)。
プランジャー:カッター背
歪率設定:300%
ロードセル:200N
【0084】
<硬さ>
グミを咀嚼した際の硬さについて、澱粉試料無添加(澱粉の代わりに水を添加)の比較区を0点とし−3点〜3点の7段階で評価した(評価点が高いほど硬い)。
【0085】
<弾力>
グミを咀嚼した際の弾力について、澱粉試料無添加の比較区を0点とし−3点〜3点の7段階で評価した(評価点が高いほど弾力がある)。
【0086】
<作業性>
グミ製造時の作業性を以下の基準に基づき×、○、◎の3段階で評価した。
×:煮上げ時間が長い、グミ溶液のえい糸性が高く型への充填が困難
○:煮上げ時間がやや短い、グミ溶液のえい糸性がやや低く型への充填が容易
◎:煮上げ時間が短い、グミ溶液のえい糸性が低く型への充填が非常に容易
【0087】
各澱粉素材を添加したグミの測定・評価結果を表8に示した。
【0088】
【表8】
【0089】
表8に示されるように、試料1−3の変性澱粉を用いたグミは、破断荷重及び硬さの評価結果が未変性のコーンスターチ(比較試料1−1)を用いた場合と比べて特に優れたものであり、作業性の点からも優れていた。一方、市販の低粘度化澱粉(アセチル化酸化澱粉)を用いたグミは、未変性のコーンスターチ(比較試料1−1)を用いた場合と比べ破断荷重及び硬さの評価結果は優れていたが、弾力の点で大きく劣るものであった。
【0090】
[配合例1](魚介エキス粉末)
表9の配合で水に変性澱粉を加え糊化しその後糊液に魚介エキスを加え当該溶液をスプレードライヤーで粉末化することにより、本発明の変性澱粉を粉末化基材として魚介エキス粉末を製造することができる。
【0091】
【表9】
【0092】
[配合例2](天井タイルボード用バインダー)
表10の配合で変性澱粉(糊液状)、架橋剤、促進剤及び界面活性剤を混合し、当該混合液を天井タイルボードにスプレーを用いて噴霧し乾燥させることにより、本発明の変性澱粉を添加剤とした天井タイルボード用バインダーを得ることができる。
【0093】
【表10】
【0094】
[配合例3](塗工紙)
表11の配合で水に変性澱粉を加え糊化しその後糊液に合成ラテックス及び重質炭酸ナトリウムを加え、ブレードコーターを用いて当該混合液を原紙に塗工し乾燥させることにより、本発明の変性澱粉を添加剤として塗工紙を得ることができる。
【0095】
【表11】
【0096】
[配合例4](建材)
ホバートミキサーを用いて表12の配合で変性澱粉(糊液状)、バーミキュライト及びアロフェンを混合し、当該混合物をケイ酸カルシウムボードにロールコーター法を用いて厚さ2mmに塗布し乾燥させることにより、本発明の変性澱粉を添加剤として建材を得ることができる。
【0097】
【表12】