特許第6959360号(P6959360)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エスエルエム ソルーションズ グループ アーゲーの特許一覧

特許69593603次元工作物を製造するための装置及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6959360
(24)【登録日】2021年10月11日
(45)【発行日】2021年11月2日
(54)【発明の名称】3次元工作物を製造するための装置及び方法
(51)【国際特許分類】
   B22F 3/16 20060101AFI20211021BHJP
   B29C 64/153 20170101ALI20211021BHJP
   B29C 64/232 20170101ALI20211021BHJP
   B29C 64/268 20170101ALI20211021BHJP
   B33Y 30/00 20150101ALI20211021BHJP
   B33Y 10/00 20150101ALI20211021BHJP
   B22F 3/105 20060101ALI20211021BHJP
   B28B 1/30 20060101ALI20211021BHJP
   B22F 12/48 20210101ALI20211021BHJP
   B22F 12/82 20210101ALI20211021BHJP
   B22F 12/00 20210101ALI20211021BHJP
【FI】
   B22F3/16
   B29C64/153
   B29C64/232
   B29C64/268
   B33Y30/00
   B33Y10/00
   B22F3/105
   B28B1/30
   B22F12/48
   B22F12/82
   B22F12/00
【請求項の数】17
【全頁数】23
(21)【出願番号】特願2019-563753(P2019-563753)
(86)(22)【出願日】2018年4月19日
(65)【公表番号】特表2020-521046(P2020-521046A)
(43)【公表日】2020年7月16日
(86)【国際出願番号】EP2018060075
(87)【国際公開番号】WO2018210521
(87)【国際公開日】20181122
【審査請求日】2020年1月17日
(31)【優先権主張番号】102017208496.0
(32)【優先日】2017年5月19日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】514298748
【氏名又は名称】エスエルエム ソルーションズ グループ アーゲー
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100147555
【弁理士】
【氏名又は名称】伊藤 公一
(74)【代理人】
【識別番号】100160705
【弁理士】
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】ビルク ホッペ
(72)【発明者】
【氏名】ヤン ビルケス
(72)【発明者】
【氏名】ルーカス レースゲン
【審査官】 藤長 千香子
(56)【参考文献】
【文献】 独国特許出願公開第102007014968(DE,A1)
【文献】 欧州特許出願公開第2708297(EP,A2)
【文献】 特開2017−078214(JP,A)
【文献】 中国特許出願公開第103447528(CN,A)
【文献】 米国特許出願公開第2014/0165381(US,A1)
【文献】 特開平11−123767(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 1/00−8/00
C22C 1/04−1/05
C22C 33/02
B29C 64/153、64/227
B33Y 10/00、30/00
B28B 1/30
(57)【特許請求の範囲】
【請求項1】
3次元工作物(19)を製造するための装置(1)であって、
原料粉末(9)を受容するための支持体(3)と、
該支持体(3)に塗布された前記原料粉末(9)に電磁ビーム若しくは粒子ビームを選択的に照射して、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成するための照射ユニット(23)と、
該照射ユニット(23)を前記支持体(3)に対して垂直に移動させるように構成された垂直移動装置(25)と、
前記支持体(3)に塗布された前記原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)と、を有し、
前記構築シリンダ壁(11)は構築プロセス中にその垂直高さ(h)を増加するように構成されており、
更に、互いに取り外し可能に接続されるように構成された複数の壁要素(15a、15b)を有しており、これらの壁要素(15a、15b)は接続された状態で垂直に延びる前記構築シリンダ壁(11)を形成する、装置(1)。
【請求項2】
前記複数の壁要素(15a、15b)は互いに接続可能であって、接続された状態で少なくとも2つの壁要素(15a、15b)が垂直方向で互いに上下に配置されている、請求項1に記載の装置(1)。
【請求項3】
前記複数の壁要素(15a、15b)は互いに接続可能であって、接続された状態で少なくとも2つの壁要素(15a、15b)が水平方向で並置されている、請求項1又は2に記載の装置(1)。
【請求項4】
前記垂直移動装置(25)は、前記構築シリンダ壁(11)を前記照射ユニット(23)と共に前記支持体(3)に対して垂直に移動させるように構成されている、請求項1〜3の何れか一項に記載の装置(1)。
【請求項5】
更に、構築シリンダ壁(11)を支持体(3)に対して垂直に移動させるように構成された別の垂直移動装置を有する、請求項1〜3の何れか一項に記載の装置(1)。
【請求項6】
更に、内側の構築シリンダシェル(27)を有しており、前記構築シリンダシェル(27)の下縁部は前記支持体(3)と接続されていて、前記構築シリンダシェル(27)の上縁部は前記垂直移動装置(25)により前記照射ユニット(23)と共に垂直に移動可能であり、その際に前記構築シリンダシェル(27)は、前記複数の壁要素(15a、15b)が接続された状態で前記支持体に塗布された原料粉末(9)に対する内側の壁をなすように構成され、原料粉末(9)は前記構築シリンダシェル(27)に直接接している、請求項1〜5の何れか一項に記載の装置(1)。
【請求項7】
前記構築シリンダシェル(27)は、下記の要素の少なくとも1つ、即ち、
伸縮性材料からなる可撓性シェル、
コルゲートベローズ、及び/又は 複数の壁部分であって、引っ込んだ状態では入れ子式に収納され、そして伸縮自在に展開した状態になる複数の壁要素、の内の1つを有する、請求項6に記載の装置(1)。
【請求項8】
更に、構築プロセス中に複数の壁要素(15a、15b)を互いに接続するように構成された接続手段を有する、請求項1〜7の何れか一項に記載の装置(1)。
【請求項9】
3次元工作物(19)を製造するための装置(1)であって、
原料粉末(9)を受容するための支持体(3)と、
該支持体(3)に塗布された前記原料粉末(9)に電磁ビーム若しくは粒子ビームを選択的に照射して、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成するための照射ユニット(23)と、
該照射ユニット(23)を前記支持体(3)に対して垂直に移動させるように構成された垂直移動装置(25)と、
前記支持体(3)に塗布された前記原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)と、を有し、
前記構築シリンダ壁(11)は構築プロセス中にその垂直高さ(h)を増加するように構成されており、
更に、互いに取り外し可能に接続されるように構成された複数の壁要素(15a、15b)を有しており、これらの壁要素(15a、15b)は接続された状態で垂直に延びる前記構築シリンダ壁(11)を形成しており、
更に、可撓性接続部材によって互いに接続された複数の壁要素(15a、15b)を有し、該複数の壁要素の第1の部分(15a)は垂直状態にあり、該垂直状態にある前記第1の部分の壁要素は垂直に延びる前記構築シリンダ壁を形成し、
前記複数の壁要素の第2の部分(15b)は巻き上げられた状態にあり、該巻き上げられた状態にある前記第2の部分の壁要素は垂直に延びる前記構築シリンダ壁を形成せず、前記複数の壁要素は、該壁要素が巻き上げられた状態から垂直状態に巻き出されることができ、前記構築シリンダ壁(11)の垂直高さ(h)が増加するように構成されている、装置(1)
【請求項10】
3次元工作物(19)を製造するための装置(1)であって、
原料粉末(9)を受容するための支持体(3)と、
該支持体(3)に塗布された前記原料粉末(9)に電磁ビーム若しくは粒子ビームを選択的に照射して、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成するための照射ユニット(23)と、
該照射ユニット(23)を前記支持体(3)に対して垂直に移動させるように構成された垂直移動装置(25)と、
前記支持体(3)に塗布された前記原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)と、を有し、
前記構築シリンダ壁(11)は構築プロセス中にその垂直高さ(h)を増加するように構成されており、
更に、互いに取り外し可能に接続されるように構成された複数の壁要素(15a、15b)を有しており、これらの壁要素(15a、15b)は接続された状態で垂直に延びる前記構築シリンダ壁(11)を形成しており、
前記構築シリンダ壁(11)は伸縮性材料からなる可撓性壁によって形成され、該可撓性壁(29)の下縁部は前記支持体(3)と接続され、前記可撓性壁(29)の上縁部は前記垂直移動装置(25)によって前記照射ユニット(23)と共に垂直に移動可能である、装置(1)
【請求項11】
更に、原料粉末(9)を捕集するための捕集トレイ(31)であって、原料粉末(9)は構築プロセスの終了後、及び前記構築シリンダ壁が少なくとも部分的に持ち上げたり取り外したりした後に、支持体(3)から横方向に落下する、捕集トレイ(31)と、
前記支持体(3)から横方向に落下する原料粉末(9)を捕集トレイ(31)に案内するように構成された密閉部材(33)と、を有する、請求項1〜10の何れか一項に記載の装置(1)。
【請求項12】
3次元工作物(19)を製造するための装置(1)で3次元工作物(19)を製造するための方法であって、
支持体(3)に原料粉末(9)を塗布するステップと、
前記支持体(3)に塗布された原料粉末(9)に、照射ユニット(23)によって電磁ビーム若しくは粒子ビームを選択的に照射するステップであって、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成する、ステップと、
前記照射ユニット(23)を垂直移動装置(25)によって前記支持体(3)に対して垂直に移動させるステップと、
構築プロセス中に、前記支持体(3)に塗布された原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)の垂直高さ(h)を増加するステップと、を含んでおり、
前記増加するステップは、複数の壁要素(15a、15b)を互いに取り外し可能に接続して、これらの壁要素(15a、15b)が接続された状態で垂直に延びる前記構築シリンダ壁(11)を形成することを含む、方法。
【請求項13】
更に、前記複数の壁要素(15b)の少なくとも1つを取り除くステップを含み、取り除かれた壁要素(15b)は前記構築シリンダ壁の最下部壁要素(15b)の1つをなすことによって、原料粉末(9)が前記支持体(3)から横方向に落下できる、請求項12に記載の方法。
【請求項14】
前記構築シリンダ壁(11)を上方に垂直に移動させることにより、該構築シリンダ壁(11)の最下部壁要素(15b)と前記支持体(3)との間に隙間ができ、該隙間を通って前記支持体(3)から横方向に原料粉末(9)が落下できることを含む、請求項12又は13に記載の方法。
【請求項15】
更に、落下する原料粉末(9)を捕集トレイ(31)に捕集するステップと、 落下する原料粉末(9)を密閉部材(33)によって前記捕集トレイ(31)に案内するステップと、を含む、請求項13又は14に記載の方法。
【請求項16】
3次元工作物(19)を製造するための装置(1)で3次元工作物(19)を製造するための方法であって、
支持体(3)に原料粉末(9)を塗布するステップと、
前記支持体(3)に塗布された原料粉末(9)に、照射ユニット(23)によって電磁ビーム若しくは粒子ビームを選択的に照射するステップであって、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成する、ステップと、
前記照射ユニット(23)を垂直移動装置(25)によって前記支持体(3)に対して垂直に移動させるステップと、
構築プロセス中に、前記支持体(3)に塗布された原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)の垂直高さ(h)を増加するステップと、を含んでおり、
可撓性接続部材によって互いに接続された複数の壁要素(15a、15b)を有し、該複数の壁要素の第1の部分(15a)は垂直状態にあり、該垂直状態にある前記第1の部分の壁要素は垂直に延びる前記構築シリンダ壁を形成し、
前記複数の壁要素の第2の部分(15b)は巻き上げられた状態にあり、該巻き上げられた状態にある前記第2の部分の壁要素は垂直に延びる前記構築シリンダ壁を形成せず、
さらに、前記壁要素が巻き上げられた状態から前記複数の壁要素を垂直状態に巻き出すステップを含み、前記構築シリンダ壁(11)の垂直高さ(h)が増加するように構成されている、方法。
【請求項17】
3次元工作物(19)を製造するための装置(1)で3次元工作物(19)を製造するための方法であって、
支持体(3)に原料粉末(9)を塗布するステップと、
前記支持体(3)に塗布された原料粉末(9)に、照射ユニット(23)によって電磁ビーム若しくは粒子ビームを選択的に照射するステップであって、付加的積層造形法によって原料粉末(9)から作られた工作物(19)を前記支持体(3)上に生成する、ステップと、
前記照射ユニット(23)を垂直移動装置(25)によって前記支持体(3)に対して垂直に移動させるステップと、
構築プロセス中に、前記支持体(3)に塗布された原料粉末に対する横方向境界をなしている、垂直に延びる構築シリンダ壁(11)の垂直高さ(h)を増加するステップと、を含んでおり、
前記構築シリンダ壁(11)は伸縮性材料からなる可撓性壁によって形成され、該可撓性壁(29)の下縁部は前記支持体(3)と接続され、
さらに、前記垂直移動装置(25)によって前記可撓性壁(29)の上縁部を前記照射ユニット(23)と共に垂直に移動するステップを含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元工作物を製造するための装置及び方法に関する。特に、本発明は、3次元工作物を付加的積層造形法によって製造するための装置及び方法に関する。
【背景技術】
【0002】
3次元工作物を製造するための付加的方法、特に付加的積層造形法において、最初は無形状の若しくは特定の形状を持たない成形材料(例えば原料粉末)を支持体上に層状に塗布して、位置特定的に照射することによって(例えば溶融又は焼結により)固化して、最終的に所望の形状の工作物を得ることが知られている。照射は電磁ビームによって、例えばレーザビームの形態で行うことができる。初期状態では成形材料は最初に顆粒、粉末又は液体成形材料として存在し、選択的に又は換言すれば位置特定的に照射する結果として固化できる。成形材料は、例えばセラミック材料、金属材料又はプラスチック材料、及びこれらの材料混合物を含むことができる。付加的積層造形法の変法は、特に金属及び/又はセラミック原料粉末材料が3次元工作物に固化される、いわゆる粉末床溶融法に関する。
【0003】
更に、個々の工作物層を製造するために、原料粉末材料を原料粉末層の形態で支持体に塗布して、選択的に、並びに実際に製造しようとする工作物層の形状に従って照射することが知られている。レーザビームは原料粉末材料中に浸透して、例えば加熱の結果として溶融又は焼結を引き起こして原料粉末材料を固化する。工作物層が固化したら、未加工の原料粉末材料の新しい層が、既に製造された工作物層に塗布される。この目的のために公知の被覆装置又は粉末塗布装置を使用できる。続いて最上層のまだ加工されていない原料粉末層の新たな照射が行われる。その結果として工作物は連続的に層毎に製造され、各層が工作物の断面及び/又は輪郭を画定する。これに関連して更に、工作物を実質的に自動的に製造するために、CAD又は同等の工作物データを援用することが知られている。
【0004】
例えば原料粉末材料を照射することにより3次元工作物を製造するための装置で使用できる照射ユニット又は照射システムは、特許文献1に記載されている。照射システムは、ビーム源、特にレーザ源と光学ユニットを有する。ビーム源から送出される加工ビームが提供される光学ユニットは、ビーム拡張ユニットと、走査ユニットの形態の偏向装置を有する。走査ユニットの内部では偏向ミラーの前に回折光学素子が設けられており、これらの回折光学素子は、加工ビームを複数の部分加工ビームに分割するためにビーム経路内に動かすことができる。この場合、偏向ミラーは部分加工ビームの偏向に用いられる。
【0005】
本発明の枠内で、以上説明したすべての態様が同様に設けられてよいことは明らかである。
【0006】
3次元工作物を製造するための公知の装置は、例えば特許文献2及び特許文献3に記載されている。
【0007】
これらの文書に記載されている装置は、それぞれ1つの支持体を有しており、この支持体は層毎に垂直方向に下降できる。これらの公知の装置では、常に原料粉末の層が完全に照射されてから次の粉末層が塗布される前に、支持体の相応の垂直移動が行われる。したがって照射ユニットの焦点面は常に原料粉末の固化すべき(即ち最上層)にあることを保証できる。したがって構築プロセス中、工作物は構築シリンダ内で層状に製造され、構築シリンダの深さは構築プロセス中に底板が下降することによって増加し、支持体の表面と構築シリンダの対応する側壁によって規定される構築シリンダの底面積は一定のままである。そのため構築シリンダの最大体積が、製造すべき工作物の最大体積の上限を規定する。
【0008】
上述した公知の装置において支持体が垂直に移動できるためには、作動装置若しくは昇降機構が必要である。この昇降機構は、特に造形される工作物と、それを取り囲む粉末材料の両方を支持して動かさなければならない。この場合、使用される昇降機構は、設備寸法と相応の造形スペース(構築シリンダの体積)の大きさに応じて負荷限度に達する可能性があり、そのためにより複雑でより高価な昇降機構が必要になる可能性がある。更に、構築プロセス中に昇降機構によって動かされる重量が変化する。そのために昇降機構の2回の移動操作の間で移動量を一定に保てないことがあり、その結果として原料粉末層の層厚の望ましくないばらつきを招く。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】欧州特許第2333848B1号明細書
【特許文献2】欧州特許出願第2961549A1号明細書
【特許文献3】欧州特許出願第2878402A1号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
それゆえ本発明の課題は、上記の問題及びそれと関連する他の問題を軽減又は克服する付加的積層造形法のための解決策を提供することである。
【課題を解決するための手段】
【0011】
この課題は、請求項1の特徴を有する装置、及び請求項9の特徴を有する方法により解決される。
【0012】
したがって本発明は、第1の態様により、3次元工作物を製造するための装置に関する。本装置は、原料粉末を受容するための支持体と、支持体に塗布された原料粉末に電磁ビーム若しくは粒子ビームを選択的に照射して、支持体上に原料粉末から作られた工作物を付加的積層造形法によって生成するための照射ユニットを有する。本装置は更に、照射ユニットを支持体に対して垂直に移動させるように構成された垂直移動装置と、支持体に塗布された原料粉末に対する横方向境界をなしている、実質的に垂直に延びる構築シリンダ壁とを有しており、構築シリンダ壁は構築プロセス中にその垂直高さを増加するように構成されている。
【0013】
この場合、支持体は原料粉末を層状に、即ち水平な層で塗布できる水平表面を提供することができる。その際に構築シリンダ壁は、構築シリンダを横方向で限定するために用いることができる。本開示において構築シリンダという用語は、構築シリンダの形状が円柱形に限られていると理解すべきではない。むしろ構築シリンダの形状は、任意の底面を持つ一般的なシリンダであり得る。例として構築シリンダは−構築シリンダ壁によって規定されて−円形、楕円形、多角形又は方形(角の丸みの有無を問わない)、特に正方形の断面を持つことができる。構築シリンダ壁が原料粉末を所定の形に保持し及び/又は機械的に横方向で支持する限り、構築シリンダ壁は支持体に塗布された原料粉末に対する横方向境界をなすことができる。この目的のために原料粉末は直接構築シリンダ壁に接することができる。しかしながら以下に述べるように、原料粉末と構築シリンダ壁との間に延びる構築シリンダシェルを設けることもでき、それにより原料粉末は直接構築シリンダ壁に接することなく、直接構築シリンダシェルに接する。この場合、構築シリンダシェルは可撓性材料からなることができ、可撓性材料の横方向の膨張は構築シリンダ壁によって妨げられる。したがってこの場合も、原料粉末は構築シリンダ壁によって所定の形に保持される。
【0014】
構築シリンダ壁は、支持体に塗布された原料粉末を横方向で完全に取り囲み、原料粉末全側面で所定の形に保つように構成できる。ここで「全側面で」とは、構築シリンダ壁がすべての水平方向で原料粉末に対する障壁をなすことを意味する。
【0015】
構築シリンダ壁の垂直高さ(以下単に「高さ」とも呼ぶ)は、構築シリンダ壁として利用できる構築シリンダ壁の高さとして定義できる。換言すれば、高さは支持体に塗布された原料粉末に対する横方向境界のために利用できる高さとして定義できる。構築シリンダ壁の垂直高さは、例えば構築シリンダ壁の実質的に垂直に延びる部分の、構築シリンダ壁の垂直高さとして定義されてもよい。この実質的に垂直に延びる部分は、支持体の上方でも下方でも延びる範囲を有することができる。
【0016】
本開示において構築シリンダの用語は、その中で原料粉末層の塗布が行われ、下方向は支持体によって限定され、横方向は構築シリンダ壁によって限定される空間的領域であると理解されるべきである。構築シリンダの上方にはプロセスチャンバが接続でき、プロセスチャンバは照射ユニットのビームを最上粉末層の所望の箇所に当たるように誘導するための空間を形成している。更に、プロセスチャンバ内には、例えば粉末塗布装置などの装置の別の要素が配置されてもよい。
【0017】
一般的に言えば、本装置は支持体に原料粉末を層状に塗布するように構成された粉末塗布装置を有することができる。粉末塗布装置は、粉末容器を有することができ、及び/又は粉末貯蔵器と接続することができ、それにより粉末塗布装置に原料粉末を供給することができる。粉末塗布装置は、先行の粉末層の上を水平方向に移動し、その際に新しい粉末層を塗布するように構成できる。このために粉末塗布装置は、少なくとも1つのローラ、スライダ及び/又は原料粉末層を塗布するのに適した同様の手段を有することができる。
【0018】
プロセスチャンバは、構築シリンダと共に気密に閉じられた空間をなすことができる。この空間は構築プロセス中に不活性ガス(アルゴンや窒素など)で満たすことができる。
【0019】
本明細書に記載された構築シリンダは、実質的に矩形のベースを有し、例えば1辺の長さがそれぞれ50cmを超える構築シリンダであることができる。換言すれば、支持体の直交する2辺のうち少なくとも1辺の長さは50cm以上であることができる。更に、支持体の直交する2辺の長さのうち少なくとも1辺の長さは100cm以上であることができる。したがって本明細書で使用される支持体は、例えば1m×1mの底面を有する支持体であることができる。
【0020】
照射ユニットの光学素子は、例えば走査ユニット、焦点ユニット及び/又はFシータレンズであることができる。更に、照射ユニットは電子ビーム源やレーザなどのビーム源を有することができる。しかしながら照射ユニットから送出されるビームは、照射ユニットの外部にあるビーム源からも照射ユニットに供給できる。この目的のために、例えばミラー、光ファイバ及び/又は他の光導体を使用することができる。
【0021】
支持体は、本装置の基礎と位置固定的に接続できる。本装置の基礎は、例えば装置の底板を有することができる。この基礎は、本装置の設置後及び/又は本装置の運転中(即ち構築プロセス中)は動かないように構成することができる。特に基礎は垂直方向に対して動かないようにできる。ここで「動かない」という用語は、装置が設置されている周囲環境に対して位置固定的であることを意味する。
【0022】
垂直移動装置は、例えば昇降装置を有することができる。垂直移動装置は1つ以上の油圧式及び/又は機械式アクチュエータを有することができる。垂直移動の間、照射ユニットは前述のプロセスチャンバと共に(即ちプロセスチャンバのプロセスチャンバの壁と共に)垂直に移動させることができる。
【0023】
本装置は更に、互いに取り外し可能に接続されるように構成された複数の壁要素を有しており、これらの壁要素は接続された状態で実質的に垂直に延びるシリンダ壁を形成する。
【0024】
構築シリンダ壁の垂直高さは、接続された状態にある壁要素の垂直高さの合計によって定義できる。
【0025】
構築シリンダ壁の最上壁要素は、プロセスチャンバの下部領域に機械的に接続でき、プロセスチャンバ及び照射ユニットと共に垂直に移動できる。例えばプロセスチャンバと固定的に接続された構築シリンダ壁を設けることができ、構築プロセス中はこれに別の壁要素を下から固定することができる。
【0026】
複数の壁要素は、例えば適当な接続手段によって互いに接続可能であってもよい。この接続は、壁要素及び/又は設けられた接続手段を破壊することなく、明確に規定されたやり方で再び取り外せるという意味で取り外し可能である。接続手段として、例えば差込継手、ラッチ接続、雄ねじ、雌ねじ、ボルト、その他の適当な接続手段及び/又は前述の手段の任意の組み合わせを設けることができる。
【0027】
接続された状態で、互いに接続された壁要素は、実質的に垂直な連続した壁面を形成できる。これらの壁要素は、手で又は適当な接続手段を用いて互いに接続されるように構成できる。
【0028】
本装置は、本明細書に記載されている方法のいずれか1つを実施するように構成できる。特に、本装置は、本明細書に記載された方法のいずれか1つを実施するように装置を制御するようにプログラムされた制御ユニットを持つことができる。この制御ユニットは、プロセッサ(例えばCPU)及びメモリを含むことができる。
【0029】
壁要素は、接続された状態で少なくとも2つの壁要素が垂直方向で互いに上下に配置されているように、互いに接続可能であってよい。
【0030】
この場合、壁要素は、壁要素を垂直方向で互いに接続できる適当な垂直接続手段を有してよい。垂直接続は、壁要素の実質的に水平に延びる境界面で行うことができる。
【0031】
壁要素は、接続された状態で少なくとも2つの壁要素が水平方向で並置されているように、互いに接続可能であってよい。
【0032】
この場合、壁要素は、壁要素を水平方向で互いに接続できる適当な水平接続手段を有してよい。水平接続は、壁要素の実質的に垂直に延びる境界面で行うことができる。
【0033】
垂直移動装置は、構築シリンダ壁を照射ユニットと共に支持体に対して垂直に移動させるように構成できる。
【0034】
この目的のために、構築シリンダ壁は接続された状態で照射ユニットと機械的に連結できる。例えば構築シリンダ壁はプロセスチャンバと接続でき、照射ユニットもプロセスチャンバと接続されている。特に照射ユニットはプロセスチャンバの上部天井領域と接続でき、構築シリンダ壁はプロセスチャンバの壁の下部床領域と接続することができる。この場合、例えば構築シリンダ壁の一部はプロセスチャンバと剛性的に取り外し不可能に接続することができ、別の壁要素を構築シリンダ壁のこの剛性部分と接続可能で、構築シリンダ壁を形成することができる。
【0035】
本装置は更に、構築シリンダ壁を支持体に対して垂直に移動させるように構成された別の垂直移動装置を備えてもよい。
【0036】
これにより照射ユニットの運動は、構築シリンダ壁の運動とは独立して実施することができる。しかしながらこの場合、別の垂直移動装置は、照射ユニットに従うように、即ち照射ユニットの垂直移動装置の運動に対応する垂直運動を実施するように構成できる。
【0037】
本装置は更に、内側の構築シリンダシェルを有しており、構築シリンダシェルの下縁部は支持体と接続されていて、構築シリンダシェルの上縁部は垂直移動装置により照射ユニットと共に垂直に移動可能であり、その際に内側の構築シリンダシェルは、壁要素が接続された状態で支持体に塗布された原料粉末に対する内側の壁をなすように構成されており、原料粉末は直接構築シリンダシェルに接している。
【0038】
「内側の構築シリンダシェル」と「構築シリンダシェル」は、本明細書では同義語として使用される。構築シリンダシェルの下縁部は、例えば支持体の縁部に固定されてよい。構築シリンダシェルの上縁部は、例えば本装置のプロセスチャンバの下部床領域に固定することができる。
【0039】
構築シリンダシェルの材料は、粉末不透過性であってよく、任意選択でガス不透過性(特に使用された不活性ガスに対して不透過性)であってよい。
【0040】
内側の構築シリンダシェルは、次の要素の少なくとも1つ、即ち伸縮性材料からなる可撓性シェル、ベローズ及び/又は複数の壁要素を有することができ、壁要素は引っ込んだ状態では入れ子式に収納され、そして伸縮自在に展開した状態になるように構成されている。
【0041】
伸縮性材料は、例えば可撓性プラスチック及び/又はゴム材料を含むことができる。壁要素は、構築シリンダ壁の壁要素よりもそれぞれ著しく薄肉であってよい(例えば最大4分の1の厚さ)。
【0042】
本装置は更に、構築プロセス中に壁要素を互いに接続するように構成された接続手段を有することができる。
【0043】
接続手段は、例えばロボットアーム及び/又は壁要素を互いに接続するための他の適当な手段を含むことができる。接続手段は、壁要素を掴み、これらの壁要素を構築プロセス中に既に接続されている(既に接続された状態にある)壁要素に下から固定するように構成できる。この場合、壁要素のあらゆる種類の自動化された接続が可能である。
【0044】
本装置は更に、可撓性接続部材によって互いに接続された複数の壁要素を有してよく、壁要素の第1の部分は垂直状態にあり、垂直状態にある第1の部分の壁要素は実質的に垂直に延びる構築シリンダ壁を形成しており、壁要素の第2の部分は巻き上げられた状態にあり、巻き上げられた状態にある第2の部分の壁要素は実質的に垂直に延びる構築シリンダ壁を形成せず、複数の壁要素は、壁要素が巻き上げられた状態から垂直状態に巻き出されることができて構築シリンダ壁の垂直高さが増加するように構成されている。
【0045】
構築シリンダ壁の垂直高さは、垂直状態にある壁要素の垂直高さの合計によって定義できる。
【0046】
壁要素は、ブラインドの形で互いに接続されてよい。構築プロセス中にますます多くの壁要素が垂直状態に巻き出されることができるので、構築シリンダ壁の高さは増加する。巻き出された状態の壁要素は、支持体の下方にあることができる。
【0047】
構築シリンダ壁は、伸縮性材料からなる可撓性壁によって形成されることができ、可撓性壁の下縁部は支持体と接続されており、可撓性壁の上縁部は垂直移動装置によって照射ユニットと共に垂直に移動可能である。
【0048】
上で構築シリンダシェルについて述べたことが可撓性壁についても該当するが、唯一の違いは、可撓性壁に対して追加の構築シリンダ壁を可撓性壁の外部に設ける必要がないことである。可撓性壁は、垂直方向で可撓であるため、構築プロセス中に垂直方向に変形する一方、水平方向にはそれほど可撓ではないように構成することができるので、原材料粉末を所定の形(例えば直方体形状)に保つことができる。換言すれば、可撓性壁は水平方向よりも垂直方向で変形しやすいように構成することができる。
【0049】
本装置は更に、構築プロセスの終了後に構築シリンダ壁を少なくとも部分的な持ち上げ又は取り外した後で支持体から横方向に落下する原料粉末を捕集するための捕集トレイと、支持体から横方向に落下する原料粉末を捕集トレイに案内するように構成された密閉部材を有することができる。密閉部材は、例えばベローズの形態で形成できる。密閉部材は、例えば密閉部材の第1の端部でプロセスチャンバの下側に取り付けられてもよい。更に、密閉部材は密閉部材の第2の端部で捕集トレイに固定することができる。密閉部材は、密閉部材の垂直高さを変更することを可能にする伸縮性材料を含んでよい。密閉部材は構築シリンダ壁の最下部の壁要素と取り外し可能に接続されてもよい。
【0050】
第2の態様によれば、本発明は、3次元工作物を製造する方法に関する。本方法は、支持体に原料粉末を塗布し、支持体に塗布された原料粉末に照射ユニットにより電磁ビーム若しくは粒子ビームを選択的に照射して、支持体上に原料粉末から作られた工作物を付加的積層造形法によって生成することを含む。本方法は更に照射ユニットを垂直移動装置によって支持体に対して垂直に移動させ、構築プロセス中に、支持体に塗布された原料粉末に対する横方向境界をなしている、実質的に垂直に延びる構築シリンダ壁の垂直高さを増加することを含む。
【0051】
本方法は、例えば本明細書に記載された装置の1つによって実施できる。本明細書で提示される方法のステップは、別途明確に指定されない限り、任意の順序で実施できる。特に垂直に移動するステップは、増加するステップの前又は後に実施できる。更に、増加及び/又は垂直移動の複数のステップを設けることもできる。増加するステップは本装置の構築プロセス中に実施できる。換言すれば、増加するステップは、製造すべき工作物が部分的に製造されたが、まだ完全に仕上がっていない段階、したがって工作物に必要なすべての粉末層が塗布及び固化されていない段階で実施できる。
【0052】
増加するステップは更に、複数の壁要素を互いに取り外し可能に接続して、これらの壁要素が接続された状態で実質的に垂直に延びる構築シリンダ壁を形成することを含んでよい。
【0053】
本方法は更に、少なくとも1つの別の壁要素を、構築シリンダ壁を形成する少なくとも1つの壁要素の下側に取り外し可能に接続し、構築シリンダ壁を上方に垂直に移動させることを含んでよい。
【0054】
これにより少なくとも2つ(又はそれ以上)の壁要素を互いに接続することができ、特に互いに上下に接続して、構築シリンダ壁を形成することができる。
【0055】
壁要素は、接続された状態で、少なくとも2つの壁要素が垂直方向で上下に配置されるように互いに接続できる。更に、壁要素は、接続された状態で、少なくとも2つの壁要素が水平方向で並置されるように互いに接続できる。
【0056】
構築シリンダ壁は、垂直移動装置によって照射ユニットと共に支持体に対して垂直に移動できる。
【0057】
構築シリンダ壁は、別の垂直移動装置によって支持体に対して垂直に移動できる。
【0058】
本方法は更に、少なくとも1つの壁要素を取り除き、取り除かれた壁要素が構築シリンダ壁の最下部の壁要素の1つをなすことによって、原料粉末が支持体から横方向に落下できることを含むことができる。
【0059】
取り除くステップは、構築プロセスが行われた後で実施できる。特に、取り除くステップは、完成した工作物の「開梱工程」の開始として実施できる。
【0060】
本方法は更に、構築シリンダ壁を上方に垂直に移動させることにより、構築シリンダ壁の最下部壁要素と支持体との間に隙間ができ、この隙間を通って支持体から横方向に原料粉末が落下できることを含んでよい。
【0061】
上方に垂直に移動させるステップは、構築プロセスが行われた後で実施できる。特に、上方に垂直に移動させるステップは、完成した工作物の「開梱工程」の開始として実施できる。
【0062】
上記の取り外すステップの後で、又は上記の上方に垂直に移動させるステップの後で、以前に接続された壁要素を再び取り除く(取り外す)ことができ、照射ユニットは(場合によってはプロセスチャンバと一緒に)再び初期状態に(下方に)移行して、新しい構築プロセスを開始できる。
【0063】
更に、可撓性接続部材によって互いに接続された複数の壁要素を設けることができ、壁要素の第1の部分は垂直状態にあり、垂直状態にある第1の部分の壁要素は実質的に垂直に延びる構築シリンダ壁を形成しており、壁要素の第2の部分は巻き上げられた状態にあり、巻き上げられた状態にある第2の部分の壁要素は実質的に垂直に延びる構築シリンダ壁を形成しない。本方法は更に壁要素が巻き上げられた状態から垂直状態に巻き出されて、構築シリンダ壁の垂直高さが増加することを含んでよい。
【0064】
構築シリンダ壁は更に伸縮性材料からなる可撓性壁によって形成されることができ、可撓性壁の下縁部は支持体と接続されている。この場合、本方法は更に、可撓性壁の上縁部が垂直移動装置によって照射ユニットと共に垂直に移動することを含む。
【0065】
方法は更に、落下する原料粉末を捕集トレイに捕集し、落下する原料粉末を密閉部材によって捕集トレイに案内することを含むことができる。更に、本方法は密閉部材の端部をプロセスチャンバの下側又は構築シリンダ壁の最下部の壁要素に固定することを含んでよい。この場合、密閉部材は原料粉末を案内するだけでなく、原料粉末の粉塵が装置1の周囲に放出されるのを防ぐように構成することができる。
【0066】
以下に本発明を添付の図面を参照して説明する。
【図面の簡単な説明】
【0067】
図1a】本発明による方法を実施する本発明による装置の第1の実施形態の概略側面図である。
図1b】本発明による方法の後の時点における第1の実施形態の概略側面図である。
図2a】本発明による方法を実施する本発明による装置の第2の実施形態の概略側面図である。
図2b】本発明による方法の後の時点における第2の実施形態の概略側面図である。
図3a】本発明による方法の図1bに示した時点の後の時点における第1の実施形態の概略側面図である。
図3b】本発明による方法の図3aに示した時点の後の時点における第1の実施形態の概略側面図である。
図4a】本発明による代替的方法の図1bに示した時点の後の時点における第1の実施形態の概略側面図である。
図4b】本発明による代替的方法の図4aに示した時点後の時点における第1の実施形態の概略側面図である。
図5a】本発明による方法を実施する本発明による装置の第3の実施形態の概略側面図である。
図5b】本発明による方法の後の時点における第3の実施形態の概略側面図である。
図6】本発明による方法を実施する本発明による装置の第4の実施形態の概略側面図である。
図7a】第1の実施形態の変形例の概略側面図である。
図7b図7aに示した時点の後の時点における図7aによる変形例の概略側面図である。
【発明を実施するための形態】
【0068】
図1a及び図1bに、本発明による装置1の第1の実施形態が概略側面図で示されている。図の表示は必ずしも縮尺どおりではない。垂直方向は図ではz方向によって定義され、水平面(以下x−y面とも呼ぶ)は、装置1の支持体3に沿って図示面に対して垂直に延びている。
【0069】
装置1は、装置1の底板(図示せず)に位置固定に接続されているか、又はそれ自体が装置1の底板をなす基礎5を有する。装置1は更に外側の壁と外側の天井を有する外側ハウジング(図示せず)を有することができる。しかしながら装置1は、例えば工場建屋内の開放構造では外側のハウジングなしで設けることもできる。
【0070】
更に、装置1は、基礎5に固定的に接続されて水平な方形表面を有する支持体3を有する。図示の実施形態では、支持体3は7によって、基礎5に対して所定の距離(すなわち、z方向の所定の高さ)に設けられて基礎5に固定されている。支持体3は、原料粉末9の複数の層を受容するように構成されている。支持体3の横には構築シリンダ壁11が隣接して、支持体3を横方向で完全に包囲している。したがって支持体3も構築シリンダ壁11も、平面図では方形断面を有する。構築シリンダ壁11は支持体3を横方向で包囲することによって、支持体3上にある原料粉末9に隣接し、原料粉末9を横方向で支持して立方体の形に保つようにしている。
【0071】
構築シリンダ壁11は、構築シリンダ壁11の内部にある構築シリンダ13を画定する。構築シリンダ13は、下方向は支持体3によって限定され、横方向は構築シリンダ壁11によって限定されている。構築シリンダ壁11は、装置1のプロセスチャンバ17の下側若しくは下部床領域に固定された第1の壁要素15aによって形成される。第1の壁要素15aは、プロセスチャンバ17と取り外し可能に接続されるか、又はプロセスチャンバ17と剛性的に取り外し不可能に接続されてよい。更に、以下で図1bに関連して説明するように、壁要素15aと接続できる別の壁要素15bが設けられている。
【0072】
この場合、構築シリンダ壁11の垂直高さhは、構築シリンダ壁11の実質的に垂直に延びる部分の構築シリンダ壁11の垂直高さhとして定義される。ここで実質的に垂直に延びる部分は、支持体の上方にも下方にも延びる領域を有する。例えば図1aの表現では第1の壁要素15aの層のみが設けられており、この状態で構築シリンダ壁の高さはこの第1の壁要素15aの垂直高さによって形成される。
【0073】
プロセスチャンバ17と構築シリンダ13は共に、気密に閉じることができて不活性ガス(例えば窒素又はアルゴン)で満たすことができる空間を形成する。しかしながら例えばアルゴンを不活性ガスとして使用する場合、アルゴンはその高い密度のために構築シリンダ13の領域(したがって原料粉末9の領域)に集まって上方に逃げられないため、上方を気密に閉じることは必ずしも必要ではない。プロセスチャンバ17と構築シリンダ13の中では、付加的積層造形法によって工作物19の構築プロセスが行われる。
【0074】
装置1は更に粉末塗布装置21を備えており、それによって原料粉末9を支持体3に層状に塗布することができる。そのために粉末塗布装置21は、支持体3若しくは先行の原料粉末層上にできるだけ均一な厚さの原料粉末層を塗布するのに適した少なくとも1つのローラ、少なくとも1つのスライダ及び/又は他の適当な粉末塗布装置を含んでよい。粉末塗布装置21は原料粉末容器(図示せず)に接続されて、そこから原料粉末9が供給される。
【0075】
装置1は更に、支持体3に層状に塗布された原料粉末9を選択的に照射するための照射ユニット23を備える。照射ユニット23は、プロセスチャンバ17の上部天井領域に配置されて、これと固定的に接続されている。照射ユニット23を用いて、原料粉末9を製造すべき工作物19の所望の形状に応じて位置選択的照射に曝露することができる。このために照射ユニット23は、レーザの形態で提供することができるビーム源を有する。これは例えば波長約1064nmの光を放出できる。その代替として、ビーム源(例えばレーザ)は照射ユニット23の外部にあってもよく、原料粉末9に向けられるビームは、例えば光ファイバによって照射ユニット23に供給される。
【0076】
照射ユニット23は更に、走査ユニット、焦点ユニット及びFシータレンズなどの光学素子を含んでいる。走査ユニットは、水平面内(x方向とy方向)の内部で原料粉末の最上層でビームを走査するように構成されている。焦点ユニットは、照射ユニット23の焦点面が照射ユニット23によって照射される最上原料粉末層の領域にあるように、ビームの焦点位置(z方向)を変更若しくは調整するように構成されている。照射ユニット23は、例えば欧州許出願第EP2333848Bl号に記載された照射ユニット若しくは照射装置であってよい。
【0077】
更に、装置1は、照射ユニット23を支持体3に対して垂直方向(z方向)に沿って移動させるように構成された垂直移動装置25を有する。図1aに示されているように、照射ユニット23及び第1の壁要素15aはプロセスチャンバ17と接続されていて、垂直移動装置はプロセスチャンバ17を照射ユニット23及び第1の壁要素15aと共に垂直に昇降されることができる。換言すれば、照射ユニット23及び第1の壁要素15aは、プロセスチャンバ17が垂直に移動すると照射ユニット23及び第1の壁要素が支持体3に対して、したがって基礎5に対して垂直に移動するように、プロセスチャンバ17と接続されてる。
【0078】
更に、粉末塗布装置21は、プロセスチャンバ17若しくは照射ユニット23が垂直に移動すると粉末塗布装置21が垂直に移動するように、プロセスチャンバ17と接続されている。粉末塗布装置21に対して水平移動装置(図示せず)が設けられていて、これにより粉末塗布装置21を支持体3上で水平方向に動かして原料粉末9を塗布することができる。
【0079】
図1aに示す装置1の垂直移動装置25はモータを有しており、これは例えばステッピングモータ又はサーボモータであることができる。しかしながら垂直移動装置25は多様な方法で構成されてよく、例えばあらゆる種類の作動装置又は昇降装置を含むことができる。垂直移動装置25は、例えば油圧及び/又は機械式アクチュエータを有することができる。垂直移動装置25は、例えばスピンドルシャフトと、スピンドルシャフトを駆動するモータを有することができる。
【0080】
垂直移動装置25を用いて照射ユニット23と支持体3との間の垂直間隔を変えることができる。特にこの間隔は、照射ユニット23と原料粉末9の最上層との間隔が常に一定になるように変更できる。垂直移動装置25によって引き起こされるプロセスチャンバ17の垂直移動は、第1の壁要素15a(及び場合によっては他の壁要素15b)と共に、したがって構築シリンダ壁11と共に行われる。これは特に、構築シリンダ壁11が垂直移動装置25によって一緒に動かされることを意味する。
【0081】
更に、装置1は、垂直移動装置25を制御するように構成された制御ユニット(図示せず)を有する。制御ユニットはCPUとメモリを含み、メモリにはCPUによって実行されると装置1に本明細書に記載された方法の1つを実施させるプログラムが格納されている。更に、制御ユニットは装置1のすべての制御タスクを引き受けることができ、例えば照射ユニット23(及びその中に含まれている光学素子)と粉末塗布装置21を制御することができる。
【0082】
以下に図1a及び図1bを参照して、装置1の構築プロセスを説明する。構築プロセスが行われ、制御ユニットによって制御されて、垂直移動装置25は、粉末塗布装置21が支持体3に第1の原料粉末層を塗布できるようになるまで、粉末塗布装置21を下方に移動させる。代替として、照射ユニット23、プロセスチャンバ17及び第1の壁要素15aが、既にこの初期状態にあることができる。続いて又は同時に垂直移動装置25が−必要であれば−照射ユニット17を、この第1の原料粉末層を選択的に照射して(例えば溶融又は焼結により)固化するのに適した高さまで移動させる。ここで走査ユニットは、原料粉末9上で所定のパターンに従ってビームを走査する。第1の原料粉末層が所望どおりに照射された後、垂直移動装置25は粉末塗布装置21を、第1の原料粉末層の上に第2の原料粉末層を塗布できる高さまで移動させる。続いて第1の原料粉末層の照射と同様に第2の原料粉末層の照射工程が行われる。
【0083】
したがって所望の工作物19の造形中、垂直移動装置25は照射ユニット23(及びプロセスチャンバ17と粉末塗布装置25及び照射ユニット23)を支持体3から上方に正のz方向)に遠ざけるように動かす。
【0084】
図1aでは、例えば照射ユニット23が(基礎5の下側に対して又は装置の底板に対して)第1の高さz1にある構築プロセス中の状況における装置1が示されている。構築プロセスが進むに連れて、構築シリンダ13の深さが増加し、原料粉末9が制御されずに支持体3から横方向に落下するのを防ぐために、ますます長い構築シリンダ壁11が必要になる。したがって第1の壁要素15aの長さ(z方向)が十分でなくなると、別の壁要素15bが下から第1の壁要素15aに固定される。換言すれば、粉末層の全深さ(z方向)が既存の壁要素15a、15bの全長(z方向)又はその直前に達すると、別の壁要素15bが下から既存の壁要素15a、15bに固定される。
【0085】
例えば図1bには、図1aに示す状況よりも後の時点での状況が示されており、照射ユニット23は、図2の第1の高さz1よりも高い第2の高さz2にある。この状態では第1の壁要素15aは十分ではなくなり、別の壁要素15bが下から第1の壁要素15aに固定され、その結果として壁要素15a及び15bは接続された状態に入り、これらの壁要素15a及び15bが共通の構築シリンダ壁11を形成する。
【0086】
構築シリンダ壁11の高さhは、図1aよりも図1bの方が高い。図1bの時点では、第1の壁要素15aの2層が接続された状態にある。ここで高さhは、接続された状態の壁要素15aの垂直高さの合計によって定義される。したがって図1bの場合、2つの壁要素15aの垂直高さの合計の高さhに相当する。
【0087】
好適な実施形態では、個々の壁要素15a、15b間の密封は、壁要素15a、15bに当接する内側チューブ成形体によって実現できる。それにより原料粉末9の貫通落下、及び原料粉末9による壁要素15a、15bの摩耗を防ぎ、不活性ガス雰囲気を安定に保つことができる。
【0088】
壁要素15a、15bを接続するために、これらは壁要素15a、15bの取り外し可能な接続を保証するのに適した相応の接続手段を持つことができる。接続手段は更に、壁要素15a、15bが接続された状態で可能な限り連続した実質的に垂直な構築シリンダ壁11を提供できるように構成されている。壁要素15a、15bは、例えば差込継手、ねじ及び付属のねじ、ボルト及び付属の開口部、フック、並びに付属のアイなどの形態の接続手段を有することができる。壁要素15a、15bの接続工程は、構築プロセス中に装置1の操作者によって手動で実行できる。その代替として、個々の壁要素15a、15bを互いに接続するように構成された接続装置(図示せず)が提供されてもよい。この接続装置は例えば少なくとも1つのロボットアーム、又は壁要素15a、15bを接続するための他の適当な要素を含むことができる。
【0089】
壁要素15a、15bは、例えば支持体3に対して平行な平面内(したがって壁要素15a、15bの層内)に、方形支持体3の各側に対して正確に1つの壁要素15a、15bを設けることができる。したがって第1の壁要素15aは、それぞれ支持体3の側縁部に接する4つの壁要素15aを含むことができる。より長い構築シリンダ壁11が必要とされる場合(図1b参照)、4つの第1の壁要素15aのそれぞれに対して、それぞれの第1の壁要素15aの下方に第2の壁要素15を垂直接続手段によって固定できる。更に、壁要素15bの層の各壁要素15bを互いに水平に接続するために、水平接続手段を設けることができる。要素15bの水平接続は、例えば個々の壁要素15bが互いに直角に接する構築シリンダ壁11の隅角部で行うことができる。
【0090】
壁要素15a、15bは、特に板状で、実質的に方形に形成することができ、壁要素15a、15bの側縁部には、垂直の、及び任意選択で水平の接続手段が設けられている。
【0091】
図2a及び図2bでは、本発明による装置1の第2の実施形態の概略側面図が示されている。第2の実施形態は第1の実施形態に対してわずかに変更されているだけなので、両実施形態の同一の特徴の説明は繰り返さない。同じ参照番号で表示された特徴は、第1の実施形態に関して説明したものと同じ機能を果たす。
【0092】
第2の実施形態の装置1は第1の実施形態の装置とは異なり、追加的に内側の構築シリンダシェル27を有する。構築シリンダシェル27は、壁要素15a、15bの構築シリンダ壁11と原料粉末9との間に配置されていて、原料粉末9は直接構築シリンダシェル27に接しているが、構築シリンダ壁11には直接接していない。
【0093】
図2a及び図2bに示されているように、構築シリンダシェル27の下縁部は支持体3と接続されており、構築シリンダシェル27の上縁部は垂直移動装置25によって照射ユニット23と共に垂直に動かされる。構築シリンダシェル27の下縁部は、支持体3の縁に固定されている。構築シリンダシェル27の上縁部は、プロセスチャンバ17の下部床領域に固定されている。構築シリンダシェル27の材料は、原料粉末9が構築シリンダ壁11に直接触れないようにするために粉末不透過性である。更に、構築シリンダシェル27は構築シリンダ17の内部で不活性ガス雰囲気を維持するために、不活性ガスに対して不透過性である。
【0094】
図2a及び図2bに示されているように、追加的に構築シリンダシェル27が設けられている場合、一方では、原料粉末9による構築シリンダ壁11の摩耗を避けることができる。他方では、壁要素15a、15b、及び特に壁要素15a、15b間の接合部は、図1a及び図1bで原料粉末9が直接壁要素15a、15bに接する場合のように(粉末及び/又は気体の浸透に関して)強く密封する必要はない。
【0095】
図2a及び図2bの例で内側の構築シリンダシェル27は、伸縮性材料の可撓性シェルからなる。伸縮性材料は、例えば可撓性プラスチック及び/又はゴム材料を含んでよい。しかしながら代替的に、ベローズ、又は引っ込んだ状態では入れ子式に収納され、そして伸縮自在に展開した状態になるように構成された複数の壁要素を設けることもできる。
【0096】
構築シリンダシェル27の伸縮性により、構築シリンダシェル27は構築プロセス中にプロセスチャンバ17と支持体3の間隔が増加するにつれてz方向に膨張できる(図2b参照)。場合により伸縮性に伴いx及びy方向にも膨張することがあるが、これは壁要素15a、15bによって受け止められて構築シリンダ13は安定する。
【0097】
第2の実施形態による装置1の構築プロセスは、第1の実施形態による装置1の構築プロセスと同様に進行するが、必要に応じて既存の壁要素15a、15bに下から別の壁要素15bが固定される(図2b参照)。
【0098】
図3a及び図3bは、工作物19の構築プロセスの終了後の第1の実施形態の装置1を示している。図3a及び図3bでは、工作物19を原料粉末9から分離する(いわゆる開梱する)第1の可能性が示されている。これにより図3a及び図3bは、本発明による装置1を用いて実施できる本発明による方法のステップを説明している。
【0099】
図3aは、照射ユニット23が垂直移動装置25によって第3の高さz3まで移動された状態の装置1を示している。第3の高さz3は、図1bに示す第2の高さz2より高い。ここでは工作物19は完成した状態にある。図3aに例として示されているように、構築プロセス中に別の壁要素15bの1層が第1の壁要素15aに固定された。更に、当然のことながら、構築プロセス中に壁要素15bの複数の層が互いに接合されることも可能である。
【0100】
図3bに示されているように、これらの壁要素15bは今度は逆の順序で(下から)取り除かれる。このことは照射ユニット23又はプロセスチャンバ17の高さz3が一定した状態で行われる。この場合プロセスチャンバ17の壁は下から取り外されるので、支持体3上にある原料粉末9は、支持体3から横方向に落下できる。最下壁要素15bを取り除いた後で最下壁要素15bの上方にある別の壁要素15a、15bを取り外すことができ、そうして最後に可能な限り多くの粉末が支持体3から落下できるようになる。更に、幾つかの実施形態ではこの状態で、工作物19が過剰な原料粉末9が完全に解放される前に、工作物19を横方向に取り出すことができる。しかしながら代替的に、支持体3もその上にある加工物19(及び場合により残っている残余の原料粉末9)と一緒に取り出すことができる。
【0101】
特に、幾つかの実施形態では、第1の壁要素15aもプロセスチャンバ17から取り外すことができる。しかしながら別の実施形態では、第1の壁要素15aはプロセスチャンバ17に固定的に接続されてもよい。
【0102】
原料粉末9と工作物19を支持体3から取り除いた後で、垂直移動装置25はプロセスチャンバ17及びそれに固定された要素を再び下降させることができ、新しい構築プロセスを開始することができる(図1a及び1b参照)。
【0103】
図4a及び図4bは、工作物19の構築プロセスの終了後の第1の実施形態の装置1を示している。図4a及び図4bでは、工作物19を原料粉末9から分離する(いわゆる開梱する)第2の可能性が示されている。これにより図4a及び図4bは、本発明による装置1を用いて実施できる本発明による代替的方法のステップを説明している。
【0104】
図4aの表現では、照射ユニット23は工作物19の構築プロセスの終了後は、図3aの表現と同様に第3の高さz3にある。この場合、図4aの高さz3は図3aの高さz3に対応する必要がない。例として図4aには、構築プロセス中に第1の壁要素15aの下方に別の壁要素15bの3層が取り付けられたことが示されている。しかしながら工作物19の高さ及びそれぞれの壁要素15bの高さに応じて、これより多い又は少ない壁要素15bが取り付けられていてもよい。
【0105】
図4bに示されているように、構築プロセスの終了後、垂直移動装置25がプロセスチャンバ17をそれに固定された壁要素15a、15bと共に第4の高さz4まで移動できるので、構築シリンダ壁11の壁要素15bと支持体3との間に隙間が生じ、それを通って原料粉末9が支持体3から横方向に落下できる。壁要素15a、15bを更に持ち上げることにより、隙間は、場合によりは工作物19を支持体3から横方向に取り出すことができるまで大きく拡大できる。
【0106】
続いてプロセスチャンバ17は再び初期状態に下降して、新しい構築プロセスを開始することができる。ここで下降する前か又は下降中に、以前に取り付けられた壁要素15bが再び下から上に取り除かれる。
【0107】
図3a及び図3bの方法と図4a及び図4bの方法は、一方では上述したように図1a及び図lbの第1の実施形態の装置1によって実施できる。しかしながらこれらの方法は、以前に構築シリンダシェル27が支持体3及び/又はプロセスチャンバ17から取り外され、又は完全に取り除かれた場合は、図2a及び図2bの第2の実施形態の装置1によっても実施できる。構築シリンダシェル27を取り外すか若しくは取り除いた後で、上に説明され、図3a及び図3b若しくは図4a及び図4bに示された方法を実施できる。
【0108】
図5a及び図5bでは、本発明による装置1の第3の実施形態が概略側面図で示されている。第3の実施形態は第2の実施形態に対してわずかに変更されているだけなので、両実施形態の同一の特徴の説明は繰り返さない。同じ参照番号で表示される特徴は、第2の実施形態に関して説明したものと同じ機能を果たす。
【0109】
第3の実施形態の装置1は第2の実施形態の装置とは異なり、壁要素を持たない。第3の実施形態によれば、構築シリンダ壁11は伸縮性材料からなる可撓性壁29によって形成される。この場合、可撓性壁29は第2の実施形態の構築シリンダシェル27と同様に構成及び固定される。可撓性壁29は、原料粉末9が直接可撓性壁29に接するようになっている。
【0110】
図5a及び図5bに示されているように、可撓性壁29の下縁部は支持体3と接続されており、可撓性壁29の上縁部は垂直移動装置25によって照射ユニット23と共に垂直に移動する。可撓性壁29の下縁部は支持体3の縁部に固定されている。可撓性壁の上縁部はプロセスチャンバ17の下部床領域に固定されている。可撓性壁29の材料は、原料粉末9が構築シリンダ壁11を貫通するのを防ぐために粉末不透過性である。更に可撓性壁29は、構築シリンダ17の内部で不活性ガス雰囲気を維持するために、不活性ガスに対して不透過性であることができる。
【0111】
可撓性壁29は、伸縮性材料からなる。伸縮性材料は、例えば可撓性プラスチック及び/又はゴム材料を含んでよい。可撓性壁29の伸縮性により、可撓性壁29は構築プロセス中にプロセスチャンバ17と支持体3の間隔が増加するに連れてz方向に膨張できる(図5b参照)。場合により伸縮性に伴いx及びy方向にも膨張することがあるが、これは最小限に抑えられる。特に可撓性壁29は、伸長性が優先方向(垂直方向又はz方向)を有するように構成できる。換言すれば、可撓性壁29は、x方向及びy方向よりもz方向に容易に(即ちより少ない労力で)膨張できるように設計することができる。
【0112】
第2の実施形態による装置1の構築プロセスは、第2の実施形態による装置1の構築プロセスと同様に進行するが、可撓性壁29の構築シリンダ壁11が提供されるので、既存の壁要素に別の壁要素を固定する必要はない。構築プロセス中、構築シリンダ壁11の高さhが増加する。ここで高さhは、可撓性壁29の下部固定位置と上部固定位置との間の可撓性壁29の垂直高さhとして定義される。高さhは、例えば支持体3の表面とプロセスチャンバ17の下側7との間で測定できる。
【0113】
図6には、本発明による装置1の第4の実施形態が概略側面図に示されている。第4の実施形態は、第2の実施形態は第1の実施形態に対してわずかに変更されているだけなので、両実施形態の同一の特徴の説明は繰り返さない。同じ参照番号で表示された特徴は、第1の実施形態に関して説明したものと同じ機能を果たす。
【0114】
第1の実施形態の装置とは異なり、第3の実施形態の装置1は、取り外し可能に接続可能な壁要素を有する。第4の実施形態の装置1の壁要素15a及び15bは、可撓性接続手段(図示せず)によって互いに接続されている。
【0115】
この場合、壁要素の第1の部分(壁要素15a)は垂直状態にあり、この垂直状態で実質的に垂直に延びる構築シリンダ壁11を形成している。壁要素の第2の部分(壁要素15b)は巻き上げられた状態にあり、この巻き上げられた状態では構築シリンダ壁11を形成していない、図6に示されているように、巻き上げられた状態にある壁要素15bはロールに巻き上げ若しくは巻き取られている。壁要素15bは、必要に応じて巻き上げられた状態から垂直状態に巻き出されることができるので、構築シリンダ壁11の垂直高さhは増加する。
【0116】
第4の実施形態では、垂直高さhは垂直状態にある壁要素15aの垂直高さの合計となる。この高さhは、必要に応じて壁要素15bが巻き出されることにより増加できる。
【0117】
図6に示されているように、垂直状態にある壁要素15aの最上部の壁要素15aは、垂直移動装置25によって照射ユニット23と共に垂直に移動する。この最上部の壁要素15aは、プロセスチャンバ17の下部床領域に固定されている。同時にこの移動過程で、壁部15bが巻き上げられた状態にあるローラが回転して、別の壁要素15a、15bがロールから巻き出されることができる。換言すれば、このとき壁要素15bは巻き上げられた状態から垂直状態に移行する。
【0118】
第4の実施形態による装置1の構築プロセスは、第1の実施形態による装置1の構築プロセスと同様に進行するが、図6の実施形態では別の壁要素を接続する代わりに、別の壁要素が下から自動的に巻き上げられた状態から巻き出され若しくは展開されることができる。それにより構築プロセス中に、構築シリンダ壁11の高さhが増加する。
【0119】
図7a及び図7bには、図4a及び図4bの第1の例示的な実施形態の変形例が示されている。図7a及び7bに示すすべての要素のすべては、図4a及び図4b若しくは図1a及び図1bの同じ参照番号を有する要素と対応している。図4a及び図4bの第1の実施形態に加えて、変形例の装置1は、捕集トレイ31及び密閉部材33を含んでいる。捕集トレイ31と密閉部材33は、図7bに示す時点で密閉部材33が支持体から横方向に落下する原料粉末9を捕集トレイ31に案内するように配置されている。
【0120】
図7a及び図7bの図の表現では、捕集トレイ31の内部に本装置の基礎5がある。代替的に、捕集トレイは基礎5の周囲に環状に延びることができる。更に、基礎5の複数の側面に複数の捕集トレイ31を設けることができる。例えば方形の基礎5の4つの側面に4つの捕集トレイ31を設けることができる。
【0121】
更に、図7a及び図7bの表現では、密閉部材33の第1の端部(上端部)がプロセスチャンバ17の下側に取り付けられている。この場合の固定は、取り外し可能に又は取り外し不可能に形成できる。密閉部材33の第2の端部(下端部)は捕集トレイ31に固定されていて、密閉部材33は例えば捕集トレイ31とプロセスチャンバ17との間で管状に延びている。密閉部材33は可撓性材料(例えばベローズの形態)からなるため、密閉部材33の垂直高さは垂直移動装置25が動くと変化できる。
【0122】
密閉部材33の第1の端部は、プロセスチャンバ17の下側に取り付ける代わりに、最下壁要素15bの下側に取り付けることもできる。この接続は、例えば取り外し可能であって、構築プロセスの終了後に初めて密閉部材33が1つ以上の最下壁要素15bに固定されるようにすることもできる。
【0123】
密閉部材33は、図1a及び図1b若しくは図7a及び図7bの第1の実施形態に関連して例示されているにすぎない。しかしながら密閉部材33及び捕集トレイ31は、本明細書に記載されている他のいずれの実施形態でも同様に使用できる。図2a及び図2bによれば、装置1は構築シリンダシェル27を有する。この実施形態との関連でも密閉部材33を設けて、構築シリンダシェル27の少なくとも一部が取り除かれた後で支持体3から落下する原料粉末9を捕集トレイ31に捕集することができる。同じことは図5a及び図5bの実施形態による可撓性壁29にも当てはまる。図3a及び図3bによれば、構築プロセスの終了後に最下壁要素3bが取り除かれる。この場合も、密閉部材33は落下原料粉末9を適当に捕集トレイ31に案内できる。更に、図6の例示的な実施形態でも密閉部材33を設けることができ、構築プロセスが終了した後に1つ以上の壁要素15a、15bを取り外すことができるので、原料粉末9は横方向に落下でき、密閉部材33により捕集トレイ31に案内される。
【0124】
本明細書に記載されるすべての実施形態に関して、以下のことが該当する。装置1は、いずれの場合も側面図でのみ示されており、装置1、特に構築シリンダ13は、その構築シリンダ壁11と共に二次元的に示されているにすぎない。当業者は、構築シリンダは図示の平面に対して垂直な方向でも限定されており、この領域でも構築シリンダ壁11が設けられていることを理解するであろう。これは具体的には、例えば第1の実施形態及び第2の実施形態について、図示の平面に対して垂直に限定するためにも、壁要素15a、15b、及び場合によっては構築シリンダシェル27が設けられていることを意味する。これは第4の実施形態については、図示の平面に対して垂直な限定に対しても巻き上げ可能な壁要素15a、15bが設けられていることを意味する。
【0125】
構造プロセス中に高さhを増加できる構築シリンダ壁11を設けることにより、理論的には無限に高い構築シリンダ13を実現でき、それにより非常に大きい工作物19(即ちz方向の延長が大きい非常に高い工作物19を製造できる。したがって本開示の技術は柔軟性があり、モジュール式であって、恒常的に(例えば構築プロセスの開始時も)相応の寸法の構築シリンダを保持する必要のない装置を用いて、非常に大きい工作物19の製造を可能にする。したがって特に装置1のコンパクトな構造を達成することができる。
図1a
図1b
図2a
図2b
図3a
図3b
図4a
図4b
図5a
図5b
図6
図7a
図7b