【課題を解決するための手段】
【0007】
本発明の第一の小課題を実現する為の手段として、容器の外側の上部に水素排出口と外気開放口を設け、容器内には満杯未満の電解液を入れ容器の内側の上部には空間を作る。そして、仕切り壁が容器内を水素排出口側と外気開放口側に分割し、陰電極6を仕切り壁より水素排出口側の電解液3内に設置する。又は、陰電極を前記仕切り壁と同様に配置して、陽電極を陰電極より水素排出口側の電解液の内部に配置する方法も可能である。こうして水素排出口の鼻孔カニューラ挿入口に鼻孔カニューラを取り付けて水素を吸引するのであるが、その諸条件とその効果について説明する。従来装置においては、水素吸引に医療機関などで多量に使用されている酸素吸入用の鼻孔カニューラを転用することが多い。酸素はボンベから減圧されて連続的に供給され、したがって人の呼気の期間の酸素は吸引されずに無駄になるのだが、ボンベの酸素は安価なのでこの不都合は無視されてきた。そこで、本発明では、人の呼吸に同調して無駄を無くす水素吸引器を考案した。まず、電解水素を得るには、電解液の内部に電極を配置して、少なくとも陰電極から発生する水素気泡を電解液表面で水素気体に変換して鼻孔カニューラに送ることで良い。電解では酸素と共にオゾンも陽電極で発生する場合があるが、ここではオゾンは発生させないという前提で説明する。電解で容器を密閉した場合には、発生する水素と酸素により容器内部の圧力は相当なものとなり容器を破壊するほどである。一方、密閉容器に鼻孔カニューラを接続して発生する水素と酸素を吸引しようすると、人の吸気の期間は問題ないものの、呼気の期間に鼻孔カニューラの鼻孔口に呼気の風圧があっても、容器内から発生する水素と酸素の両気体の圧力が圧倒的に優るので、鼻孔カニューラからは外気に酸素はともかく水素が無駄に放散される。従って本発明ではこの呼気の期間の鼻孔カニューラの先端の風圧を容器内に吸収して、少なくともチューブ内の水素を外に放散させないようにする。呼気の期間には、容器の上部の気体の収容部の内圧は電解液の液面を下に押すので、この時に電解液がいずれかに移動してこの内圧の高まりを吸収すればよいことになる。従って、容器上部を少なくとも水素気体が集まる空間と、外気に開放された空間に分割して、電解液の方は分割されることなく容器内を一つになって流通することを可能とする仕切り壁を設けると、呼気の期間は水素の集まる空間の液面は下がり、逆に外気開放側の液面は上がって、前記の風圧を充分に吸収して、液面の上下動は呼吸と同調するようになる。この両方の液面の上下差が水素の集まる空間の内圧になるが、この内圧が電解で発生する気体を排出する圧力と、鼻孔カニューラの鼻孔での呼気の風圧とバランスする。従って、この間に、水素の集まる空間側の液面が下がる電解液の容積が、この間に容器内で発生する気体の量より多ければ、鼻孔カニューラのチューブ内の水素は放散されることなく押し戻されていることになり、次の吸気の期間に吸引される水素は発生する全ての水素を吸引する事になるので、吸引効率は100%となる。但し、電解液を容器に満杯にせずに出来る容器内の両空間の最低限必要とする容積と、入れる電解液の量の下限などは、人の呼気量や鼻孔の広さと鼻孔カニューラの形状と固定様態、及び電解で発生する気体の量と分離方法等により決まるもので、一概に表記出来ないが、例えば一辺が60mmの立方体の容器を中間で仕切ったような製品の場合の電解液の液面の上下動は数mm程度である。
【0008】
本発明の第一の小課題を実現する為の手段として、上記の仕切り壁と両電極の構成を変えた方法もある。陽電極は一般に高価なことに比して陰電極は安価であるので、形状を大きくしたり変形させたりすることが可能であるという特徴を生かして、陰電極に上記の仕切り壁の機能を持たせる。陰電極が容器を同様に分割し、陽電極は水素排出側の電解液に配置することが上記と異なる方法で、陰電極は陽電極の側からのみ発生する事になる。従って、この場合は上記とは異なり、水素排出口からは陽電極から発生する酸素も一緒に吸引することになる。
【0009】
本発明の第二の小課題としてのオゾンを発生させないか減量する方法として、電解液をアルカリ性にする事を本発明者は発見したので説明する。本発明者は「特許文献6」において、電気分解において陽電極に酸素と共にオゾンが生成される場合の根拠を独自のナノ膜電解理論として開示している。そこでは、従来の電気化学においては触媒作用として説明されてきた、オゾンが発生する為の過電圧という現象が、ほぼ全ての金属や炭素の表面に作られている絶縁酸化被膜であるナノ膜によるトンネル電圧であることを解明している。そして、逆にこの簡単に測定できるこのトンネル電圧からナノ膜の厚さを測定する方法を「特許文献7」において提唱した。このナノ膜の厚さに比例して従来の電気化学が言うところの過電圧、即ち本発明者の言う第2のトンネル電圧が増大することが解った。白金コートの陽電極でオゾンが発生する事は公知であるが、実際にオゾンを多く発生する電極であるDLCという導電性ダイヤモンドコーティングなどを調べるとこのナノ膜の厚さが大きい。このこともオゾン発生にはこのトンネル電圧が寄与していることの証左にもなっている。
【0010】
次に、電気分解で発生する酸素は、オゾンが含まれていなくても多かれ少なかれ活性酸素である可能性が有り、水素吸引でこれらを一緒に吸引すると有害の場合が有ることを説明する。本発明者は「特許文献6」において、水分子H
2O内の電子が、電解液によって作られる強い電界により飛び出すこの現象を第1のトンネル現象として説明している。そして、電子が上記に説明した陽電極のナノ膜を飛び越える第2のトンネル現象と合わせて、つまり第1のトンネル電圧と第2のトンネル電圧の合計のトンネル電圧によるエネルギーが、作用と反作用の原理により、陽電極で発生する酸素に与えられる事を本発明者は推論した。第2のトンネル電圧は1.23Vと言う水H
2Oの理論電気分解電圧である。白金の第2のトンネル電圧は本発明者の測定では1.27Vであり、白金電極でオゾンが発生する事は実験的に公知である。導電性ダイヤモンドや鉛や酸化錫などもこの第2のトンネル電圧が高くオゾンが発生する。
【0011】
電気化学では陰電極側で水分子H
2Oが電気分解するという解説もあるが、本発明者は陽電極の界面で水分子H
2OやOH
−などが電気分解すること見出していてこれを次に説明する。水の中に電解質によるイオンが存在すると、例えば陽電極の界面にはナノサイズの近距離にそのマイナスイオンの電気二重層が形成されることは電気化学で近年に発見され、電気二重層コンデンサが実用にされている。この電極界面を拡大して解説すると、この層となったマイナスイオンは陽電極との間に大きな電界をつくる。例えば電解質を希硫酸とすると、SO
42−イオンが陽電極の直近に並ぶのであるが、SO
42−から電子が飛び出す電圧は1.23Vより大きく、イオンの大きさもH
2Oより大きい。するとこれより小さい水分子H
2Oは分極していることもあって、SO
42−イオンよりも直近に整列している数は多い事になる。従ってSO
42−イオンの二重層が作り出す大きな電界によりH
2O内の電子が陽電極に吸引される電位が1.23V以上になると、この電子は第1のトンネル現象として飛び出して、水はH
+とOH
−に分解する。そして、OH
−はさらにH
+と酸素原子Oになる。この時に、酸素原子Oは先のトンネル電圧による反作用のエネルギーを得て、酸素分子O
2になったりオゾンO
3になったりする。この現象が、水に電解質を加えて初めて水の電気分解が可能となり、陽電極の種類によっては、オゾンが生成するメカニズムで、従来の電気化学では触媒効果としてしか明らかにしえなかったことである。 電解液を酸性にして、陽電極をグラファイトにすると陽電極からは酸素などの一切の気泡が発生しないことが有る。グラファイトの酸化被膜は白金よりも厚いという実験結果も得ているので、この現象も、陽電極で発生する酸素のほとんどがオゾンなどの活性酸素となり、グラファイトの成分である炭素と全て反応して気泡にはならないという推論が成立する。このようにグラファイトを用いれば、オゾンを含まないで水素を含む気体を吸引することも出来るが、グラファイトはオゾンと反応して酸化された炭素粒を分離する。従って電極は痩せて行き寿命が短く、容器の底にはこの酸化された炭素粒が沈殿する。このような欠点があるので、本発明での請求項にはこのグラファイトの手段は加えないことにする。
【0012】
一方、電解液を、電解質の種類によって値は異なるものの、特定の値以上のアルカリ性にすると、陽電極からオゾンが発生しない事を本発明者は見出して、電極でオゾンが出来ると赤褐色になって反応するヨー化カリウム試薬を水酸化ナトリュームを添加した電解液に入れてそれを確認した。希硫酸を入れて同様に確認すると電極表面で試薬が着色してオゾンの発生する様子はよく見て取れる。この理論的解明は以下のようになる。アルカリ電解液のマイナスイオンはOH
−で、これは水分子H
2Oより小さく、その理論分解電圧は0.8Vである。従って、陽電極の最直近にはOH
−の電気二重層が綺麗に形成され、その電位が0.8Vになると第1のトンネル現象によりOH
−内の電子が飛び出してH
+と酸素原子Oとなり酸素原子Oは直ちに酸素分子O
2となる。第1のトンネル電圧が水分子の理論分解電圧である1.23Vより0.43Vも低い0.8Vであることにより、ナノ膜電解理論からして出来上がる酸素の酸化エネルギーはオゾンより低いのでオゾンは生成されない。しかし、重要な事はオゾンにはならないものの、空気中にある酸素よりも酸化力の強い活性酸素が、例え電解液をアルカリ性にしたとしても陽電極から発生している可能性がある事である。空気中の酸素では錆びないステンレスを陽電極にして、カセイソーダを電解質とした電解液をpH11.6以上のアルカリ性にして、且つ、ヨー化カリウム試薬を添加して電解すると、試薬は反応せずに、つまりはオゾンは生成しないものの、ステンレスは酸化して錆びてしまい溶液は茶色に染まっていくことを確認し、活性酸素が生成されている可能性を実証した。水素吸引は体内の悪玉と言われる活性酸素と反応し、これを除去することが水素医療に使われる科学的根拠である。「体内の錆びをとる」言われる所以であるが、しかし、頭痛の原因となるほどの酸化力の強い活性酸素であるオゾンは、水素吸引において有害と警告されつつあるものの、もしも空気中の酸素より酸化力の強い酸素であれば、それを水素と共に吸引してしまう弊害は取り除かなくてはならない。
【0013】
次に、特殊な電解液を使用しないで済む家庭用の機器とする為の手段として、電解液は重曹と水道水で作る。そして精製水でなく水道水で実現することが出来る為に、陰電極として表面に白金やダイヤモンドなど何もコートしないチタン単体あるいはチタンの合金を用いる。多くの従来の機器が特殊な電解液を必要とした理由は、水道水にはカルシュームが溶けていて電気分解するとこれが陰電極に析出して電解を阻害し、いずれ電流が流れなくなることによる。この析出したカルシュームはクエン酸で溶かして洗浄するとか一旦逆電流を流して陰電極から剥がしてしまう技術は知られている。本発明者はカルシュームが析出しない陰電極の材料を見出すことに成功した。チタンは絶縁酸化被膜が厚く酸化されにくいので、一般に陽電極として、白金をコートして使う。例えこの白金コートにピンホールがあってもそこから電極が腐食しないようにする為である。このように、チタンは絶縁酸化被膜が厚いので表面には電流を流せないということが一般的な考えとなっている。しかし、これを陰電極に用いると様相は一変して、その酸化被膜の整流作用により電流は流れる。そして、この表面の、筆者が見出したナノ膜電解理論では、酸化被膜が厚い事が幸いして、第3のトンネル現象により陰電極界面から飛び出す電子のエネルギーが高い。その結果として、陰電極に用いたチタンの表面にはカノシュームは析出しない事を発見した。
【0014】
さらに本発明の課題である、水素を安全で快適に吸引する為の本発明による次の手段を説明する。特に水素を扱う製品は水素爆発に特段に留意する必要が有る。その為の手段として、本発明では水素排出口と水素吸引用チューブ挿入部の間に隔室を設けてセラミックボールなどの個体の粒体を詰めた。水素は空気より約10倍も軽く、また水素は空気に対して4%から75%の濃度でなければ爆発しないことは知られている。したがって個体の粒体間の隙間を通って水素は排出されることにより、水素が延焼する上記の条件を整わなくすることが出来て実験でも水素爆発をしないことが確認出来た。また、物事の延焼には発熱の維持が必要であるので、個体は出来るだけ熱容量の大きなものがさらに効果的である。次に、隔室は設けないで、水素排出口に長さが1m以上の鼻孔カニューラのチューブを取り付けて、その先端に火気を近づけても、同様の理由で水素爆発に至らないことも確認した。隔室に加えて二重の防爆対策とする事が出来る。電解では電解損失により電解液の液温もそれなりに上昇する事と、マイクロバブル状の水素気泡が液面ではじける事により水蒸気が水素排出口から出ていく。もしも、上記の防爆用の前記隔室を設けないと、水蒸気はチューブで冷やされて大きな水滴となって鼻孔に達する様になり、鼻から水滴が漏れるという不快な現象が起きる。隔室があり、その壁面であったり、内部の個体の粒体の表面に水蒸気が触れると、水蒸気は冷やされて、チューブに到達する前に水滴となってこの隔室に溜まるか隔室の下に落下する。水素吸引は概略30分程度を1回の吸引の目安にするので、吸引する毎に一度チューブの先端から小さく息を吹いたり吸ったりすれば、もし前記隔室に水が溜まってもその都度下の容器に落とすことが出来る。
【0015】
最後に、陽電極にオゾンが発生しても、吸引する水素からは分離し、更に、発生した水素の約半分もの水素を無駄にする従来機器の欠点を改善する方法も考案したので次にこれを説明する。前記陽電極から発生する気泡は全て外気開放口に集めるように前記仕切り壁と前記両電極の関係を以下の様にする。また、両電極から発生して上昇する気泡の一部は電解液内に滞留して循環するので、これも分離する必要がある。前記仕切り壁は略垂直で、下端が略水平な板条であり、前記両電極の形状は好ましくは細長い棒状ないしはパイプ状であり、前記陰電極は前記仕切り壁の下端に好ましくは接近して、前記水素排出側の該下端より下側に、該下端に並行して略水平に配置し、前記陽電極は好ましくは前記陰電極と同一水平面上に、前記仕切り壁の下端に好ましくは接近して、該陰電極と並行して設置する。両電極から発生する気泡を膜などを使わずに分離する構造であるにも関わらず、両電極はいずれも前記仕切り壁の下端に近接させるので、結果的に両電極の電極間距離は極めて狭く、また、両電極の対向面積はとても広く出来る。ここが教育用のH管とは全く異なり、従って、電解効率も飛躍的に高くなる。この事が可能となる根拠を以下に概略説明する。棒状で水平である両電極から発生する気泡群は、両電極の頂部に集まり、水流と共に一直線に上昇して垂直の二つの薄い壁を形成することが解った。そして、この二つの気泡の壁の間に仕切り壁の下端があって上端は容器上部に密着させる。電解液の液面に到達した気泡と水流はそこで前記仕切り壁によりそれぞれ反対側に回流していき、一部の気泡は再び電解液の内部に水流と共に還流していく。この時、電極は棒状であるので、断面の表面側が略円形であり、断面の回りに発生する気泡は断面の頂点に集められて電極に沿う一直線状の壁となって上昇する。そして、この上昇する気泡が電極回りの気泡を集めて頂点に集中する水流を作っている。また、液面上部から還流して来る気泡は、再びこの水流にのって上昇するので、両電極から発生する気泡は、電解液そのものを膜などで分離せずとも、水流の経路を工夫する事に寄って分離する事が出来た。このことは、教育用のH管では出来ない、水流には連続性が有るというこの自然科学の法則を利用して、電極間距離を気泡の大きさの倍程度まで極端に狭く出来る水流分離と言う事が出来る新しい手段である。一列に整列して上昇する気泡の壁が出来るので、前記仕切り壁は、その下端は変動する電解液の液面より常に下にあって、少なくとも液面に到達した水流を一方向に決める程度にまで液面の下に有れば充分であるが、容器を傾斜すると、気泡の壁と仕切り壁の位置関係が崩れるので、仕切り壁の下端は、両電極の断面の頂部のところまでを下限として、充分に液面より下にすることが好ましい。