(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、図面を参照しながら、本開示の実施形態を説明する。
[1.構成]
図1に示すように、車両に搭載された物標判定システム1は、レーダセンサ10、運転情報センサ20、物標判定装置30及び処理装置40を備える。
【0013】
レーダセンサ10は、あらかじめ決められた検出範囲内にレーダ波を照射し、その反射波を受信することで、レーダ波を反射した点である反射点を検出する周知のセンサである。なお、レーダセンサ10は、例えばビーム方向が自車の正面方向と一致するように自車に設置される。ここでいうビーム方向とは、レーダセンサ10がレーダ波を照射する範囲である検出範囲の中央方向をいう。また、反射点データには、自車の正面方向に対する方位及び自車に対する距離が少なくとも含まれているものとする。自車に対する方位とは、ビーム方向を基準として求められた反射点が存在する水平方向の角度をいう。つまり、反射点データには、自車に対する反射点の位置を示す位置データが含まれる。
【0014】
また、反射点データは、例えば高速フーリエ変換処理などの周知の信号処理を受信した反射波に対して行うことにより生成される。またここでいうレーダ波は、ミリ波帯の電磁波を使用するいわゆるミリ波レーダであってもよいし、レーダ波としてレーザー光を用いるレーザレーダ、レーダ波として音波を用いるソナーであってもよい。いずれにしても、レーダ波を送受信するアンテナ部は、水平面に対する反射波の到来方向を検出できるように構成されている。なおアンテナ部は、例えば送信素子及び受信素子により構成されるアレイアンテナであってもよい。
【0015】
運転情報センサ20は、自車の挙動や自車の挙動に影響を与える運転操作等に関する情報である運転情報を検出するためのセンサである。運転情報センサ20の検出対象は、例えば、アクセルペダルやブレーキペダルの操作量、ステアリングホイールの操舵角、車両速度、車両加速度、旋回角速度であるヨーレート、タイヤの回転数等がある。すなわち、運転情報センサ20には、車速センサ、ヨーレートセンサや操舵角センサなど各種センサが含まれる。
【0016】
処理装置40は、物標判定装置30により出力される結果に応じて、自車が衝突するおそれのある静止障害物が存在する旨の報知を行う等のあらかじめ決められた処理を行う装置である。
【0017】
物標判定装置30は、CPU31と、RAM、ROM、フラッシュメモリ等の半導体メモリ(以下、メモリ32)と、を有する周知のマイクロコンピュータを中心に構成される。物標判定装置30の各種機能は、CPU31が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ32が、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムが実行されることで、プログラムに対応する方法が実行される。なお、物標判定装置30を構成するマイクロコンピュータの数は1つでも複数でもよい。
【0018】
物標判定装置30は、CPU31がプログラムを実行することで実現されるが、この手法はソフトウェアに限るものではなく、その一部又は全部の要素について、一つあるいは複数のハードウェアを用いて実現してもよい。例えば、上記機能がハードウェアである電子回路によって実現される場合、その電子回路は多数の論理回路を含むデジタル回路、又はアナログ回路、あるいはこれらの組合せによって実現してもよい。
【0019】
[2.処理]
<物標判定処理>
次に、物標判定装置30が実行する物標判定処理について、
図2のフローチャートを用いて説明する。なお、物標判定処理は、例えば自車のイグニッションがオンである間、周期的に行われる。
【0020】
S110で、物標判定装置30は、取得サイクルごとに反射点群に含まれる反射点の反射点データを取得する処理である反射点取得処理を行う。ここでいう反射点群とは、レーダセンサ10から取得される反射点をいう。また、取得サイクルとは、反射点を取得するあらかじめ設定された任意の周期をいう。
【0021】
S120で、物標判定装置30は、反射点データが表す反射点の位置に基づいて反射点群を分割することにより、1つ以上の反射点を有するクラスタを生成する処理であるクラスタリング処理を行う。ここで、クラスタリング処理に用いられる反射点データは、今回の物標判定処理においてS110で取得された反射点データ(以下、現データ)が用いられる。ただし、クラスタリング処理において用いられる反射点データは、現データに加えて、前回以前のあらかじめ設定された回数の物標判定処理において後述するS140で保存された反射点データ(以下、過去データ)を用いてもよい。なお、過去データを用いる場合、過去データが表す反射点の位置は、過去データが取得された時点から現データから取得されるまでの自車の動きに基づいて補正されたデータでもよい。また、前回以前のあらかじめ設定された回数とは、例えば、5回としてもよい。
【0022】
ここで、過去データの補正は、過去データが取得された時点から現データが取得された時点まで自車の移動量だけ、過去データが表す反射点の位置を移動させることにより行われる。自車の移動量は、例えば運転情報センサ20で取得された運転情報に基づいての自車の移動量を算出されてもよい。
【0023】
クラスタリングの具体的な手法としては、例えば最短距離法、群平均法、ウォード法又は最長距離法を用いる。ここで、最短距離法を用いる場合、例えば、ある反射点からの距離が最も近く、かつ2m以内の範囲にある他の反射点を同一のクラスタとしてクラスタリングを行われてもよい。なお、反射点群に対してクラスタリング処理をした結果得られる1つ以上のクラスタを、以下ではクラスタ群という。
【0024】
S130で、物標判定装置30は、ガードレール判定処理を行う。ここでいうガードレール処理は、S120で生成されたクラスタがガードレール条件を満たすか否かを判定することにより、クラスタ群に含まれるクラスタがガードレール物標を表すものであるか、非ガードレール物標を表すものであるかを判定する処理をいう。ここでいうガードレール物標とはガードレールを表す物標をいい、非ガードレール物標とは、ガードレール物標以外の物標をいう。ガードレール判定処理の詳細については後述する。
【0025】
S140で、物標判定装置30は、S110で取得された反射点データを取得サイクルごとにメモリ32に保存する処理であるデータ保存処理を行う。
なお、S110での処理が反射点取得部に相当し、S120での処理がクラスタリング部に相当し、S130での処理がガードレール判定部に相当し、S140での処理が保存部に相当する。
<ガードレール判定処理>
物標判定装置30はS130において、実行するガードレール判定処理の詳細について
図3を用いて説明する。
【0026】
S210で、物標判定装置30は、S120で生成されたクラスタ群を取得する。
S220で、物標判定装置30は、S210で取得したクラスタ群を構成するクラスタの数が個数条件を満たすか否かを判定する。ここで個数条件とは、後述するS250においてガードレールを表す近似曲線を導出するために必要な数のクラスタがクラスタ群に存在するかを規定した条件である。ここで、ガードレールを構成するために必要な数は例えば2つ以上とする。
【0027】
物標判定装置30は、クラスタ群が個数条件を満たさないと判定した場合、処理をS230に処理を移行する。
S230で、物標判定装置30は、クラスタ群に含まれるクラスタが非ガードレール物標を表すものであると判定し、判定結果を出力する。すなわち、クラスタ群に含まれるクラスタにはガードレール物標が含まれず、すべてのクラスタが非ガードレール物標を表すものであるとの判定結果を処理装置40に出力し、ガードレール判定処理を終了する。
【0028】
一方、物標判定装置30は、クラスタ群が個数条件を満たすと判定した場合、処理をS240に処理を移行する。
S240で、物標判定装置30は、クラスタ群に含まれるクラスタのうち、ガードレールの支柱であると推定されるクラスタを柱候補として抽出する処理である柱候補抽出処理を行う。柱候補抽出処理の詳細については後述する。
【0029】
S250で、物標判定装置30は、S240で抽出された柱候補の分布を表す近似曲線を導出する。ここで、近似曲線の導出は、柱候補の分布に対して円弧形状又はクロソイド曲線形状をフィッティングさせることにより行ってもよい。また、フィッティングは、例えば最小二乗法やレーベンバーグマーカート法など周知のフィッティング方法により行われてもよい。この際、例えばフィッティングに用いた円弧形状やクロソイド曲線形状と各柱候補の位置との誤差を算出し、算出した誤差がもっとも小さくなるものを近似曲線として導出してもよい。
【0030】
S260で、物標判定装置30は、S250で導出された近似曲線がカーブ条件に適合するものか否か判定する。ここでいうカーブ条件とは、自車が走行し得る道路形状と合致するか否かを判定するための条件をいう。ここで自車が走行し得る道路形状とは、一般的な公道の形状である。すなわち、自車が走行しうる道路形状とは、円弧形状又はクロソイド曲線であって、その曲率が法律等で定められた範囲の大きさである形状である。また、カーブ条件は例えばS250でフィッティングを行った際に、算出した誤差があらかじめ決められた範囲内であることとしてもよい。
【0031】
S260で、物標判定装置30により、S250で導出された近似曲線がカーブ条件に適合しないと判定された場合、S230に処理を移行する。
一方、S260で、物標判定装置30により、S250で導出された近似曲線がカーブ条件に適合すると判定された場合、S270に処理を移行する。
【0032】
S270で、物標判定装置30は、S210で得られたクラスタ群に含まれるクラスタのうち、S240で柱候補として抽出されたクラスタがガードレール物標を表すものとして、それ以外のクラスタが非ガードレール物標を表すものとして反射点データを処理装置40に出力し、ガードレール判定処理を終了する。
【0033】
なお、S240での処理が柱候補抽出部に相当する。
<柱候補抽出処理>
物標判定装置30はS240において、実行する柱候補抽出処理の詳細について
図4を用いて説明する。
【0034】
S310で、物標判定装置30は、自車の推定軌道を推定する軌道推定処理を行う。推定軌道とは、走行すると推定される軌道を表した仮想の曲線である。推定軌道は、例えば、運転情報センサ20から取得した車速、ヨーレート及びステアリングホイールの操舵角度などの運転情報に基づいて推定される。
【0035】
S320で、物標判定装置30は、ガードレール範囲の設定を行う。
ここで、ガードレール範囲は、例えばS310で推定された推定軌道から車幅方向に、車線の中央から端までに相当する距離だけ広げた範囲をいう。
【0036】
S330で、物標判定装置30は、クラスタ群に含まれるクラスタのそれぞれについて、そのクラスタの空間的な大きさであるクラスタサイズを算出する処理であるサイズ算出処理を行う。ここでクラスタサイズは、例えばクラスタそれぞれにおいて、当該クラスタにおける反射点の分布の中心を表す重心位置から当該クラスタに含まれる反射点のうち最も遠い反射点までの距離としてもよい。
【0037】
S340で、物標判定装置30は、クラスタ群に含まれるクラスタのうち1つのクラスタを選択クラスタとして選択する。なお、ここで選択される選択クラスタは、後述するS350〜S380の処理を行っていない未選択クラスタの中から選択される。
【0038】
S350で、物標判定装置30は、選択クラスタのクラスタサイズが、サイズ条件を満たすか否かを判定する。ここでいうサイズ条件とは、クラスタサイズがあらかじめ設定された支柱サイズ範囲内であることをいう。支柱サイズ範囲とは、支柱サイズに基づいて設定される範囲である。支柱サイズは、ガードレールの支柱の空間的な大きさを表し、具体的には、一般的なガードレールの支柱の外径に相当する大きさをいう。
【0039】
S350で、サイズ条件を満たさないと判定された選択クラスタは、S360で非柱候補に設定され、物標判定装置30はS390に処理を移行する。
一方、S350で、サイズ条件を満たすと判定された選択クラスタは、S370で、範囲条件を満たすか否かを判定される。ここで、範囲条件とは、選択クラスタの位置がS320で設定されたガードレール範囲内に含まれることである。
【0040】
S370で、範囲条件を満たさないと判定された選択クラスタは、S360で非柱候補に設定され、物標判定装置30はS390に処理を移行する。
S370で、範囲条件を満たすと判定された選択クラスタは、S380で柱候補に設定され、物標判定装置30はS390に処理を移行する。
【0041】
S390で、物標判定装置30は、クラスタ群に、未選択クラスタが存在するか否かを判定する。
クラスタ群に未選択クラスタが存在する場合、S340に戻り、以降の処理を行う。
【0042】
クラスタ群に未選択クラスタが存在しない場合、柱候補抽出処理を終了する。
すなわち、柱候補抽出処理により、クラスタ群に含まれる複数のクラスタのうち、サイズ条件及び範囲条件を満たすクラスタを柱候補として抽出する。
【0043】
なお、S310での処理が軌道推定部に相当し、S330での処理がサイズ算出部に相当する。
つまり、クラスタ群に含まれるクラスタの個数が個数条件を満たし、それぞれのクラスタが、サイズ条件及び範囲条件を満たし、かつ、クラスタの位置の分布がカーブ条件を満たす場合に、ガードレール物標として出力する。
【0044】
<各処理の結果の例>
各処理の結果の例として、ガードレールの支柱Pと他車Qとその他の物標Tが存在する場合における各処理の結果を示す。
【0045】
ここで、例として
図5に示すようなカーブ路において、自車の前方左側にガードレールの支柱Pおよびその他の物標Tがそれぞれ複数存在し、自車の前方右側に車道中央線Lを挟んで対向車である他車Qが存在する場合を考える。
【0046】
図5に示した状況に対して、S110の反射点取得処理が行われることにより
図6に示すような反射点群が得られる。
図6に示す反射点群には、ガードレールの支柱P、他車Q及びその他の物標Tそれぞれの位置に対応して検出された複数の反射点が含まれる。なお、
図6に示す反射点群に、更にS140で保存された過去データを含めて使用してもよい。
【0047】
図6に示すような反射点群に対して、S120でクラスタリング処理が行われることにより、
図7に示すようなクラスタを含むクラスタ群が得られる。ここでクラスタ群には、ガードレールの支柱Pを表した支柱クラスタCpと、他車Qを表した他車クラスタCqと、その他の物標Tを表した他物標クラスタCtとが含まれる。なお、各クラスタの位置及び大きさは、各物標の位置及び大きさにそれぞれ対応する。
【0048】
S310で軌道推定処理が行われると、
図8に示すように自車が走行すると推定される軌道を表した推定軌道Eが自車の進行方向に設定される。さらにS320でガードレール範囲の設定が行われると、
図8に示すようにガードレール範囲Z1が推定軌道から車幅方向に車線の中央から端までに相当する距離だけ広げた範囲が設定される。
【0049】
ここで、
図8のクラスタ群に含まれるクラスタごとに、柱候補抽出処理のS340からS390までの処理が行われると、
図9に示すように、支柱クラスタCpに対応した柱候補Spが抽出される。すなわち、例えば他車クラスタCqは、そのクラスタサイズがS350でサイズ条件を満たさないことにより、柱候補として抽出されない。また、他物標クラスタCtは、そのクラスタの位置がS370で範囲条件を満たさないことにより、柱候補として抽出されない。
【0050】
さらに、
図10に示すように、抽出された柱候補Spの分布を表した近似曲線GがS250で導出される。
導出された近似曲線Gの形状がS260でカーブ条件に適合すると判定された場合、柱候補Spを表したクラスタがガードレール物標として、その他の柱候補として抽出されなかったクラスタが非ガードレール物標として、S270で出力される。
【0051】
一方、S260で近似曲線の形状がカーブ条件に適合しないと判定された場合、検出されたクラスタは、全て非ガードレール物標を表すものであるとしてS230で処理装置40に出力される。
【0052】
[3.効果]
以上詳述した第1実施形態によれば、以下の効果を奏する。
(1)上記実施形態によれば、ガードレールの支柱を検出し、検出された支柱を元にガードレールであるか否かを判定しているため、ガードレールを検出する検出精度を向上させることができる。すなわち、ガードレールの支柱の形状は円柱状であるため、ガードレールの横板で反射したレーダ波の反射方向と異なり、円柱状の支柱の側面で反射したレーダ波の反射方向は一方向ではないため、車両に到達しやすい。車両に到達したレーダ波からガードレールの位置を推定するため、ガードレールの検出精度を向上させることができる。
【0053】
その結果、静止障害物の検出精度についても向上させることができる。すなわち、レーダ装置により検出された物標のうち、ガードレール物標の検出精度が向上することに伴い、車両が走行する道路上に存在する非ガードレール物標を静止障害物としてより正確に抽出することができる。
【0054】
[4.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
【0055】
(1)上記実施形態では、ガードレール範囲は推定軌道から車幅方向に車線の中央から端までに相当する距離だけ広げた範囲であるが、ガードレール範囲は推定軌道を中心に広げたものに限定されるものではない。例えば、ガードレール範囲は、
図11に示すように自車の走行する車道の中央に存在する車道中央線Lを中心とした範囲Z2が設定されてもよい。このような場合、自車の走行する道路の車道中央線Lの位置は、例えば、推定軌道が中央線で区切られた車線の中央を通っているものと仮定して、推定軌道から車幅方向に車線の幅の半分だけ平行移動した位置に存在するものとして設定されてもよい。
【0056】
また、中央線を中心としたものに限定されず、中央線から自車の走行する道路側のみに自車の走行する道路の中央から道路端までの距離だけ広げるものであってもよい。
(2)また、ガードレール範囲は、例えば、
図12に示すように推定軌道Eから車幅方向に車線の横幅の距離だけ離れた位置に対して、車幅方向にあらかじめ決められた距離だけ広げた範囲Z3が設定されてもよい。
【0057】
(3)上記実施形態におけるガードレール判定処理では、フィッティングに円弧形状又はクロソイド曲線の形状を用いるが、推定軌道の形状を用いてもよい。
(4)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
【0058】
(5)上述した物標判定装置30の他、当該物標判定装置30を構成要素とするシステム、当該物標判定装置30としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、物標判定方法など、種々の形態で本開示を実現することもできる。