【実施例1】
【0015】
[補強工法]
<1>全体の構成(
図1)。
本発明の水上構造物の基礎の施工方法は、被覆工程S1と、立設工程S2と、を少なくとも備える。本例では立設工程S2の後に設置工程S3を備える。
【0016】
<1.1>水上構造物(
図2)。
本発明の施工対象となる水上構造物1は、水底から立設する基礎支柱20と、基礎支柱20の上部に設置する上部構造10と、を備える構造物である。
本例では水上構造物1が、タワーやナセル、ブレード等からなる上部構造10と、鋼管杭やコンクリート杭からなる基礎支柱20の組合せからなる、モノパイル式の洋上風力発電設備である例について説明する。
ただし水上構造物1は、洋上風力発電設備に限らず、要は水底に立設した基礎支柱20の上に上部構造10を備える構造物であれば、どのような構造物にも適用できる。
【0017】
<1.2>洗掘防止材(
図3)。
洗掘防止材Aは、基礎支柱20周辺の洗掘を防止するための部材である。
洗掘防止材Aは、面状の防止材本体A1と、防止材本体A1の中央付近に設けた脆弱部A2と、を少なくとも有する。
防止材本体A1は、水底の起伏に追従可能な柔軟性を備える面状体からなる。
本例では防止材本体A1として、高強度ポリエステル繊維を多重織してなる、正方形の透水性シートを採用する。
防止材本体A1が透水性であるため、洗掘防止材Aにかかる揚圧力を低減して、洗掘防止材Aのめくれを防ぐことができる。また、防止材本体A1全体が水を透過するため、水流によるシート周辺部の局所的な洗掘を抑制することができる。
なお、防止材本体A1の素材は高強度ポリエステル繊維に限らず、例えばポリウレタン繊維等であってもよいが、十分な耐久性、引張強度、及び耐摩耗性を備えた素材を採用するのが望ましい。
また、防止材本体A1の形状は正方形に限らず、長方形、円形、その他の多角形であってもよい。
更に、防止材本体A1は透水性シートに限らず、不透水性シート、マット体、板状体等であってもよい。
【0018】
<1.3>脆弱部(
図3)。
脆弱部A2は、基礎支柱20を貫通させるための部分である。
脆弱部A2は、防止材本体A1の中央付近に設ける。
本例では脆弱部A2として、防止材本体A1の中央に刻設した8状の放射状切込みを採用する。ただしこれに限らず、例えば十字状の切込み、円形の部分切込み、V字状の切込み等であってもよい。
また、脆弱部A2は切込みに限らず、例えば周辺部より厚みが薄い薄肉構造、防止材本体A1の中央に貫通孔を設けて貫通孔を脆弱部材で塞いだ構造、又はこれらの組合せ等であってもよい。要は防止材本体A1上における周辺部より、基礎支柱20を容易に貫通できる構成であればよい。
【0019】
<2>被覆工程(
図4A)。
被覆工程S1は、水上構造物1の設置場所の水底を洗掘防止材Aで被覆する工程である。被覆工程S1は、例えば以下のように施工する。
クレーン付き台船のクローラクレーンを用いて、洗掘防止材Aを海底に吊り込み、設置場所に敷設する。
本発明の水上構造物の基礎の施工方法は、面状の洗掘防止材Aを海底に敷設するだけで洗掘防止工を設置できるため、潜水士による肉体労働が不要であり、施工効率が非常に高い。また、捨石によって基礎支柱20を損傷させるおそれがない。
また、洗掘防止工である被覆工程S1を、立設工程S2の前に行うため、専用船を被覆工程S1の作業時間の間待機させる必要がない。このため、専用船の拘束時間を短縮して施工コストを節減できる上、台数が限られた専用船を他の工事に有効利用することができる。
【0020】
<3>立設工程(
図4B)。
立設工程S2は、基礎支柱20を海底に立設する工程である。立設工程S2は、例えば以下のように施工する。
SEP船のクローラクレーンによって、基礎支柱20を海中に吊り込み、基礎支柱20の下端部を、洗掘防止材Aの脆弱部A2に位置合わせして当接させる。
バイブロハンマによって基礎支柱20の頭部に振動を与えることで、基礎支柱20の下端部を洗掘防止材Aの脆弱部A2に貫通させて海底に貫入する。
なお、基礎支柱20の立設はバイブロハンマに限らず、油圧ハンマによる打設や先端ビットを付設した基礎支柱20による回転圧入等によってもよい。
本例では脆弱部A2が放射状の切込みであるため、脆弱部A2の貫通によって、脆弱部A2の三角形状の切片が基礎支柱20と共に海底の砂の中に押し込まれて基礎支柱20の外周に密着する。これによって、基礎支柱20の外周と脆弱部A2の隙間からの砂の流失を防ぐことができる。
基礎支柱20の立設後、基礎支柱20の頭部に上部構造10と連結するためのジョイントスリーブを連結する。
本発明の水上構造物の基礎の施工方法は、洗掘防止工である被覆工程S1を立設工程S2前に施工するため、従来技術のように基礎支柱20の立設から洗掘防止工の設置までの間の洗掘が発生しない。
このため、洗掘防止のために、支柱の打設と洗掘防止工の設置を1基ずつ行う必要がなく、複数の基礎支柱20の打設を連続して行うことができる。
【0021】
<3.1>洗掘防止材に脆弱部を設けた理由。
本発明の水上構造物の基礎の施工方法は、洗掘防止材Aの防止材本体A1に脆弱部A2を設けた点に一つの特徴を有する。
防止材本体A1に脆弱部A2を設けない場合、防止材本体A1の貫通に大きな力を要するため施工の難度が上がり、施工性や施工精度が低下する。
また、基礎支柱20によって押し込まれた防止材本体A1が水底の砂を下向きに押圧することで、基礎支柱20の周囲の砂が凹状に陥没し、基礎支柱20の根入れ不足になるおそれがある。
さらに、基礎支柱20を強力に押し込んで貫通させることで、洗掘防止材Aの裂け目が大きくなり、基礎支柱20の外周と裂け目の間から砂が吸い出されやすくなる。
一方、防止材本体A1の中央に最初から貫通孔を設けておけば、防止材本体A1を押し込んで貫通する必要はなくなるが、被覆工程S1から立設工程S2までの間に、貫通孔を通じて防止材本体A1下方の砂が吸い出される。
特に水流によって防止材本体A1が揺動してポンプ状に機能することによって、貫通孔から多量の砂が流失するおそれがある。
以上より、本発明の水上構造物の基礎の施工方法は、防止材本体A1に貫通孔ではなく基礎支柱20の貫通を容易にする脆弱部A2を設けることで、施工性及び施工精度の向上と吸出し防止とを両立させる。
【0022】
<4>設置工程(
図4C)。
設置工程S3は、基礎支柱20の上部に上部構造10を設置する工程である。設置工程S3は、例えば以下のように施工する。
SEP船のクローラクレーンによって、基礎支柱20頭部のジョイントスリーブ内に上部構造10のタワーを鉛直に吊り込み、隙間にグラウト充填して固定する。
続いてタワーの頭部にハブ及びナセルを固定し、ナセルにブレードを取付ける。
なお、上部構造10の組み立ては上記に限らず、例えばハブ、ナセル、ブレードを予め地組してユニット化し、このユニットを一括してタワー上に固定して組み立ててもよい。
【実施例2】
【0023】
[水中測位装置を用いる例]
本例では、立設工程S2において、水中測位装置を用いて脆弱部A2の位置を特定する。
本例では水中測位装置として、船側のトランシーバと洗掘防止材A側のトランスポンダ(発信機A3)の組合せからなるUSBL(Ultra Short Base Line)方式水中測位装置を採用する。
USBL水中測位装置とは、GNSS測位座標に基づいてトランシーバとトランスポンダの相対位置をUSBL方式によって三次元測位するシステムである。
防止材本体A1の所定の位置に複数のトランスポンダを付設する。トランスポンダの付設位置は問わないが、複数のトランスポンダの位置から脆弱部A2の位置を特定可能な位置とする(例えば直線上において脆弱部A2を等距離に挟む両位置)。
立設工程S2において、船上のトランシーバから水中に音響信号を送り、この音響信号に対しトランスポンダが発する応答信号から、トランシーバと複数のトランスポンダとの相対位置を求める。続いて、複数のトランスポンダの相対位置と、防止材本体A1上におけるトランスポンダと脆弱部A2との相対位置から、トランシーバと脆弱部A2の相対位置を求める。
本例では、船上から脆弱部A2の位置を特定することで、基礎支柱20を脆弱部A2に正確に貫通させることができる。
なお、水中測位装置はUSBL方式水中測位装置に限らず、SBL(Short base Line)方式水中測位装置その他各種の水中測位装置を採用することができる。