(58)【調査した分野】(Int.Cl.,DB名)
【図面の簡単な説明】
【0017】
【
図1】試料1−4の被覆の、組み合わせたX線回折図を示す図である。
【
図2】試料2の(111)ピーク周辺のX線回折図を拡大した部分を示す図である。
【
図3】試料3の(111)ピーク周辺のX線回折図を拡大した部分を示す図である。
【
図4】試料4の(111)ピーク周辺のX線回折図を拡大した部分を示す図である。
【0018】
発明の概要
現在、驚くべきことに、より高いSi含有量を有するが、依然として固溶体のままであり、したがってナノ結晶状態に変化しない、(Ti,Si)NPVD層を用意することができることが明らかになった。
【0019】
本発明は、基材及び被覆を備える被覆切削工具であって、被覆が、式Ti
1−xSi
xC
aN
bO
c(式中、0.10<x≦0.30、0≦a≦0.75、0.25≦b≦1、0≦c≦0.2、a+b+c=1)の化合物であるPVD層(A)を含み、PVD層(A)は、NaCl構造固溶体である、被覆切削工具に関連する。
【0020】
式Ti
1−xSi
xC
aN
bO
cにおいて、好適には、0.11≦x≦0.27、又は0.12≦x≦0.25、又は0.13≦x≦0.24、又は0.14≦x≦0.23、又は0.15≦x≦0.22、又は0.16≦x≦0.22、又は0.17≦x≦0.22である。
【0021】
式Ti
1−xSi
xC
aN
bO
cにおいて、好適には、0≦a≦0.5、0.5≦b≦1、0≦c≦0.1、又は0≦a≦0.25、0.75≦b≦1、0≦c≦0.05、又は0≦a≦0.1、0.9≦b≦1、0≦c≦0.02、又はa=0、b=1、c=0、a+b+c=1である。
【0022】
PVD層(A)のNaCl構造固溶体の存在は、例えば、TEM(透過型電子顕微鏡)解析によって検出することができる。
【0023】
本発明は、基材上に被覆を製造する方法であって、被覆は、式Ti
1−xSi
xC
aN
bO
c(式中、0.10<x≦0.30、0≦a≦0.75、0.25≦b≦1、0≦c≦0.2、a+b+c=1)の化合物である、カソードアーク蒸着によって蒸着される、PVD層(A)を含み、PVD層(A)は、NaCl構造固溶体であり、PVD層(A)は、約12%未満のデューティサイクル及び約10kHz未満のパルスバイアス周波数を用いて、約−40から約−450Vのパルスバイアス電圧を基材に印加することによって蒸着される、方法にさらに関連する。
【0024】
一実施態様において、デューティサイクルは、約11%未満であってもよい。デューティサイクルは、さらに約1.5から約10%、又は約2から約10%であってもよい。
【0025】
一実施態様において、デューティサイクルは、約10%未満であってもよい。デューティサイクルは、さらに1.5から約8%、又は約2から約6%であってもよい。
【0026】
「オフ時間」の間、電位は、好適には変動している。
【0027】
パルスバイアス周波数は、約0.1kHzより高くてもよく、又は約0.1から約8kHz、又は約1から約6kHz、又は約1.5から約5kHz、又は約1.75から約4kHzであってもよい。
【0028】
パルスバイアス電圧は、約−40から約−450V、又は約−50から約−450Vであってもよい。
【0029】
用いられるパルスバイアス電圧の最適の範囲は、用いられる特定のPVDリアクターに応じて変わる可能性がある。
【0030】
一実施態様において、パルスバイアス電圧は、約−55から約−400V、又は約−60から約−350V、又は約−70から約−325V、又は約−75から約−300V、又は約−75から約−250V、又は約−100から約−200Vであってもよい。
【0031】
他の実施態様において、パルスバイアス電圧は、約−45から約−400V、又は約−50から約−350V、又は約−50から約−300Vであってもよい。
【0032】
パルスバイアス電圧は、好適には単極である。
【0033】
PVD層(A)は、好適には、チャンバ温度400−700℃の間、又は400−600℃の間、又は450−550℃の間で蒸着される。
【0034】
PVD層(A)は、好適には、米国特許出願公開第2013/0126347号に開示されたように、両カソードがその周りに配置されたリング型アノードを備えているカソードアセンブリを装備し、磁場に、ターゲット表面から出て、アノードに入る力線をもたらすシステムを用いた、PVD真空チャンバ中で蒸着される。
【0035】
PVD層(A)を蒸着する間のガス圧は、約0.5から約15Pa、又は約0.5から約10Pa、又は約1から約5Paであってもよい。
【0036】
基材は、超硬合金、サーメット、セラミックス、立方晶窒化ホウ素、及び高速度鋼の群から選択することができる。
【0037】
基材は、好適には切削工具として形づくられる。
【0038】
切削工具は、金属加工用の、切削工具インサート、ドリル、又はソリッドエンドミルであってもよい。
【0039】
本明細書に記載のPVD層(A)のさらに可能性のある特徴は、被覆切削工具で定められたPVD層(A)と、方法で定められたPVD層(A)との両方を示す。
【0040】
PVD層(A)のX線回折解析を実施すると、非常に鋭い立方晶回折ピークが観測される。これは、高い結晶性を意味する。また好適には、好ましい(111)面外結晶配向が得られる。
【0041】
PVD層(A)は、好適には、XRD回折の立方晶(111)ピークについて、≦0.4度(2θ)、又は≦0.35度(2θ)、又は≦0.3度(2θ)、又は≦0.25度(2θ)、又は≦0.2度(2θ)、又は≦0.18度(2θ)である、FWHM値を有する。
【0042】
PVD層(A)は、好適には、XRD回折の立方晶(111)ピークについて、≦0.45度(2θ)、又は≦0.4度(2θ)、又は≦0.35度(2θ)、又は≦0.3度(2θ)である、FWQM(1/4値全幅)値を有する。
【0043】
PVD層(A)は、好適には、XRD回折の立方晶(200)ピークについて、≦0.5度(2θ)、又は≦0.45度(2θ)、又は≦0.4度(2θ)、又は≦0.35度(2θ)である、FWHM値を有する。
【0044】
PVD層(A)は、好適には、≧0.3、又は≧0.5、又は≧0.7、又は≧0.8、又は≧0.9、又は≧1、又は≧1.5、又は≧2、又は≧3、又は≧4である、X線回折のピーク高さ強度比I(111)/I(200)を有する。
【0045】
本明細書で用いられるピーク高さ強度I(111)及びI(200)、並びにFWHM値及びFWQM値を決定するのに用いられる(111)ピークは、Cu−K
α2除去済み(stripped)である。
【0046】
PVD層(A)は、好適には、>−3GPa、又は>−2GPa、又は>−1GPa、又は>−0.5GPa、又は>0GPaである残留応力を有する。
【0047】
PVD層(A)は、好適には、<4GPa、又は<3GPa、又は<2GPa、又は<1.5GPa、又は<1GPaである残留応力を有する。
【0048】
PVD層(A)の残留応力は、I.C.Noyan、J.B.Cohen、Residual Stress Measurement by Diffraction and Interpretation、Springer−Verlag、New York、1987(p117−130)に記載されている、周知のsin
2ψ法を用いたX線回折測定によって評価される。例えば、V Hauk、Structural and Residual Stress analysis by Nondestructive Methods、Elsevier、Amsterdam、1997も参照されたい。測定は、CuKα放射線を(200)反射に用いて実施される。側傾法(ψジオメトリ)は、選択されたsin
2ψ範囲内の等距離の、6個から11個、好ましくは8個のψ角で用いられた。90°のΦセクター内のΦ角の等距離分布が好ましい。二軸応力状態を確かめるために、試料を、ψで傾けながら、Φ=0及び90°で回転させることになる。せん断応力が存在する可能性があるか調べることを推奨し、したがって負及び正のψ角を測定することになる。オイラー1/4−クレードルの場合、これは、様々なψ角について、Φ=180及び270°においても試料を測定することによって成し遂げられる。測定は、可能な限り平坦な表面で、好ましくは切削工具インサートの逃げ面側で実施されることになる。残留応力値を計算するには、ポアソン比ν=0.22及びヤング率E=447GPaを用いるべきである。データは、好ましくは(200)反射にある、Bruker AXS製のDIFFRAC
Plus Leptos v.7.8などの市販のソフトウェアを用いて、疑似フォークト関数によって評価される。全応力値は、得られた二軸応力の平均として計算される。
【0049】
PVD層(A)は、好適には、その表面にファセット結晶粒を含む。本明細書において、ファセットは、粒に平坦な面があること意味する。
【0050】
PVD層(A)のファセット結晶粒は、好適には、PVD層(A)の表面積の、>50%、又は>75%、又は>90%を占める。
【0051】
PVD層(A)の厚さは、好適には、約0.5から約20μm、又は約0.5から約15μm、又は約0.5から約10μm、又は約1から約7μm、又は約2から約5μmである。
【0052】
PVD層(A)は、好適には、アーク蒸着層である。
【0053】
PVD層(A)は、好適には、本発明の方法に従って蒸着される。
【0054】
一実施態様において、被覆は、基材に最も近い、例えば、TiN、CrN、又はZrNの最内部結合層を含む。結合層の厚さは、約0.1から約1μm、又は約0.1から約0.5μmであってもよい。
【0055】
一実施態様において、被覆は、基材に最も近い、例えば、TiN、CrN、又はZrNの最内部結合層を含む。結合層の厚さは、約0.1から約1μm、又は約0.1から約0.5μmであってもよい。最内部結合層は、PVD層(A)を蒸着するのに用いたものよりも、異なる方法パラメータ、例えば、パルスバイアスの代わりにDCバイアスを用いて蒸着してもよく、こうした最内部結合層は、PVD層(A)と実質的に同じ元素組成のものであってもよい。
【0056】
被覆切削工具の基材は、超硬合金、サーメット、セラミックス、立方晶窒化ホウ素、及び高速度鋼の群から選択することができる。
【0057】
被覆切削工具は、金属加工用の、切削工具インサート、ドリル、又はソリッドエンドミルであってもよい。
【0058】
実施例
実施例1
(Ti,Si)N層をジオメトリSNMA120804の焼結超硬合金切削工具インサートブランクに蒸着した。超硬合金の組成は、Co10重量%、Cr0.4重量%、及びWC残部であった。超硬合金ブランクを、Advanced Plasma Optimizerアップグレードを備えたOerlikon Balzer INNOVAシステムであるPVD真空チャンバで被覆した。PVD真空チャンバには、6個のカソードアセンブリを装備されていた。アセンブリは、それぞれ1個のTi−Si合金ターゲットを備えていた。カソードアセンブリを、チャンバの2つの高さ(level)に配置した。両カソードがその周りに配置されたリング型アノードを備えており(米国特許出願公開第2013/0126347号に開示されたように)、システムは、磁場に、ターゲット表面から出て、アノードに入る力線をもたらす(米国特許出願公開第2013/0126347号参照)。
【0059】
チャンバを、高真空(10
−2Pa未満)までポンプダウンし、チャンバ内部に設置されたヒータで350−500℃まで加熱し、この特定の場合には500℃まで加熱した。次いで、ブランクをArプラズマで30分間エッチングした。
【0060】
ターゲット中のTiとSiとの関係を変えて、4種の異なる蒸着を実施した。用いたターゲットは、Ti
0.90Si
0.10、Ti
0.85Si
0.15、Ti
0.80Si
0.20、及びTi
0.75Si
0.25であった。
【0061】
チャンバ圧(反応圧力)をN
2ガス3.5Paに設定し、単極パルスバイアス電圧−300V(チャンバ壁に対して)をブランクアセンブリに印加した。パルスバイアス周波数は1.9kHzであり、デューティサイクルは3.8%(「オン時間」20μ秒、「オフ時間」500μ秒)であった。カソードは、アーク放電モードで、電流150A(それぞれ)で120分間流した。厚さ約3μmの層が蒸着された。
【0062】
蒸着されたPVD層の実際の組成は、EDX(エネルギー分散分光法)を用いて測定し、それぞれ、Ti
0.91Si
0.09N、Ti
0.87Si
0.13N、Ti
0.82Si
0.18N、及びTi
0.78Si
0.22Nであった。
【0063】
X線回折(XRD)解析を、2D検出器(VANTEC−500)及び集束平行ビームMontelミラーを備えたIμS X線源(Cu−K
α、50.0kV、1.0mA)を装備したBruker D8 Discover回折計を用いて、被覆インサートの逃げ面で実施した。被覆切削工具インサートは、試料の逃げ面が試料ホルダーの基準面と平行であること、また逃げ面が適切な高さにあることを確認して、試料ホルダーに取り付けた。被覆切削工具からの回折強度は、関連するピークが生じる、したがって少なくとも35°−50°が含まれる2θ角周辺で測定された。バックグラウンド減算及びCu−K
α2除去を含むデータ解析を、PANalytical’s X’Pert HighScore Plusソフトウェアを用いて行った。疑似フォークト関数をピーク解析に用いた。得られたピーク強度に薄膜補正を適用しなかった。(111)ピーク又は(200)ピークと、PVD層に帰属しない、例えばWCなどの基材反射の、任意の回折ピークとの、起こり得るピークの重複は、ピーク強度及びピーク幅を決定するときに、ソフトウェア(組み合わさったピークのデコンボリューション)によって補正した。
【0064】
図1は、被覆試料1−4の、組み合わせたX線回折図(Cu−K
α2未除去)を示し、鋭い(111)ピークを示している。PVD層のSi含有量が増加するにつれて、(111)ピーク位置の変化することも明らかに認められる。これは、依然としてNaCl構造を保ちながら格子パラメータが変化する、すなわち、全ての試料で(Ti,Si)N固溶体が存在する証拠である。
図2−4は、試料2−4の、(111)ピーク周辺の回折図を拡大した部分(Cu−K
α2除去済み)を示す。
【0065】
試料のFWHM値及びFWQM値を計算した。
【0066】
結果を表1に示す。
【0067】
実施例2
(Ti,Si)N被覆切削工具の新しい一式は、実施例1と同じ組成及び同じジオメトリSNMA120804の焼結超硬合金切削工具インサートブランクに、少し異なる装置を用いて、(Ti,Si)Nを蒸着することによって用意された。
【0068】
実施例1で用いたものと同じ組成及び同じジオメトリSNMA120804の焼結超硬合金切削工具インサートブランクを用意した。
【0069】
(Ti,Si)N層を、実施例1と異なる他の製造業者の真空チャンバで、カソードアーク蒸着によって蒸着した。真空チャンバは、4個のアークフランジを備えていた。選択されたTiSi組成のターゲットを、互いに向き合ったフランジの全てに取り付けた。全てのターゲットは同じTiSi組成を有する。未被覆ブランクをPVDチャンバ内で3回転されるピンに取り付けた。
【0070】
ターゲット中のTiとSiとの関係を変えて、蒸着を実施した。用いたターゲットは、Ti
0.90Si
0.10、Ti
0.85Si
0.15、及びTi
0.80Si
0.20であった。Si含有量の異なる3種の被覆(試料5−7)を、特許請求の範囲に記載の方法に従って、パルスバイアスを用いて作製した。表2の用いた方法パラメータを参照されたい。
【0071】
最初に、最内部の薄い(Ti,Si)N層(約0.1μm)を、DCバイアスを用いて蒸着した。方法パラメータを表2に示す。
【0072】
次に、試料5−7について、(Ti,Si)Nの主体層を、パルスバイアスを用いて蒸着した。方法パラメータを表3に示す。
【0073】
最内部のDCモード蒸着とパルスモードによる主体層の蒸着との間に、初めのDCモード蒸着を続けるが、圧力を4Paから10Paにランプさせ、またDCモードを、主体層に用いられるパルスモードにランプさせる中間工程を用いた。ランプ時間は10分であった。
【0074】
最内部(Ti,Si)N層(DC−蒸着+ランプ)の層厚さは、約0.1μmであった。
【0075】
それぞれの試料について、主体(Ti,Si)N層の層厚さは、約2.5μmであった。
【0076】
次いで、Si含有量の異なる3種のさらなる試料8−10を、全体の層にDCバイアスによる方法を用いて、ブランクに(Ti,Si)N層を蒸着することによって製造した。表4の用いた方法パラメータを参照されたい。
【0077】
それぞれの試料について、(Ti,Si)Nの層厚さは、約2.5μmであった。
【0078】
X線回折(XRD)解析を、前述の実施例の場合と同じ装置及び同じ手順を用いて、被覆インサートの逃げ面で実施した。
【0079】
試料の(111)ピーク及び(200)ピークのFWHM値、並びにI(111)/I(200)の比を決定した。
【0080】
結果を表5に示す。
【0081】
試料5−7と比較した場合、またSi含有量を増加させた場合の試料8−10のより幅広の(200)ピークは、一般に、さらにより多くのナノ結晶微小構造を示す。