【実施例1】
【0024】
図4は、実施例1に係る給湯システムを示している。
図4において、
図1と同一部分には同一符号を付している。
この実施例1の給湯システム2では燃料電池ユニット42、給湯ユニット44およびバックアップ給湯ユニット46が備えられる。
燃料電池ユニット42には燃料電池48、熱交換器50および循環ポンプ52が備えられる。燃料電池48は熱源の一例であり、発電時の発熱を熱源に利用する。熱交換器50は、燃料電池48の排気ME3の熱を蓄熱タンク8側の熱媒ME1に熱交換する。循環ポンプ52は熱媒ME1の循環路54に設置され、駆動時、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させるとともに、熱交換後の熱媒ME1を蓄熱タンク8の上層側に戻す。
燃料電池48の発電時、循環ポンプ52を駆動し、蓄熱タンク8の下層側から熱媒ME1を熱交換器50に循環させ、熱媒ME1に排気ME3の熱を熱交換し、加熱された熱媒ME1が蓄熱タンク8の上層側に戻される。これにより、蓄熱タンク8で成層蓄熱が行われる。熱交換器50の入側には温度センサー56が設置され、蓄熱タンク8の下層側の熱媒ME1の温度が検出される。熱交換器50の出側には温度センサー58が設置され、蓄熱タンク8の上層側に戻される熱媒ME1の温度が検出される。
【0025】
給湯ユニット44には蓄熱タンク8とともに、プレート熱交換器60が備えられる。プレート熱交換器60に蓄熱タンク8の熱媒ME1を流す循環路62には与熱ポンプ64および温度センサー22が備えられる。与熱ポンプ64の駆動時、蓄熱タンク8の上層部から熱媒ME1がプレート熱交換器60に循環し、蓄熱タンク8の下層側に戻される。温度センサー22は蓄熱タンク8の上層側の熱媒温度を検出する。蓄熱タンク8に設置された温度センサー66はタンク内の熱媒ME1の温度を検出する。
給水管14には水道管などが接続され、給水Wが供給される。給水管14にはミキシング弁68、水量センサー70、温度センサー72が備えられるとともに、ミキシング弁68およびバイパス管16を介して出湯管18が接続されている。出湯管18には水制御弁74、温度センサー76、78が備えられる。バイパス管16は、ミキシング弁68により分流させた給水Wを出湯管18側に流し込む。水制御弁74は、出湯管18から出湯する温水HWまたは給水Wの水量を制御する。温度センサー76はプレート熱交換器60の出側の温水温度を検出する。温度センサー78は、温水HWと給水Wとをミキシングした温水HWの温度を検出する。
【0026】
バックアップ給湯ユニット46には、プレート熱交換器80および熱交換器82が備えられる。プレート熱交換器80には入側に給水管30、その出側に出湯管40が備えられる。給水管30には給湯ユニット44から給水Wまたは温水HWを流し込み、温度センサー84、水量センサー85、水制御弁86が備えられるとともに、バイパス管36を分岐させるミキシング弁88が接続されている。温度センサー84は、給湯ユニット44から流入する温水HWまたは給水Wの温度を検出する。水量センサー85は、給湯ユニット44から流入する温水HWまたは給水Wの水量を検出し、水制御弁86は、その水量を制御する。
出湯管40には温度センサー90、92が備えられる。温度センサー90はプレート熱交換器80の出側の温水温度を検出する。温度センサー92はバイパス管36からの給水Wまたは温水HWと出湯管40側の温水HWとを混合した温水HWの温度を検出する。
プレート熱交換器80には循環路94が備えられ、熱媒ME2を循環させる。循環路94には熱交換器82、循環ポンプ96、開放タンク98、温度センサー100が備えられる。循環ポンプ96は、駆動時、熱媒ME2を循環路94に循環させる。プレート熱交換器80は、熱媒ME2の熱を給水Wまたは温水HWに熱交換する。熱交換器82は、バーナー102の燃焼熱を熱媒ME2に熱交換する。開放タンク98は、循環路94に循環する熱媒ME2の体積変動を吸収する。
【0027】
<給湯システム2の制御部20>
図5は、給湯システム2の制御部20(
図1)を示している。この制御部20には電池制御部104、給湯ユニット制御部106、バックアップ制御部108、リモコン制御部110が備えられる。電池制御部104は燃料電池ユニット42を制御する。給湯ユニット制御部106は給湯ユニット44を制御する。バックアップ制御部108はバックアップ給湯ユニット46を制御する。リモコン制御部110はリモコン装置に備えられ、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108と有線または無線により連係する。
電池制御部104はコンピュータで構成され、プロセッサ112、メモリ部114、入出力部(I/O)116、システム通信部118が備えられる。プロセッサ112はメモリ部114にあるOS(Operating System)や電池制御プログラムを実行する。メモリ部114にはROM(Read-Only Memory)やRAM(Random-Access Memory)を備え、OSや電池制御プログラムを格納する。システム通信部118はリモコン制御部110、給湯ユニット制御部106のシステム通信部126、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O116には温度センサー56、58の検出温度が制御情報として入力されるとともに、循環ポンプ52の制御出力が得られる。
【0028】
給湯ユニット制御部106はコンピュータで構成され、プロセッサ120、メモリ部122、入出力部(I/O)124、システム通信部126が備えられる。プロセッサ120はメモリ部122にあるOSや給湯制御プログラムを実行する。メモリ部122にはROM、EEPROM(Electrically Erasable Programmable Read-Only Memory )やRAMを備え、OSや給湯制御プログラムを格納する。システム通信部126はリモコン制御部110、電池制御部104のシステム通信部118、バックアップ制御部108のシステム通信部134と制御データの送受を行う。I/O124には温度センサー22、66、72、76、78の検出温度、水量センサー70の検出水量が制御情報として入力されるとともに、与熱ポンプ64およびミキシング弁68の制御出力が得られる。
バックアップ制御部108はコンピュータで構成され、プロセッサ128、メモリ部130、入出力部(I/O)132、システム通信部134が備えられる。プロセッサ128はメモリ部130にあるOSやバックアップ制御プログラムを実行する。メモリ部130にはROM、EEPROMやRAMを備え、OSやバックアップ制御プログラムを格納する。システム通信部134はリモコン制御部110、電池制御部104のシステム通信部118、給湯ユニット制御部106のシステム通信部126と制御データの送受を行う。I/O132には温度センサー84、90、92、100の検出温度、水量センサー85の検出水量が制御情報として入力されるとともに、循環ポンプ96、水制御弁86およびミキシング弁88の制御出力が得られる。
【0029】
<熱媒ME1による給湯制御>
図6のAは、給湯設定温度(以下「設定温度Ts1」と称する)が35〔℃〕の場合の給水温度と最低熱媒温度の関係、
図6のBは、設定温度Ts1が40〔℃〕の場合の給水温度と最低熱媒温度の関係、
図6のCは、設定温度Ts1が45〔℃〕の場合の給水温度と最低熱媒温度の関係を示している。
これらの関係から、
図7は、設定温度Ts1をパラメータとする給水温度と最低熱媒温度の関係グラフを示している。
図7において、Aは設定温度Ts1=35〔℃〕、Bは設定温度Ts1=40〔℃〕、Cは設定温度Ts1=45〔℃〕の場合である。
この関係からたとえば、給水温度が15〔℃〕で設定温度Ts1が40〔℃〕であれば、最低熱媒温度は60.6〔℃〕であることが必要である。
【0030】
<熱媒ME1で設定温度Ts1の給湯が可能な場合>
図8のAは、給湯ユニット44が熱媒ME1で設定温度Ts1の給湯が可能な場合の動作を示している。
図8のAにおいて、太線は給水W、温水HW、熱媒ME1の流動を示している。
熱媒ME1で設定温度Ts1の給湯が可能な場合、給湯ユニット44では、温度センサー76の検出温度To1(熱交換後温度)が設定温度Ts1よりたとえば、6〔℃〕だけ高い値(Ts1+6〔℃〕)(熱交換の第1の目標温度)になるように、与熱ポンプ64の回転数を制御する。温度センサー78の検出温度Tm1が設定温度Ts1になるように、ミキシング弁68のポートa、bの開度を制御する。
【0031】
このとき、バックアップ給湯ユニット46では、温度センサー84の検出温度Ti2が設定温度Ts1以上となるので、ミキシング弁88はポートd側を100〔%〕の開度に制御する。バーナー102は燃焼させないので、ミキシング弁88はポートc側の通水がない。たとえば、設定温度Ts1=40〔℃〕、温度センサー72の検出温度Ti1=20〔℃〕の場合、ミキシング弁68のポートa側の流量およびポートb側の流量の比率は、a:b=77:23とすればよい。バックアップ給湯ユニット46のミキシング弁88ではポートd側が100〔%〕の水量となる。つまり、熱媒ME1で設定温度Ts1の給湯が可能な場合には、給湯システム2に流れる全水量の77〔%〕が熱交換器60に流れ、全水量の23〔%〕がバイパス管16に流れる。これにより、全水量の77〔%〕が熱交換器60の影響を受けることになる。
【0032】
<熱媒ME1で設定温度Ts1の給湯ができない場合>
図8のBは、給湯ユニット44が熱媒ME1で設定温度Ts1の給湯ができない場合の給湯動作を示している。
図8のBにおいて、太線は給水W、温水HW、熱媒ME1、ME2の流動を示している。
この場合、検出温度To1=(T1−5〔℃〕)になるように、与熱ポンプ64の回転数制御を行う。検出温度Tm1の目標温度が通常の設定温度Ts1であると、検出温度To1の低下に伴いaルートの流量比率が高まり、最終的には全水量が熱交換器60の影響を受けてしまう。そこで、検出温度Tm1の目標温度をミキシング弁68のaルートとbルートのミキシングが行われる温度にする。つまり、検出温度Tm1に対し、設定温度Ts1から設定温度Ts2(<Ts1)に変更する。この設定温度Ts2は設定温度Ts1より低い温度であればよく、たとえば、To1=(T1−5〔℃〕)に制御されていると、第1に、設定温度Ts2=(Ti1+(T1−5))/2を目標温度とすれば、ミキシング弁68の開度が調整され、各ポートa、bのそれぞれに50〔%〕の流量となる。この結果、aルート側に給水Wが流れることによる圧力損失を低減することができる。
【0033】
第2に、目標温度を設定温度Ts2=(Ti1+Ti1+(T1−5))/3のように検出温度Ti1の値寄りに設定すれば、ミキシング弁68のbルート側に流れる流量を増加させることになり、aルート側に流れる給水Wの圧力損失をさらに低減できる。
このように、設定温度Ts1を設定温度Ts2に変更するだけで、ミキシング弁68の制御形態を変更する必要がない。このため、ソフトウェアの再設計は不要である。
この場合、バックアップ給湯ユニット46側では、循環ポンプ96を駆動し、バーナー102を燃焼させ、検出温度Tj=80〔℃〕に制御する。検出温度Ti2は、設定温度Ts1より低いので、検出温度To2≒80〔℃〕とミキシングし、検出温度Tm2が設定温度Ts1になるように、ミキシング弁88の開度制御を行う。
このとき、検出温度Ti2は検出温度To2より設定温度Ts1に近いため、ミキシング弁88のポートc側流量、ポートd側流量は、ポートc側流量<ポートd側流量となる。
【0034】
たとえば、設定温度Ts1=40〔℃〕、検出温度Ti1=20〔℃〕の場合、検出温度T1=40〔℃〕とすると、検出温度To1=35〔℃〕となる。
ここで、設定温度Ts2は、
(Ti1+T1−5)/2=(20+35)/2=27.5〔℃〕
となり、検出温度Tm1の目標温度を設定温度Ts1より設定温度Ts2に変更すれば、ミキシング弁68のa側流量、b側流量は、a側流量:b側流量=50:50となり、検出温度Tm1=27.5〔℃〕となる。
検出温度Ti2は27.5〔℃〕であるから、検出温度To2≒80〔℃〕の温水HWとミキシングし、検出温度Tm2を40〔℃〕に制御すると、ミキシング弁88のポートc側流量、ポートd側流量は、ポートc側流量:ポートd側流量≒24:76となる。したがって、全水量の50〔%〕が熱交換器60の影響を受け、全水量の24〔%〕程度が熱交換器80の影響を受けることになる。これにより、熱交換器60、80による圧力損失が低減される。
【0035】
<熱媒ME1による熱交換不可の場合>
図8のCは、熱媒ME1による熱交換不可の場合の動作を示している。
図8のCにおいて、太線は給水W、熱媒ME2の流動を示している。
熱媒ME1による熱交換不可の場合、給湯ユニット44では蓄熱が低く、給湯のための熱交換に利用できないため、ミキシング弁68はポートb側に100〔%〕の給水Wを流すように制御し、与熱ポンプ64は停止状態とする。この場合、検出温度Tm1は検出温度Ti1になる。
【0036】
バックアップ給湯ユニット46では、循環ポンプ96を駆動し、バーナー102を燃焼させ、検出温度Tj=80〔℃〕に制御する。
検出温度Ti2は設定温度Ts1未満であるから、検出温度To2≒80〔℃〕の温水HWとミキシングし、検出温度Tm2が設定温度Ts1になるように、ミキシング弁88の開度の制御を行う。
検出温度Ti2は検出温度To2より設定温度Ts1に近いため、ミキシング弁88のポートc側流量、ポートd側流量の比率は、ポートc側流量<ポートd側流量となる。
【0037】
たとえば、設定温度Ts1=40〔℃〕、検出温度Ti1=20〔℃〕では、検出温度T1=20〔℃〕とすれば、与熱ポンプ64は停止状態となる。
このとき、ミキシング弁68のポートa側流量、ポートb側流量の比率は、ポートa側流量:ポートb側流量=0:1となる。このとき、ポートb側に全流量の100〔%〕が流れる。
検出温度Ti2=Tm1=Ti1=20〔℃〕なので、検出温度To2≒80〔℃〕とミキシングし、検出温度Tm2を設定温度Ts1=40〔℃〕に制御すると、ミキシング弁88のポートc側流量、ポートd側流量の比率は、ポートc側流量:ポートd側流量≒1:2となる。
したがって、全水量の1/3が熱交換器80の影響を受け、熱交換器60による圧力損失は発生しない。
【0038】
<給湯システム2の制御>
図9は、給湯システム2の制御の処理手順を示している。この制御にはリモコン制御部110、電池制御部104、給湯ユニット制御部106およびバックアップ制御部108の各制御が含まれ、各制御が連係して実行される。
リモコン制御部110ではイニシャライズ(S101)の後、入力受付処理(S102)、表示出力処理(S103)が繰り返し実行される。表示出力処理では電池制御部104、給湯ユニット制御部106またはバックアップ制御部108で得られる状態情報をLCD(Liquid Crystal Display)に表示する。
【0039】
電池制御部104ではイニシャライズ(S104)の後、入力受付処理(S102)により運転スイッチのON/OFFを受け、
図10に示す熱回収処理(S105)に移行し、この熱回収処理で得られる状態情報をリモコン制御部110に提供する。
給湯ユニット制御部106ではイニシャライズ(S106)の後、入力受付処理(S102)により設定温度Ts1の指示を受け、
図11に示す給湯処理(S107)に移行し、この給湯処理で得られる状態情報をリモコン制御部110に提供する。
バックアップ制御部108ではイニシャライズ(S108)の後、入力受付処理(S102)により設定温度Ts1の指示を受け、
図12に示すバックアップ給湯処理(S109)に移行し、このバックアップ給湯処理で得られる状態情報をリモコン制御部110に提供する。
【0040】
<熱回収処理>
図10は、電池制御部104による熱回収処理の処理手順を示している。この処理手順ではリモコン制御部110の入力受付処理(S102)の運転スイッチの操作を監視し(S201)、運転スイッチ=ONであれば(S201のYES)、燃料電池48を駆動し(S202)、温度センサー58の出力温度がたとえば、75〔℃〕になるように循環ポンプ52の回転を制御する(S203)。
運転スイッチ=OFFであれば(S201のNO)、燃料電池48を停止し(S204)、循環ポンプ52を停止させる(S205)。
【0041】
<給湯処理>
図11は、給湯ユニット44の給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断し(S301)、給湯使用でなければ(S301のNO)、与熱ポンプ64を停止し(S302)、この処理を終了する。
給湯使用であれば(S301のYES)、検出温度T1が設定温度Ts1の供給が可能な温度以上であるかを判断する(S303)。検出温度T1が設定温度Ts1の供給が可能な温度以上であれば(S303のYES)、
図8のAに示す給湯処理を実行する(S304)。この処理では、検出温度To1が設定温度Ts1より一定温度ΔT1たとえば、6〔℃〕だけ高い温度(=設定温度Ts1+ΔT1)になるように与熱ポンプ64の回転を制御し(S305)、同時に検出温度Tm1が設定温度Ts1になるようにミキシング弁68の開度を制御する(S306)。
【0042】
検出温度T1が設定温度Ts1の供給が可能な温度以上でなければ(S303のNO)、検出温度T1が給水温度より一定温度ΔT2たとえば、5〔℃〕だけ高い温度(=給水温度+ΔT2)を超えているかを判断する(S307)。検出温度T1が温度(=給水温度+ΔT2)を超えていれば(S307のYES)、
図8のBに示す給湯処理を実行する(S308)。
この処理では、検出温度To1が検出温度T1より一定温度ΔT2たとえば、5〔℃〕だけ低い温度(=T1温度−ΔT2)になるように与熱ポンプ64の回転を制御し(S309)、同時に検出温度Tm1の目標温度を算出する(S310)。
この処理では、検出温度To1(=T1−ΔT2)と給水Wの検出温度Ti1より目標温度を算出する。たとえば、第1の目標温度として(To1+Ti1)/2、または第2の目標温度として(To1+Ti1+Ti1)/3とすればよい。
そして、これらいずれかの目標温度が得られるように、ミキシング弁68の制御を行う(S311)。
【0043】
S307において、検出温度T1が温度(=給水温度+ΔT)以下であれば(S307のNO)、
図8のCに示す処理を実行する(S312)。この処理では、与熱ポンプ64を停止させ(S313)、ポートbに100〔%〕の流水が得られるようにミキシング弁68を制御する(S314)。
【0044】
<バックアップ給湯処理>
図12は、バックアップ給湯処理の処理手順を示している。この処理手順では、給湯使用か否かを判断する(S801)。この判断は水量センサー85の検出水量により判断すればよい。
給湯使用でなければ(S801のNO)、給湯動作を停止し(S802)、このバックアップ給湯処理を終了する。
給湯使用であれば(S801のYES)、検出温度Ti2が設定温度Ts1より低いかを判断する(S803)。検出温度Ti2が設定温度Ts1より低ければ(S803のYES)、給水加熱に移行し、必要熱量に応じた回転数で循環ポンプ96を動作させる(S804)。このとき、検出温度Tjが所定温度たとえば、80〔℃〕になるようにバーナー102の燃焼を制御する(S805)。同時に検出温度Tm2が設定温度Ts1になるようにミキシング弁88の開度比率を制御する(S806)。
検出温度Ti2が設定温度Ts1以上であれば(S803のNO)、加熱動作を停止し、ポートd側に100〔%〕の水量となるように、ミキシング弁88の開度比率を制御する。
【0045】
<熱交換器側流量比率と圧力損失の関係>
図13は、熱交換器60側の流量比率に対する圧力損失の関係を示している。この圧力損失の関係は、全流量として16〔リットル/min〕を流した場合である。この関係からすれば、流量が増加すれば、二次関数的に圧力損失も増加している。尚、0〔%〕の流量であっても、圧力損失があるのは、給湯ユニット44の給水口と給湯口間にて測定を行っているため、共通経路及びバイパス管16側の圧力損失のためである。
斯かる関係は熱交換器60の特性であるが、バックアップ給湯ユニット46側の熱交換器80においても、熱交換器60と同一仕様であれば、同様の傾向となる。
【0046】
<実施例1の効果>
この実施例1によれば、次の効果が得られる。
(1) 蓄熱タンク8の蓄熱に応じてその熱量を給湯に利用することができる。
(2) 蓄熱が低く、給湯に利用できない場合には給湯ユニット44を通過させた給水Wをバックアップ給湯ユニット46で設定温度Ts1まで加熱し、設定温度Ts1での給湯が可能である。
(3) 設定温度Ts1まで給水Wを昇温させることができないが、ある程度の熱交換が可能な蓄熱では、熱交換器60に流す給水量を抑え、圧力損失の低減や与熱ポンプ64の回転数を抑制し、効率的な蓄熱利用を図ることができる。
【0047】
(4) 蓄熱が低い場合、強制的な熱媒循環を回避でき、蓄熱タンク8の成層状態を乱すことがない。
(5) ミキシング弁68の開度比率と流量比率は一般的に比例関係にない。これは、圧力損失が高いポート側が流れにくくなることによる。これは、開度制御では流量が少ない場合、熱交換器60側の流量比率が低下することが想定される。換言すれば、このような現象を想定すると、蓄熱タンク8の蓄熱の利用率が低下するが、斯かる制御では、熱交換器60側に流れる流量が補償され、蓄熱の有効利用が図られる。