【実施例】
【0037】
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
1. 材料と方法
1-1.ヒト細胞
既存ヒト膵癌細胞株は、CFPAC-1(ATCC:CRL-1918)、PANC-1(RIKEN BRCより分与:RCB2095)およびSW1990(ATCC:CRL-2172)を用いた。CFPAC-1は26歳、男性の肝転移巣から樹立された細胞株、PANC-1は年齢、性別不明の患者の原発巣から樹立された細胞株、SW1990は56歳、男性の脾臓転移巣から樹立された細胞株である。本研究では、これらの細胞株を導入後、継代数10以下で実験に用いた。
【0038】
また、ヒト臍帯静脈内皮細胞(HUVEC), ヒト間葉系幹細胞(hMSC)および、これらの細胞に蛍光レポーター遺伝子(EGFP, Kusabira Orange)ないしは、
遺伝子(Luciferase)を導入した細胞を用いた。
1-2. 既存ヒト膵癌細胞株のin vitroにおける薬剤感受性の評価
既存ヒト膵癌細胞株を96wellプレートに5×10
3 cells/wellで播種し、24時間後にGemcitabine(ゲムシタビン)(10
-12〜10
-3M)を添加した。ゲムシタビン添加72時間目に核染色を行い、INCell Analyzer 2000を用いて細胞数を測定し、IC50値を算出した。また、オルガノイド内での癌細胞を特異的に検出し、癌細胞数を算出するために、ルシフェラーゼ遺伝子を導入した癌細胞を樹立し、解析に用いた。ルシフェラーゼ遺伝子を導入した癌細胞より癌オルガノイドを形成し、発光基質(例えば、Promega社Luciferase Assay System)の存在下で発光を測定し、癌細胞の存在数を評価した。
1-3. 既存ヒト膵癌細胞株のin vivoにおける薬剤感受性の評価
既存ヒト膵癌細胞株1×10
6 cellsを、4〜10週齢の雌の免疫不全マウス(NOD/Scidマウス)に皮下移植し、ゼノグラフトを作製した。ゼノグラフトの形成数および体積を継時的に測定した。体積は、(短径×短径×長径/2)mm
3で算出した。形成されたゼノグラフトの体積が、100mm
3を超えた時点からゲムシタビンの腹腔内投与を開始した。ゲムシタビンの投与濃度は100mg/kgあるいは、0mg/kg、5mg/kg、10mg/kgとし、3日に1回、3週間投与した。その後、ゼノグラフトを摘出した。
1-4. 提供されたヒト膵癌臨床検体
ヒト膵癌の臨床検体 (CRT施行検体及びCRT非施行検体) は、本学倫理審査委員会の承認得て実施した。なお、臨床検体の採取は主治医による術前のインフォームドコンセントで患者の同意を得られたものについて実施した。
1-5.ヒト膵癌細胞株オルガノイドの作製
10%FBSを含むDMEMとEGMの1:1混合液をマトリゲルに混合し、48 wellプレートの各ウエルに添加し、37℃で30分間インキュベートした。そこにヒト膵癌細胞株、ヒト臍帯静脈内皮細胞(HUVEC)およびヒト間葉系幹細胞(hMSC)を混合した細胞懸濁液を添加し、37℃で5分間インキュベートした。細胞の混合は、既存ヒト膵癌細胞株の細胞数を2×10
5 cellsとして、cancer・HUVEC・hMSCの比率(C:H:M比)を10:0:0、10:7:1、10:7:20、10:7:0、10:0:20とした。その後、EGMとDMEMの1:1混合液を各ウエルに添加し、37℃でインキュベートした。
他方、均質なサイズの膵癌細胞オルガノイドを大量に作製するため、三次元培養容器(例えば、クラレ社ELPLASIAプレート)を用いて、ヒト膵癌細胞、HUVEC、hMSCを共培養し、ヒト膵癌細胞株オルガノイドを再構成した。96wellの各ウェルに膵癌細胞を各1x10
4細胞、およびHUVEC・hMSCを任意の数播種し、癌オルガノイドを再構成した。癌細胞・HUVEC・hMSCの混合比は、10:0:0、10:7:1、10:7:20、10:7:0、10:0:20とした。
1-6.ヒト膵癌細胞オルガノイドのタイムラプス解析
タイムラプス撮影機能を持つ実体顕微鏡を用い、培養プレートを37度で加温しながら膵癌オルガノイドの形成過程を培養開始から72時間観察した。また、膵癌オルガノイドの形成過程を細胞レベルで観察するため、共焦点顕微鏡を用いたイメージングを行った。GFP遺伝子を導入したHUVEC、Kusabira Orange遺伝子を導入したhMSCと各癌細胞を用いて癌オルガノイドを再構成し、緑色蛍光・赤色蛍光像の取得を行った。
1-7. 腫瘍形成能の評価
作製した既存ヒト膵癌細胞株オルガノイドを、培養24時間目に、4〜10週齢の雌のNOD/Scidマウスに皮下移植し、ゼノグラフトを作製した。ゼノグラフトの形成数および体積を継時的に測定した。体積は、(短径×短径×長径/2)mm
3で算出した。
1-8.ヒト膵癌オルガノイドに由来するゼノグラフトの薬剤感受性評価
ヒト膵癌細胞オルガノイドを皮下に移植しゼノグラフトを作製後、ゼノグラフトの体積が、100mm
3を超えた時点からゲムシタビンの腹腔内投与を開始した。ゲムシタビンの投与濃度は0mg/kg、5mg/kg、10mg/kgとし、投与頻度・期間は3日に1回・3週間とした。適時、ゼノグラフトの体積を測定した。また、適時、組織を摘出し、組織学的評価を行った。
1-9. パラフィン切片作製
ノグラフトを摘出し、Phosphate buffered saline(PBS)で洗浄後、4%Paraformaldehyde(PFA)を用いて4℃、オーバーナイトで固定した。固定した組織をPBSで10分、3回洗浄し、自動包埋装置でエタノールおよびキシレンの置換処理を行った。その後、組織をパラフィンに包埋し、パラフィンブロックを作製した。作製したパラフィンブロックをミクロトームで4〜6μmの厚さに薄切し、スライドグラス(MATSUNAMI)上にのせ、パラフィン伸展器で伸展・乾燥させた。
1-10. HE(Haematoxylin-Eosin)染色
パラフィン薄切切片を72℃、20分間インキュベートした後、キシレンで5分、3回脱パラフィンを行った。次に、下降エタノール系列(100〜50%)で親水させた。MilliQに置換した後、Haematoxylin(Wako)で10分間、核染色を行った。十分に染色できていることを確認してから、流水で10分間、洗浄した。その後、Eosin(武藤化学)で1分間、細胞質を染色し、十分に染色できていることを確認してから純水で洗浄した。次に、上昇エタノール系列(50〜100%)で脱水し、キシレンで5分、3回透徹処理を行った。最後に、スライドグラス(MATSUNAMI)で封入した。
1-11. 免疫組織化学染色
パラフィン切片の脱パラフィン後、クエン酸Bufferに浸し、121℃、20分、賦活化を行った。PBS/0.05% Tween20(PBST)で5分、3回洗浄後、ブロッキング用バッファー(Dako)を添加し、室温で1時間ブロッキング反応を行った。次に、一次抗体溶液を添加し、4℃、オーバーナイトで反応させた。一次抗体(抗EpCAM抗体, 抗α-SMA抗体, 抗Cytokeratin 7 (CK7) 抗体, 抗CD31抗体、抗ラミニン抗体)反応後、PBSTで5分、3回洗浄し、緩衝液で希釈した二次抗体溶液を添加し、遮光下で室温1時間反応させた。二次抗体反応後、PBSTで5分、3回洗浄し、DAPI染色液を含む封入剤(Wako)を用いてスライドグラスを封入した。
1-12.免疫染色を施したスライドのイメージング
正立型蛍光顕微鏡(Zeiss)を用いて免疫染色を行ったスライドグラスの観察を行った。
1-13.シリウス赤染色
シリウス赤染色試薬(武藤化学)を用いて組織を染色した。染色方法は、染色試薬のマニュアルに従った。染色後、正立顕微鏡を用いて画像取得を行った。さらに、シリウス赤染色後の組織を偏光顕微鏡(Olympus)を用いて解析し、画像取得を行った。
1-14. プライマリ膵癌細胞の分離・培養
膵癌組織を分散バッファー(Liberase TM (Roche) / ROCK阻害剤(10μM)/ 10%FBS入りのDMEM培地)中で37度20分消化後、Growth Factor reduced Matrigel内に包埋した。その後、37度で培養した。膵癌シストの継代は次の方法で行った。膵癌シストを含むマトリゲルをROCK阻害剤(10μM)を含むTrypLE(Thermo Fisher Scientific社)で7分間処理し、分散した。その後、培地交換を行い、新しいマトリゲル内に包埋した。
1-15.プライマリ膵癌細胞からの膵癌オルガノイドの再構成
継代時と同じ手法で膵癌シストを分散後、マトリゲルを用いてHUVEC・hMSCとの三次元共培養を行った。三次元共培養方法は、膵癌細胞株からの膵癌オルガノイドの方法に準じる。なお、プライマリ膵癌オルガノイドの培養は既報(Cell, 2015)で用いた基本培地とEGMを1:1で混合後、マトリゲルに包埋し、37度でインキュベートして行った。
培養液の組成:
AdDMEM/F12培地
+ Growth Factor reduced Matrigel
+ HEPES (Thermo Fisher Scientific社) (終濃度1x)
+ Glutamax (Thermo Fisher Scientific社) (終濃度1x)
+ penicillin/streptomycin (Thermo Fisher Scientific社) (終濃度1x)
+ Primocin (終濃度1 mg/ml)
+ N-acetyl-L-cysteine (終濃度1 mM)
+ Wnt3訓化培地(50% v/v)
+ RSPO1訓化培地(10% v/v)
+ Noggin訓化培地(10% v/v)
+ EGF (終濃度50 ng/ml)
+ Gastrin (終濃度10 nM)
+ FGF10 (終濃度100ng/mL)
+ B27 (終濃度1x)
+ Nicotinamide (終濃度10mM)
+ A83-01 (終濃度0.5u nM)
1-16. ヒト肺癌細胞株オルガノイドの作製
既存ヒト肺癌細胞株(A549)はATCCより導入した。本研究では、これらの細胞株を導入後、継代数10以下で実験に用いた。予め、既存ヒト肺癌細胞株にルシフェラーゼ遺伝子を導入しておき、三次元培養容器(例えば、クラレ社ELPLASIAプレート)上にヒト肺癌細胞株、HUVEC、hMSCを播種し、ヒト肺癌細胞株オルガノイドを再構成した。96wellの各ウェルにヒト肺癌細胞株を各3x103細胞、およびHUVEC・hMSCを任意の数播種し、癌オルガノイドを再構成した。癌細胞・HUVEC・hMSCの混合比は、10:0:0、10:7:1(Low hMSC)、10:7:20(High hMSC)とした。
1-17. 放射線感受性評価法
プライマリヒト膵癌オルガノイドを免疫不全マウスの皮下に移植し、ゼノグラフトが形成された後、ゼノグラフト部位に炭素線(15Gy)を照射した。照射後のゼノグラフトのサイズの変化を計測し、腫瘍サイズの変化を評価した。
1-18. プライマリヒト膵癌オルガノイドの薬剤感受性と患者予後の相関
膵癌患者の手術時摘出標本より膵癌細胞を分離し、シスト培養法により拡大培養を行い、プライマリヒト膵癌細胞を得た。シスト培養法を用いて拡大培養を行った膵癌細胞は、拡大培養後においても細胞極性を保持されることを確認している。得られたプライマリヒト膵癌細胞をストロマ細胞(血管内皮細胞(HUVECなど)、間葉系細胞(hMSCなど))と三次元的に共培養し、プライマリ膵癌オルガノイドを再構成し、薬剤感受性を評価した。プライマリ膵癌オルガノイド作製時の各細胞の混合比率は10:7:20である。検体数は2である。
2. 結果
2-1. 既存ヒト膵癌細胞株のin vitroとin vivoにおける薬剤感受性の乖離
既存ヒト膵癌細胞株CFPAC-1、PANC-1、SW1990のin vitroにおける薬剤感受性の評価を行った。培養24時間の細胞に10
-12〜10
-3MのGEMを添加し、添加後72時間の生存細胞数からIC50を算出した結果、CFPAC-1、PANC-1、SW1990のIC50はそれぞれ0.03μM、0.7μM、0.2μMであった(
図1 上段)。一方、NOD/Scidマウスの皮下に癌細胞を移植し、形成されたゼノグラフトに対して100mg/kgでGEMを投与してin vivoにおける薬剤感受性の評価を行った結果、CFPAC-1およびPANC-1はGEMの投与に伴い、腫瘍の退縮が認められた。一方、SW1990は、腫瘍の退縮は一切認められず、腫瘍体積は増大した(
図1 下段)。したがって、PANC-1はin vitroにおける薬剤感受性は比較的低いが、in vivoにおける薬剤感受性は高いこと、SW1990はin vitroにおける薬剤感受性は比較的高いが、in vivoにおける薬剤感受性は低いことが明らかになった。以上の結果より、PANC-1やSW1990はin vitro及びin vivoにおける薬剤感受性に乖離があることが示された。
また、ゼノグラフトの組織解析より、既存ヒト膵癌細胞株より再構成されたゼノグラフトとヒト膵癌原発巣の組織像に乖離があることが確認された。既存ヒト膵癌細胞株より再構成されたゼノグラフトは、膵癌の原発巣でみられる豊富な間質や線管構造が認められない(
図2)。
2-2. 既存ヒト膵癌細胞株を用いた膵癌オルガノイドの創出
既存ヒト膵癌細胞株CFPAC-1、PANC-1、SW1990をHUVECおよびhMSCと共培養したところ、細胞が自律的な凝集が観察された(
図3)。共培養1日目には、いずれの細胞株を用いても、既存ヒト膵癌細胞、HUVEC、hMSCから成る既存ヒト膵癌細胞株オルガノイドが形成された(
図4)。HUVEC、hMSCに導入されている蛍光レポーターの発現を指標に、形成されたオルガノイドの構成状態を観察したところ、共培養1日目までは、3種類の細胞が均質に混ざり合っていることが確認された。しかし、共培養3日目以降はHUVECの存在頻度が著しく減少したため、以降、本研究では共培養1日目のオルガノイドを対象に実験を行った。また、各々の既存ヒト膵癌細胞株を用いて、オルガノイド形成におけるHUVEC、hMSCの混合条件を検討した。その結果、hMSCの混合比が高いオルガノイドは強く凝集が、hMSCを含まない、もしくは混合比が低いオルガノイドは凝集が弱く、物理的にもろく、崩れやすいことが確認された(
図5)。
2-3. 既存ヒト膵癌細胞株オルガノイド由来ゼノグラフトの組織学的解析
既存ヒト膵癌細胞株オルガノイドをNOD/Scidマウスに移植後、再構成されたヒト膵癌組織の解析を行った。その結果、オルガノイド移植群では豊富な間質とともに腺管構造が確認された。一方で、既存ヒト膵癌細胞株の単独移植群では、腺管構造は観察されなかった(
図6)。次に、様々な細胞混合比でオルガノイドを作製し、各オルガノイドから再構成されたゼノグラフトの組織像を比較した。再構成された組織における間質および血管の再構成状態を評価するために、間葉系細胞のマーカーであるα-SMAの発現を検討した。免疫組織化学染色によりα-SMA陽性細胞の割合を評価し、原発巣と比較した。図中グラフは、膵癌のみのサスペンジョン、hMSCの混合数の少ない膵癌オルガノイド(Low hMSC)、hMSCの混合数の高い膵癌オルガノイド(High hMSC)移植後に形成されたゼノグラフトにおけるα-SMA陽性細胞、シリウスレッド陽性領域、アザン染色陽性領域を示す(
図7)また、ヒアルロン酸陽性領域、コラーゲン繊維領域、テネイシンCの陽性領域を示す(
図8)。コラーゲン繊維領域の評価は偏光顕微鏡により行った。赤色は主にI型コラーゲン繊維を示し、緑色は主にIII型コラーゲン繊維を示す。下段に定量結果を示す。なお、エラーバーは標準偏差を示す。hMSCの存在頻度が高い膵癌オルガノイドより再構成されたゼノグラフトはヒト膵癌原発巣に近似した特徴を示した。
2-4. 癌オルガノイドを対象とした癌細胞特異的な細胞検出法の構築(図16)
癌細胞の薬剤感受性を精度高く評価するため、癌オルガノイド内の癌細胞数のみを定量評価するための手法を検討した(
図14)。ルシフェラーゼ遺伝子を導入した癌細胞(CFPAC-1、PANC-1、CAPAN-2。主としてCFPAC-1)を樹立し、癌オルガノイドを再構成した。その後、発光基質を添加し、発光プレートリーダーを用いて各Wellの発光強度を測定した。マルチウエルプレートに様々な細胞数でルシフェラーゼ遺伝子導入癌細胞を播種し、ルシフェラーゼアッセイを行ったところ、発光強度は細胞数に比例することが確認された(
図15)。また、癌オルガノイドにおけるルシフェラーゼ活性はストロマ細胞の数に影響されないことが確認された(
図16)。
2-5. ゲムシタビン投与後のオルガノイドのサイズ変化(図18)
抗がん剤投与後の応答を癌オルガノイドのサイズを指標に評価した
(図18)。抗がん剤投与後72時間目の癌オルガノイドの画像を取得し、癌オルガノイドの面積を画像解析により算出した(GEヘルスケア社製ソフト使用)。オルガノイドの画像情報により薬剤感受性を簡便に評価できることが確認された。
2-6 Stroma-rich cancer organoids exhibit anti-cancer drug resistance in vitro (豊富な間質を有する癌オルガノイドは抗がん剤に耐性を示す、図17)
ルシフェラーゼ遺伝子が導入された膵癌細胞およびストロマ細胞より膵癌オルガノイドを再構成し、膵癌治療薬(抗がん剤)に対する感受性を評価した(
図17)。灰色破線は二次元培養した癌細胞の薬剤感受性を示す。黒実線は三次元培養した癌細胞(癌細胞凝集体)の薬剤感受性を示す。赤実線(ストロマ細胞を高頻度に含む癌オルガノイド)および青実線(ストロマ細胞の存在頻度が低い癌オルガノイド)は三次元培養した癌オルガノイドの薬剤感受性を示す。ストロマ細胞を高頻度に含む癌オルガノイドは、いずれの薬剤についても高い薬剤耐性を示すことが確認される。
2-7 既存ヒト肺癌細胞株オルガノイドの創出(図29)
ルシフェラーゼ遺伝子とEGFPを発現するヒト肺癌細胞株(A549細胞)、HUVEC、hMSCを用いて三次元的に作製した肺癌オルガノイド、および、膵癌細胞のみから成る三次元凝集体のin vitro薬剤感受性を評価した。左図は肺癌オルガノイドの蛍光位相差顕微鏡像を示す。右図のグラフの縦軸は肺癌細胞のルシフェラーゼ活性量、横軸は培地中の抗がん剤(ゲムシタビン)濃度を示す。肺癌細胞凝集体はゲムシタビンに高い感受性を示す。一方、膵癌オルガノイド培養群では、ゲムシタビンに対する薬剤感受性が低下している。膵癌オルガノイド群の中でも、hMSCとHUVECを高頻度に含む群(High stroma群)では、さらに抗がん剤に対する感受性が低下している。
2-8. 膵癌オルガノイドは膵癌幹細胞の評価に有用である(図19)
抗がん剤添加後に残存する癌細胞の特性および、癌オルガノイド内でのストロマ細胞の評価を行った。EGFP遺伝子を導入した癌細胞(主としてCFPAC-1)を樹立し、癌オルガノイドを再構成した(癌細胞:HUVEC:hMSCの比率は、例えば10:7:10〜10:7:20)。その後、1uMゲムシタビンを含む培地で72時間培養を行った。抗がん剤を添加することにより、癌オルガノイドの内部GFP陽性Sox9陽性を示す癌幹細胞が残存することが確認される(上段右図)。
2-9. 既存ヒト膵癌細胞株オルガノイド由来ゼノグラフトの薬剤感受性
各オルガノイドの移植後に再構成されるゼノグラフトのin vivo薬剤感受性を膵癌の代表的な治療薬であるジェムザール(Gemcitabin;GEM)を用いて評価した。既存ヒト膵癌細胞株、HUVEC、hMSCの三次元共培養により作製した既存ヒト膵癌細胞株オルガノイドをNOD/Scidマウスの皮下に移植後、腫瘍体積が100mm
3を超えた時点からでGEMの投与(例えば10mg/kg)を開始した。なお、対照群として、生理食塩水のみを投与したGEM非投与群(0mg/kg)を設定した。GEMの投与は、ヒト膵癌に対する治療レジメンを参考に、3日に1回、30日間とした。GEM投与30日目でゼノグラフトを回収し、組織解析を実施した。すべての移植群において、GEM非投与群のゼノグラフトは日を追うごとに体積が増大していくのに対して、GEM投与群(例えば10mg/kg)のゼノグラフトの体積増大が抑制された(
図9)。GEM投与群(例えば10mg/kg)の腫瘍体積を比較すると、hMSCの混合数の高い膵癌オルガノイド(High hMSC)のオルガノイドから形成されたゼノグラフトの退縮は認められず、体積は増大したが、他の群のオルガノイドから形成されたゼノグラフトは退縮が認められた(
図9)。以上の結果より、hMSCを多く含む細胞混合比のオルガノイドから形成される間質が豊富なゼノグラフトは、薬剤感受性が低下した。
2-10 膵癌オルガノイドはin vivoで抗がん剤に耐性を示す(図21)
既存ヒト膵癌細胞株を免疫不全マウスに210
5細胞移植しゼノグラフトが100mm
3に達した後、ゲムシタビンを3日に1回投与した。GEM投与開始から1ヶ月目に回収したゼノグラフトの免疫染色像を示す。GEM投与後のゼノグラフト内はヒト膵管癌類似した構造を示す。図はサイトケラチン7(CK-7, 白色)/Ki-67(赤色)の発現を示す。上段はゲムシタビン投与前、下段はゲムシタビン投与後の組織像を示す。膵癌オルガノイドに由来するゼノグラフトは抗癌剤投与後にKi67陽性細胞の存在頻度が高く、抗癌剤に強い耐性を示す(
図21)。
2-11 膵癌オルガノイド由来ゼノグラフトは癌幹細胞の残存評価を可能とする(図22)
抗癌剤投与後の残存膵癌組織において癌幹細胞マーカー(CD133, CD44, Sox9)の発現を検討したところ、膵癌オルガノイド由来ゼノグラフトではこれらの分子を発現する膵癌細胞が残存していることが明らかとなった(
図22)。一方、膵癌サスペンジョン移植後に形成されるゼノグラフトでは、抗癌剤投与後にこれらのマーカー陽性細胞は殆ど存在していない(
図22)。膵癌オルガノイド由来ゼノグラフトは癌幹細胞の評価に有益であることが確認された。
2-12 癌オルガノイド由来ゼノグラフト内で多剤耐性トランスポーターの発現が亢進する(図23)
膵癌細胞株を免疫不全マウスに移植後、ゼノグラフトが100mm
3に達した時点よりゲムシタビン投与を開始した。ゲムシタビン投与30日目で回収した組織の解析結果を示す。多剤耐性トランスポーター(ABCG2)の染色像を赤色、サイトケラチン7(CK7)の染色像を白色、α-SMAの染色結果を緑色、DAPI染色像を青色で示す。癌オルガノイド移植群では、ゲムシタビン投与後、ABCG2を発現する膵癌細胞が残存することが確認される。
2-13 間質に富むゼノグラフトはGEM投与中止後に体積増加を生じる(図20)
癌オルガノイド(CFPAC-1由来)移植後に30日間ゲムシタビン投与(30mg/kg)を行った後、ゲムシタビン投与を中止した。その後の腫瘍サイズの変動を確認した。ゲムシタビン治療を施したサスペンジョン移植群は、投与中止後も腫瘍サイズに一定である。対して、ゲムシタビン治療を施した膵癌オルガノイド移植群は、投与中止後に腫瘍サイズが著明に増加する。すなわち、膵癌オルガノイドは抗がん剤投与中止後の腫瘍再発を再現することが出来ることが確認された。
2-14 クラニアルウインドウ内での血管を有するヒト膵癌ゼノグラフトの再構成(図24)
免疫不全マウスの頭部に作製したクラニアルウインドウ内に膵癌オルガノイド(EGFPが導入された膵癌細胞(CFPAC-1由来)数:2x10
5細胞)を移植し、移植28日後のクラニアルウインドウ像を示す(
図24)。膵癌オルガノイド移植直後より、HUVECのネットワーク構築が観察される。クラニアルウインドウ内の血管網を可視化するため、マウス尾静脈より高分子量蛍光デキストラン(M.W. 2,000kDa)を注射し、15分以内に画像取得を行った。右図上段は蛍光遺伝子を発現する癌細胞および、高分子量蛍光デキストランでラベルした血管像を示す。膵癌オルガノイド移植後に形成されたゼノグラフト内では不均一で過度な分岐を示す腫瘍血管構造が確認される。さらに、膵癌オルガノイド移植後のゼノグラフトは低分子デキストランの血管外漏出が検出される。クラニアルウインドウ作製法参考文献:Takebe T, Taniguchi H et al., Nature. 2013 Jul 25;499(7459):481-4.
2-15 ゼノグラフト内での腫瘍血管の評価(漏洩性の評価)(図25)
膵癌オルガノイド(膵癌細胞(CFPAC-1)数:2.0×10
5)を移植したクラニアルウインドウ内で構築された血管の漏洩性を評価した。0.5%エバンスブルーを含む生理食塩水を尾静脈より投与後、クラニアルウインドウ内の血管周囲へのエバンスブルーの漏洩を評価した。非移植群では投与30分後にエバンスブルーの残留が少ない。一方、癌オルガノイド移植群では長時間にわたりエバンスブルーの残留が確認される。癌オルガノイド移植後に形成された血管は漏洩傾向にあることが確認される。
【0039】
以上の検討により、癌オルガノイドを用いたin vitroおよびin vivo薬剤評価系を確立している。癌オルガノイドを用いたこれらの薬剤評価系を用いることにより、癌細胞の薬剤感受性を生理的な条件下で評価することができる。癌微小環境を伴うオルガノイドを用いて癌細胞の薬剤感受性を評価することにより、癌細胞の薬剤耐性を正確に評価することが可能になるものと考えられる。
【0040】
これにより、癌の新たな治療薬開発への応用が期待される。さらに、癌オルガノイドは、手術摘出検体などの臨床検体から分離したプライマリ癌細胞を用いた薬剤評価に応用することができる。臨床検体より癌微小環境を有した癌オルガノイドを再構成し、薬剤評価を行うことにより、各癌患者に適した治療法を選択するための情報提供が可能となる。また、様々な患者から分離した癌細胞を用いて癌オルガノイドを作製し、様々な薬剤の感受性を指標として層別化を行うことにより、癌の層別化用のバイオマーカーの開発への波及効果も期待される。
【0041】
他方、当該手法は細胞間相互作用の解析など、基礎研究のための解析ツールとしても有益と考えられる。なお、本手法を応用することにより、がん微小環境に関与すると考えられる他の細胞成分(例えば、マクロファージ、神経細胞等)と癌細胞の相互作用を再現することも可能と考えられる。
【0042】
2-16 ヒト膵癌プライマリオルガノイドの再構成(図10)
インフォームドコンセントの元、膵癌患者の手術摘出標本より膵癌細胞を分離し、シスト培養法を用いて膵癌細胞を拡大培養した。拡大培養した膵癌細胞は細胞極性を保持して
いることが確認される(
図10)。
2-17 ヒト膵癌プライマリオルガノイド内で再構成された膵管様構造(図11)
ヒトプライマリ膵癌細胞、HUVEC、hMSCをin vitroで三次元共培養し、得られたプライマリ膵癌オルガノイドの組織像を示す(
図11)。左図は、培養1日目の形態を示す。右図は培養10日目の形態を示す。豊富な間質を有したプライマリ膵癌オルガノイドの内部で膵管様構造・血管様構造などの原発巣に近似した組織が観察される。プライマリ膵癌オルガノイド内では、明瞭なHUVECのネットワーク構造が確認される。また、HUVECの周囲にhMSCがHUVECを取り囲む様に存在することが確認される。
2-18 in vitroにおけるプライマリヒト膵癌オルガノイド内での
血管内皮細胞のネットワーク構造(図13)
ヒトプライマリ膵癌細胞(膵癌細胞:2×10
5細胞)、HUVEC、hMSCをin vitroで三次元共培養し、得られたプライマリ膵癌オルガノイドの組織像を示す。本実験には、GFP遺伝子導入を行ったHUVEC、赤色蛍光タンパク質(クサビラオレンジ、KO)をコードする遺伝子を導入したhMSCを用いた。豊富なhMSCによりHUVECのネットワーク形成・維持が促進された。
2-19 プライマリヒト膵癌オルガノイドのin vitroでのゲムシタビン感受性評価(図27)
ルシフェラーゼ遺伝子を導入したプライマリヒト膵癌細胞を樹立し、in vitroでプライマリ膵癌オルガノイド(膵癌細胞2×10
4細胞)を再構成した後、ゲムシタビン存在下で72時間培養した。その後、発光基質を加え、各オルガノイドの発光強度を発光プレートリーダーで測定し、解析した。統計解析(Two-Way ANOVA Sidak's multiple comparisons test)の結果、プライマリ膵癌オルガノイドは膵癌シストに比べて、有意に高い薬剤耐性を示すことが確認された。
2-20 ヒトプライマリ膵癌オルガノイド由来ゼノグラフト内で膵癌に特徴的な細胞外基質の発現亢進が確認される(図26, 12)
ヒトプライマリ膵癌細胞(膵癌細胞:2×10
5細胞)を用いてプライマリ膵癌オルガノイド、あるいは、プライマリ膵癌シストを再構成した後、免疫不全マウスに移植した。移植後1.5ヶ月目の免疫染色像を示す。パネル上段はプライマリ膵癌オルガノイド移植群、下段はプライマリ膵癌シスト移植群の結果を示す(
図26)。プライマリ膵癌オルガノイド移植後のゼノグラフトはプライマリ膵癌シスト移植群に比べて、膵癌に特徴的な線管構造が確認される他、αSMA陽性細胞より構成される間質が検出される。また、シリウスレッド染色後の偏向顕微鏡像より、プライマリ膵癌オルガノイド移植後のゼノグラフトでは同領域にコラーゲン繊維が豊富に存在することが確認される。
図13では、プライマリ膵癌オルガノイドあるいはプライマリ膵癌サスペンジョンを移植した後に形成されるゼノグラフトにおける細胞外マトリクスの発現評価結果を示す。図はヒアルロン酸結合タンパク質(HABP)、フィブロネクチン(Fibronectin)、テネイシン(Tenescin)などの細胞外マトリクス群の免疫染色像を示す。プライマリ膵癌オルガノイド移植群では、HABP・Fibronectin・Tenescinの発現亢進が確認され、プライマリ膵癌オルガノイド内では、豊富な間質が再構成されている(
図12)。
2-21 プライマリヒト膵癌オルガノイドのin vivo薬剤感受性(図28)
in vitroでプライマリ膵癌オルガノイド(膵癌細胞2×10
5細胞)を再構成した後、 免疫不全マウスに移植し、その後の腫瘍サイズの変動を観察した。なお、ゼノグラフトが100mm
3に達した時点より3日に1回ゲムシタビンを投与した。プライマリ膵癌オルガノイド移植群は膵癌シスト移植群に比べて、有意に高い薬剤耐性を示すことが確認された。
2-22 ヒトプライマリ膵癌オルガノイドのin vivo放射線感受性(図30)
プライマリ膵癌オルガノイド、あるいは、プライマリ膵癌サスペンジョンを免疫不全マウスに移植し、腫瘍形成を認めた後、放射線(炭素線)照射を実施した。照射後の腫瘍体積の変化を示す。プライマリ膵癌サスペンジョン移植群では放射線照射後に腫瘍体積の著明な減少を認める。一方、プライマリ膵癌オルガノイド移植群では放射線照射後の腫瘍体積の減少が少ない。
2-23 プライマリヒト膵癌オルガノイドの薬剤感受性と患者予後の相関(図31)
各膵癌患者(術再発あり、術後再発なし)の手術摘出検体よりプライマリ膵癌細胞を分離し、拡大培養を行った後、ルシフェラーゼ遺伝子を導入した。その後、ストロマ細胞と三次元的に共培養し、プライマリ膵癌オルガノイドを再構成した。再構成されたヒト膵癌オルガノイドを各濃度のゲムシタビン存在下で72時間培養し、ルシフェラーゼ活性を測定した。術後再発なしの肺癌患者の手術時摘出検体に由来する膵癌オルガノイドは、ゲムシタビンに感受性を示し、術後に再発を示す膵癌患者の手術時摘出検体に由来する膵癌オルガノイドは、ゲムシタビンに耐性を示す。一方、術後に遠隔転移を示す膵癌患者の手術時摘出検体に由来する膵癌オルガノイドは、ゲムシタビンに感受性を示す。