(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0032】
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
【0033】
[ポリエステル樹脂]
本実施形態の光学レンズは、下記一般式(1)で表される単位(A)(以下、「単位(A)」、「構成単位(A)」ともいう。)を含むポリエステル樹脂からなる。また、該樹脂は、必要に応じて、ジオール単位(B)(以下、「単位(B)」、「構成単位(B)」ともいう。)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)(以下、「単位(C)」、「構成単位(C)」ともいう。)を含む。
【0035】
(前記一般式(1)において、R
1は水素原子、CH
3又はC
2H
5であり、R
2及びR
3は、それぞれ独立に水素原子又はCH
3であり、nは0又は1である。)。
【0036】
上記のように構成されているため、本発明によれば、低吸水性であり、耐熱性、透明性及び光学特性(屈折率、アッベ数、光弾性係数)に優れる光学レンズを好適に得られる。なお、本実施形態において、「耐熱性に優れる」とは、後述する実施例に記載の方法により測定されるガラス転移温度(Tg)が十分に高いことを指し、「透明性に優れる」とは、後述する実施例に記載の方法により測定される降温時結晶化発熱量が十分に低いことを指し、「光学特性(屈折率、アッベ数、光弾性係数)に優れる」とは、後述する実施例に記載の方法により測定される光弾性係数の絶対値を十分に低く保ちながら、後述する実施例に記載の方法により測定される屈折率(nd)及びアッベ数(νd)を任意に調整できることを指す。
【0037】
一般式(1)において、R
1は、好ましくは水素原子又はCH
3であり、R
2及びR
3は、好ましくは水素原子である。本実施形態において、耐熱性の観点から、一般式(1)におけるR
1、R
2、及びR
3が水素原子であることがより好ましい。
【0038】
上記一般式(1)において、耐熱性をより向上させる観点から、nは1であることが好ましい。
【0039】
本実施形態において、透明性、耐熱性及び光学特性のバランスを考慮すると、ポリエステル樹脂が有する全構成単位に対する構成単位(A)の含有量は、10〜95mol%であることが好ましい。上記含有量が10mol%以上であると、十分に良好な耐熱性及び光学特性が得られる傾向にある。また、上記含有量が95mol%以下であると、良好な耐熱性及び光学特性を確保しつつ成形性を向上させることができるため好ましい。上記と同様の観点から、単位(A)の含有量は、15〜95mol%であることがより好ましく、更に好ましくは20〜95mol%である。
【0040】
本発明の光学レンズは、構成単位(A)からなるホモポリエステル樹脂からなることが好ましい態様の一つである。
【0041】
本発明の光学レンズは、構成単位(A)、構成単位(B)及び構成単位(C)を含む共重合ポリエステル樹脂からなることも好ましい態様の一つである。
【0042】
構成単位(B)としては、ジオールに由来する単位であれば特に限定されず、その具体例としては、エチレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−デカヒドロナフタレンジメタノール、1,3−デカヒドロナフタレンジメタノール、1,4−デカヒドロナフタレンジメタノール、1,5−デカヒドロナフタレンジメタノール、1,6−デカヒドロナフタレンジメタノール、2,7−デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、デカヒドロ−1,4:5,8−ジメタノナフタレンジメタノール、ノルボルナンジオール、シクロヘキサンジオール、2,2'-ビス(4-ヒドロキシシクロヘキシル)プロパン、アダマンタンジオール、デカヒドロ−1,4:5,8−ジメタノナフタレンジオール、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[6−(2−ヒドロキシエトキシ)−2−ナフチル]フルオレン、9,9−ビス[6−(2−ヒドロキシプロポキシ)−2−ナフチル]フルオレン、9,9−ビス(2−ヒドロキシエチル)フルオレン、キシリレングリコール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール、2,2,4,4−テトラメチル−1,3−シクロブタンジオール等のジオールに由来する単位が挙げられる。
【0043】
構成単位(B)は、良好な光学特性が得られることから、脂肪族ジオール又はフルオレン構造を有するジオールに由来する単位であることが好ましい。また、上記フルオレン構造を有するジオールに由来する単位については、フルオレン構造と共にカルド構造を有していることがより好ましい。このような脂肪族ジオールに由来する単位としては、1,4−シクロヘキサンジメタノール、エチレングリコール、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール、デカヒドロ−1,4:5,8−ジメタノナフタレンジメタノールに由来する単位がより好ましい。また、フルオレン構造を有するジオールに由来する単位としては、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンに由来する単位がより好ましい。なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
【0044】
構成単位(C)としては、ジカルボン酸又はそのエステル形成性誘導体に由来する単位であれば特に限定されず、その具体例としては、テレフタル酸、イソフタル酸、フタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2−メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸及び/又はその誘導体に由来する構成単位;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロペンタデカンジカルボン酸、3,9−ビス(1,1−ジメチル−2−カルボキシエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、5−カルボキシ−5−エチル−2−(1,1−ジメチル−2−カルボキシエチル)−1,3−ジオキサン、1,4:5,8−ジメタノデカヒドロナフタレンジカルボン酸、アダマンタンジカルボン酸、ダイマー酸等の脂肪族ジカルボン酸及び/又はその誘導体に由来する単位;9,9−ビス(カルボキシメチル)フルオレン、9,9−ビス(1−カルボキシエチル)フルオレン、9,9−ビス(2−カルボキシエチル)フルオレン、9,9−ビス(1−カルボキシプロピル)フルオレン、9,9−ビス(2−カルボキシプロピル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルエチル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルプロピル)フルオレン、9,9−ビス(2−カルボキシブチル)フルオレン、9,9−ビス(2−カルボキシ−1−メチルブチル)フルオレン、9,9−ビス(5−カルボキシペンチル)フルオレン等のフルオレン構造を有するジカルボン酸及び/又はその誘導体に由来する単位が挙げられる。
【0045】
構成単位(C)は、良好な光学特性が得られることから、脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはフルオレン構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位であることが好ましい。また、上記フルオレン構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位については、フルオレン構造と共にカルド構造を有していることがより好ましい。脂肪族ジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性、耐熱性と光学特性との物性バランスの観点から、1,4−シクロヘキサンジカルボン酸ジメチルに由来する単位がより好ましい。また、フルオレン構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性、耐熱性と光学特性との物性バランスの観点から、9,9−ビス(メトキシカルボニルメチル)フルオレン、9,9−ビス(2−メトキシカルボニルエチル)フルオレン、9,9−ビス(メトキシカルボニルプロピル)フルオレンに由来する単位がより好ましい。なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
【0046】
本実施形態において、ポリエステル樹脂は、単位(A)〜(C)以外に、ヒドロキシル基及びカルボン酸又はそのエステル形成性誘導体単位(A1)等の他の単位を含んでもよい。単位(A1)としては、特に限定はされないが、例えば、グリコール酸、乳酸、ヒドロキシ酪酸、2−ヒドロキシイソ酪酸、ヒドロキシ安息香酸、6−ヒドロキシカプロン酸、4−ヒドロキシシクロヘキサンカルボン酸等のオキシ酸及び/又はその誘導体に由来する単位等が挙げられる。
【0047】
本実施形態において、ポリエステル樹脂は、本発明の効果を有する限り特に限定されないが、下記(1)〜(6)のいずれか一つ以上を満たすことが好ましく、下記(1)〜(4)を満たすことがより好ましく、下記(1)〜(6)の全てを満たすことが更に好ましい。
【0048】
(1)本実施形態において、十分な耐熱性を確保する観点から、ポリエステル樹脂のガラス転移温度(Tg)は、本発明の効果を有する限り特に限定されないが、好ましくは120℃以上であり、より好ましくは130℃以上であり、更に好ましくは140℃以上である。なお、上限値は特に限定されないが、例えば、240℃である。上記Tgは、後述する実施例に記載の方法により測定することができる。また、上記Tgは、例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
【0049】
(2)本実施形態において、十分な透明性を確保する観点から、ポリエステル樹脂の降温時結晶化発熱量は、本発明の効果を有する限り特に限定されないが、好ましくは5J/g以下であり、より好ましくは1J/g以下であり、更に好ましくは0.3J/g以下である。なお、下限値は特に限定されないが、例えば、0J/gである。上記降温時結晶化発熱量は、後述する実施例に記載の方法により測定することができる。また、上記降温時結晶化発熱量は、例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
【0050】
(3)本実施形態において、吸湿による変形や、屈折率の変化を抑制する観点から、ポリエステル樹脂の24時間後の吸水率は、本発明の効果を有する限り特に限定されないが、好ましくは0.25%以下であり、より好ましくは0.23%以下であり、更に好ましくは0.21%以下であり、更により好ましくは0.20%以下である。なお、下限値は特に限定されないが、例えば、0.01%である。上記吸水率は、後述する実施例に記載の方法により測定することができる。また、上記吸水率は、例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
【0051】
本発明におけるポリエステル樹脂は、光学特性(屈折率、アッベ数、光弾性係数)に優れる。詳しくは、特定の構造を有することで、光弾性係数の絶対値を十分に低く保ちながら、屈折率及びアッベ数を任意に調整することができる。例えば、ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により、屈折率、アッベ数及び光弾性係数を下記範囲に調整することができる。
【0052】
(4)光弾性係数の絶対値は、本発明の効果を有する限り特に限定されないが、好ましくは40×10
-12Pa
-1以下であり、より好ましくは35×10
-12Pa
-1以下であり、更に好ましくは30×10
-12Pa
-1以下である。なお、下限値は特に限定されないが、例えば、0.01×10
-12Pa
-1である。上記光弾性係数の絶対値は、後述する実施例に記載の方法により測定することができる。
【0053】
(5)d線波長光に対する屈折率(nd)は、本発明の効果を有する限り特に限定されないが、1.60以下であることが好ましく、1.59以下であることがより好ましく、1.58以下であることが更に好ましく、1.57以下であることが更により好ましく、1.56以下であることがとりわけ好ましい。本発明の光学レンズとしての実用を考慮した場合、屈性率の下限は、特に限定されないが、1.40程度である。上記d線波長光に対する屈折率は、後述する実施例に記載の方法により測定することができる。
【0054】
(6)アッベ数(νd)は、本発明の効果を有する限り特に限定されないが、好ましくは28以上であり、より好ましくは30以上であり、更に好ましくは31以上であり、更により好ましくは35以上であり、とりわけ好ましくは40以上である。本発明の光学レンズとしての実用を考慮した場合、アッベ数の上限は、特に限定されないが、70程度である。上記アッベ数は、後述する実施例に記載の方法により測定することができる。
【0055】
なお、アッベ数(νd)とは、実施例に記載の式(1)により表される数値で、屈折率の波長依存性を示している。従って、高アッベ数の物質は、波長による屈折率の変化が小さく、色収差が少ないことを表している。
【0056】
本発明におけるポリエステル樹脂は、光学特性(屈折率、アッベ数、光弾性係数)に優れることから、例えば、カメラ、ビデオカメラ、プロジェクションテレビ、レーザープリンター、マイクロレンズアレイ等の撮像及び投影用光学レンズ;光ファイバー、光ファイバー用コネクター、光導波路等の情報伝送部品などの光学部品材料に好適に用いることができる。
【0057】
更に本実施形態のポリエステル樹脂を使用する際には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等の公知の添加剤を添加することが好適に実施される。
【0058】
[ポリエステル樹脂の製造方法]
ポリエステル樹脂は、単位(A)を単独重合することにより、また、単位(A)〜(C)に対応する各単量体を共重合することにより、得ることができる。以下、単位(A)に対応する単量体の製造方法について説明する。かかる単量体は、例えば、下記一般式(2)で表される。
【0060】
上記一般式(2)において、R
1は、水素原子、CH
3又はC
2H
5であり、R
2及びR
3は、それぞれ独立に水素原子又はCH
3であり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。
式(2)において、R
1は、好ましくは水素原子又はCH
3である。R
2及びR
3は、好ましくは水素原子である。上記炭化水素基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、2−ヒドロキシエチル基、4−ヒドロキシブチル基等が挙げられる。
【0061】
本実施形態における一般式(2)で表される化合物は、ジシクロペンタジエン又はシクロペンタジエンと官能基を有するオレフィンを原料として、例えば、下記式(I)に示すルートで合成することが可能である。
【0063】
(式(I)中、R
1は水素原子、CH
3又はC
2H
5であり、R
2及びR
3は、それぞれ独立に水素原子又はCH
3であり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
【0064】
〔式(I)中の一般式(4)で表される炭素数13〜21のモノオレフィンの製造〕
前記一般式(4)で表される炭素数13〜21のモノオレフィンは、例えば、官能基を有するオレフィンとジシクロペンタジエンのディールスアルダー反応を行うこと等で製造することが可能である。
【0065】
前記ディールスアルダー反応に用いる官能基を有するオレフィンの具体例としては、以下に限定されないが、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ビニル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−4−ヒドロキシブチル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ビニル、アクリル酸−2−ヒドロキシエチル、アクリル酸−4−ヒドロキシブチル、クロトン酸、クロトン酸メチル、クロトン酸エチル、3−メチルクロトン酸、3−メチルクロトン酸メチル、3−メチルクロトン酸エチル等が挙げられ、好ましいオレフィンとして、メタクリル酸、メタクリル酸メチル、メタクリル酸−2−ヒドロキシエチル、アクリル酸、アクリル酸メチル、アクリル酸−2−ヒドロキシエチルが挙げられ、より好ましいオレフィンとしてメタクリル酸メチル、アクリル酸メチルが挙げられる。
【0066】
更に、前記ディールスアルダー反応に用いる官能基を有するオレフィンの例として、アクリロニトリル、メタクリロニトリル、アクロレイン、メタクロレインを挙げられる。これらのオレフィンを原料とする場合、例えば、下記式(II)、式(III)に示すルート等を経て一般式(4')で表されるモノオレフィンを製造することができる。
【0068】
(式(II)中、R
1は水素原子又はCH
3である)
【0070】
(式(III)中、R
1は水素原子又はCH
3である)
【0071】
前記ディールスアルダー反応に用いるジシクロペンタジエンは高純度のものが好ましく、ブタジエン、イソプレン等の含有量を低減することが好ましい。ジシクロペンタジエンの純度は、90%以上であることが好ましく、95%以上であることがより好ましい。また、ジシクロペンタジエンは加熱条件下で解重合しシクロペンタジエン(所謂モノシクロペンタジエン)になる傾向にあるため、ジシクロペンタジエンの代わりにシクロペンタジエンを使用することも可能である。尚、一般式(4)で表される炭素数13〜21のモノオレフィンは、実質的に下記一般式(7)で表される炭素数8〜16のモノオレフィン(1段目ディールスアルダー反応生成物)を経由して生成していると考えられ、生成した一般式(7)のモノオレフィンが新たな親ジエン化合物(Dienophile)として反応系内に存在するシクロペンタジエン(Diene)とディールスアルダー反応(2段目ディールスアルダー反応)に預かり、一般式(4)で表される炭素数13〜21のモノオレフィンが生成するものと考えられる。
以上の観点から、例えば、上記式(I)に示す反応ルートにおいて、1段目ディールスアルダー反応の反応条件を適宜制御することにより、式(4)で表される炭素数13〜21のモノオレフィンあるいは式(7)で表される炭素数8〜16のモノオレフィンを選択的に得ることができる。
【0073】
(式(7)中、R
1は水素原子、CH
3又はC
2H
5を示し、R
2及びR
3は、それぞれ独立に水素原子又はCH
3を示し、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基を示す。)
【0074】
前記2段階のディールスアルダー反応を効率的に進行させる、すなわち、式(4)で表される炭素数13〜21のモノオレフィンを選択的に得る観点からは、反応系内にシクロペンタジエンが存在することが重要であるため、反応温度として100℃以上が好ましく、120℃以上がより好ましく、130℃以上が更に好ましい。一方で、式(7)で表される炭素数8〜16のモノオレフィンを選択的に得るためには、反応温度として180℃未満が好ましい。なお、いずれの場合においても、高沸物質の副生を抑えるためには250℃以下の温度で反応を行うことが好ましい。
【0075】
上記のようにして得られた式(4)で表される炭素数13〜21のモノオレフィンを、後述するヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=1である場合に対応する単量体(すなわち、式(2)で表される化合物)を得ることができる。また、上記のようにして得られた式(7)で表される炭素数8〜16のモノオレフィンを、同様のヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=0である場合に対応する単量体(すなわち、式(8)で表される化合物)を得ることができる。
なお、反応溶媒として炭化水素類やアルコール類、エステル類等を使用することも可能であり、炭素数6以上の脂肪族炭化水素類、シクロヘキサン、トルエン、キシレン、エチルベンゼン、メシチレン、プロパノール、ブタノール等が好ましい。また、必要に応じて、AlCl
3等公知の触媒を添加してもよい。
【0077】
(上記式(8)において、R
1は、水素原子、CH
3又はC
2H
5であり、R
2及びR
3は、それぞれ独立に水素原子又はCH
3であり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
【0078】
前記ディールスアルダー反応の反応方式としては、槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、管型反応器に反応条件下で基質類を流通させる連続流通式等、多様な反応方式を採ることが可能である。
【0079】
前記ディールスアルダー反応で得られた反応生成物は、そのまま次のヒドロホルミル化反応の原料として用いることもできるが、蒸留、抽出、晶析などの方法によって精製した後、次工程に供してもよい。
【0080】
〔式(I)中の(3)で表される炭素数14〜22の二官能性化合物の製造〕
前記式(I)中の一般式(3)で表される炭素数14〜22の二官能性化合物は、例えば、一般式(4)で表される炭素数13〜21モノオレフィンと一酸化炭素及び水素ガスをロジウム化合物、有機リン化合物の存在下でヒドロホルミル化反応させること等で製造することができる。
【0081】
前記ヒドロホルミル化反応で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、一酸化炭素と水素の存在下でヒドロホルミル化活性を示す化合物であればよく、その前駆体の形態は特に限定されない。例えば、ロジウムアセチルアセトナートジカルボニル(以下、Rh(acac)(CO)
2と記す)、Rh
2O
3、Rh
4(CO)
12、Rh
6(CO)
16、Rh(NO
3)
3等の触媒前駆物質を有機リン化合物と共に反応混合物中に導入し、反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、予めロジウム金属ヒドリドカルボニルリン錯体を調製してそれを反応器内に導入してもよい。好ましい具体例としてはRh(acac)(CO)
2を溶媒の存在下で有機リン化合物と反応させた後、過剰の有機リン化合物と共に反応器に導入し、触媒活性を有するロジウム−有機リン錯体とする方法が挙げられる。
【0082】
本発明者らの検討により、一般式(4)で表されるような比較的分子量の大きな内部オレフィンを有する2段階ディールスアルダー反応生成物が極めて少量のロジウム触媒でヒドロホルミル化されることがわかっている。本ヒドロホルミル化反応におけるロジウム化合物の使用量は、ヒドロホルミル化反応の基質である一般式(4)で表される炭素数13〜21のモノオレフィン1モルに対して0.1〜60マイクロモルが好ましく、0.1〜30マイクロモルがより好ましく、0.2〜20マイクロモルが更に好ましく、0.5〜10マイクロモルが特に好ましい。ロジウム化合物の使用量が炭素数13〜21のモノオレフィン1モルに対して60マイクロモルより少ない場合、実用上、ロジウム錯体の回収リサイクル設備を設けなくてもよい水準と評価できる。このように、本実施形態によれば、回収リサイクル設備に関わる経済的負担を減らすことができ、ロジウム触媒にかかるコストを低減することが可能である。
【0083】
本実施形態におけるヒドロホルミル化反応において、ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としては、特に限定されないが、例えば、一般式P(−R
a)(−R
b)(−R
c)で表されるホスフィン又はP(−OR
a)(−OR
b)(−OR
c)で表されるホスファイトが挙げられる。R
a、R
b、R
cの具体例としては、以下に限定されないが、炭素数1〜4のアルキル基又はアルコキシ基で置換され得るアリール基や、炭素数1〜4のアルキル基又はアルコキシ基で置換され得る脂環式アルキル基等が挙げられ、トリフェニルホスフィン、トリフェニルホスファイトが好適に用いられる。有機リン化合物の使用量はロジウム化合物中のロジウム原子に対して300倍モル〜10000倍モルが好ましく、500倍モル〜10000倍モルがより好ましく、更に好ましくは700倍モル〜5000倍モル、特に好ましくは900倍モル〜2000倍モルである。有機リン化合物の使用量がロジウム原子の300倍モル以上である場合、触媒活物質であるロジウム金属ヒドリドカルボニルリン錯体の安定性が十分に確保できる傾向にあり、結果として良好な反応性が確保される傾向にある。また、有機リン化合物の使用量がロジウム原子の10000倍モル以下である場合、有機リン化合物に掛かるコストを十分に低減する観点から好ましい。
【0084】
前記ヒドロホルミル化反応は溶媒を使用せずに行うことも可能であるが、反応に不活性な溶媒を使用することにより、より好適に実施することができる。ヒドロホルミル化反応に使用できる溶媒としては、一般式(4)で表される炭素数13〜21のモノオレフィン、ジシクロペンタジエン又はシクロペンタジエン、前記ロジウム化合物、及び前記有機リン化合物を溶解するものであれば特に限定されない。具体例としては、以下に限定されないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素類;脂肪族エステル、脂環式エステル、芳香族エステル等のエステル類;脂肪族アルコール、脂環式アルコール等のアルコール類;芳香族ハロゲン化物等の溶媒が挙げられる。これらのうち炭化水素類が好適に用いられ、中でも脂環式炭化水素、芳香族炭化水素がより好適に用いられる。
【0085】
前記ヒドロホルミル化反応を行う場合の温度としては40℃〜160℃が好ましく、80℃〜140℃がより好ましい。反応温度が40℃以上の場合には十分な反応速度が得られる傾向にある、原料であるモノオレフィンの残留がより抑えられる傾向にある。また、反応温度が160℃以下にすることで原料モノオレフィンや反応生成物由来の副生物の生成を抑え、反応成績の低下を効果的に防止できる傾向にある。
【0086】
本実施形態におけるヒドロホルミル化反応を行う場合、一酸化炭素(以下「CO」と記載することもある)及び水素(以下「H
2」と記載することもある)ガスによる加圧下で反応を行うことが好ましい。その際、CO及びH
2ガスは各々独立に反応系内に導入することも、また、予め調製された混合ガスとして反応系内に導入することも可能である。反応系内に導入されるCO及びH
2ガスのモル比(=CO/H
2)は0.2〜5が好ましく、0.5〜2がより好ましく、0.8〜1.2が更に好ましい。CO及びH
2ガスのモル比が上記範囲に調整する場合、ヒドロホルミル化反応の反応活性や目的とするアルデヒドの選択率が良好となる傾向にある。反応系内に導入したCO及びH
2ガスは反応の進行に伴い減少していくため、予め調製されたCOとH
2の混合ガスを利用すると反応制御が簡便な場合がある。
【0087】
前記ヒドロホルミル化反応の反応圧力としては、1〜12MPaが好ましく、1.2〜9MPaがより好ましく、1.5〜5MPaが更に好ましい。反応圧力が1MPa以上とすることで十分な反応速度が得られる傾向にあり、原料であるモノオレフィンの残留を十分に抑制できる傾向にある。また、反応圧力が12MPa以下にすることで、耐圧性能に優れる高価な設備を必要としなくなるため経済的に有利である。特に、回分式や半回分式で反応を行う場合、反応終了後にCO及びH
2ガスを排出・落圧する必要があり、低圧になるほどCO及びH
2ガスの損失が少なくなるため経済的に有利である。
【0088】
前記ヒドロホルミル化反応を行う場合の反応方式としては、回分式反応や半回分式反応が好適である。半回分式反応はロジウム化合物、有機リン化合物、前記溶媒を反応器に加え、CO/H
2ガスによる加圧や加温等を行い、既述の反応条件とした後に原料であるモノオレフィン又はその溶液を反応器に供給することにより行うことが可能である。
【0089】
前記ヒドロホルミル化反応で得られた反応生成物は、そのまま次の還元反応の原料として用いることも出来るが、例えば蒸留や抽出、晶析等により精製した後、次工程に供してもよい。
【0090】
〔式(2)で表される炭素数14〜22の化合物の製造〕
前記式(I)中の一般式(2)で表される炭素数14〜22の化合物は、一般式(3)で表される炭素数14〜22の化合物を、水素化能を有する触媒及び水素の存在下で還元することにより製造することが出来る。
【0091】
前記還元反応では、水素化能を有する触媒として、銅、クロム、鉄、亜鉛、アルミニウム、ニッケル、コバルト、及びパラジウムからなる群より選ばれる少なくとも一つの元素を含む触媒を用いることが好ましい。より好ましい触媒としては、Cu−Cr触媒、Cu−Zn触媒、Cu−Zn−Al触媒等の他、Raney−Ni触媒、Raney−Co触媒等が挙げられ、更に好ましい触媒はCu−Cr触媒、Raney−Co触媒である。
【0092】
前記水素化触媒の使用量は、基質である一般式(3)で表される炭素数14〜22の化合物に対して1〜100質量%、好ましくは2〜50質量%、より好ましくは5〜30質量%である。触媒使用量をこれらの範囲とすることで好適に水素化反応を実施することが出来る。触媒使用量が1質量%以上である場合、十分に反応が進行し、結果として目的物の収率を十分に確保できる傾向にある。また、触媒使用量が100質量%以下である場合、反応に供した触媒量と反応速度の向上効果とのバランスが良好となる傾向にある。
【0093】
前記還元反応の反応温度は60〜200℃が好ましく、80℃〜150℃がより好ましい。反応温度を200℃以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、反応温度を60℃以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。
【0094】
前記還元反応の反応圧力は、水素分圧として0.5〜10MPaが好ましく、1〜5MPaがより好ましい。水素分圧を10MPa以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、水素分圧を0.5MPa以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。尚、還元反応に不活性なガス(例えば窒素又はアルゴン)を共存させることも可能である。
【0095】
前記還元反応においては溶媒を使用することが可能である。還元反応に用いられる溶媒としては、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、アルコール類等が挙げられ、中でも脂環式炭化水素類、芳香族炭化水素類、アルコール類が好ましい。その具体例としてはシクロヘキサン、トルエン、キシレン、メタノール、エタノール、1-プロパノール等が挙げられる。
【0096】
前記還元反応の反応方式としては槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、成型触媒を充填した管型反応器に反応条件下で基質や基質溶液を流通させる連続流通式等、多様な反応方式を採ることが可能である。
【0097】
前記還元反応で得られた反応生成物は、例えば蒸留や抽出、晶析等により精製することができる。
【0098】
本実施形態における一般式(2)で表される化合物又は式(8)で表される化合物を単位(A)に対応する単量体とし、単位(B)〜(C)に対応する各単量体と共重合させる方法としては、特に限定されず、従来公知のポリエステルの製造方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
【0099】
本実施形態のポリエステル樹脂の製造時には、通常のポリエステル樹脂の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等を使用することができる。これらの触媒としては特に限定されないが、例えば、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、ゲルマニウム、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウム等が挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。触媒としては、上記した中でマンガン、コバルト、亜鉛、チタン、カルシウム、アンチモン、ゲルマニウム、スズの化合物が好ましく、マンガン、チタン、アンチモン、ゲルマニウム、スズの化合物がより好ましい。これらの触媒の使用量は、特に限定されないが、ポリエステル樹脂の原料に対して金属成分としての量が、好ましくは1〜1000ppm、より好ましくは3〜750ppm、更に好ましくは5〜500ppmである。
【0100】
前記重合反応における反応温度は触媒の種類、その使用量などによるが、通常150℃から300℃の範囲で選ばれ、反応速度及び樹脂の着色を考慮すると180℃〜280℃が好ましい。反応層内の圧力は、大気雰囲気下から最終的には1kPa以下に調節することが好ましく、最終的には0.5kPa以下とするのがより好ましい。
【0101】
前記重合反応を行う際には、所望によりリン化合物を添加してもよい。リン化合物としては、以下に限定されないが、例えば、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等を挙げることができる。リン酸エステルとしては、以下に限定されないが、例えば、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル等を挙げることができる。亜リン酸エステルとしては、以下に限定されないが、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ブチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジブチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリフェニル等を挙げることができる。これらは単独で又は二種以上を組み合わせて使用することができる。本実施形態のポリエステル樹脂中のリン原子の濃度は1〜500ppmが好ましく、5〜400ppmがより好ましく、10〜200ppmが更に好ましい。
【0102】
また、本実施形態のポリエステル樹脂の製造時には、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等を使用することができる。
【0103】
本実施形態のポリエステル樹脂には、本実施形態の目的を損なわない範囲で、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、増量剤、艶消し剤、乾燥調節剤、帯電防止剤、沈降防止剤、界面活性剤、流れ改良剤、乾燥油、ワックス類、フィラー、着色剤、補強剤、表面平滑剤、レベリング剤、硬化反応促進剤、増粘剤等の各種添加剤、成形助剤を添加することができる。
【0104】
本実施形態のポリエステル樹脂は、本実施形態の所望とする効果を損なわない範囲で、本実施形態におけるポリエステル樹脂以外の樹脂を併用した樹脂組成物とすることができる。そのような樹脂としては、特に限定されないが、例えば、本実施形態におけるポリエステル樹脂以外のポリエステル樹脂、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート−スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂が挙げられる。これらは種々公知のものを用いることができ、1種を単独で又は2種以上を併用して樹脂組成物に加えることができる。
【0105】
[光学レンズ及びその製造方法]
本発明の光学レンズは、例えば、カメラ、ビデオカメラ等に使用する撮像レンズ;プロジェクションテレビ、プロジェクションスクリーン等に使用する投影用レンズ;レーザープリンターに使用するfθレンズやマイクロレンズアレイ、液晶表示装置、光ディスク装置、車載用カメラ等に使用されるレンズである。
【0106】
光学レンズを成形する方法は特に限定されず、例えば、射出成形、プレス成形、圧縮成形、射出圧縮成形、押出成形などが挙げられる。成形の際には、本発明の効果を奏する限り、紫外線吸収剤、酸化防止剤、難燃剤、帯電防止剤、着色剤等の公知の添加剤を添加することもできる。
【0107】
本発明の光学レンズは、特に、本実施形態のポリエステル樹脂を、射出成形機あるいは射出圧縮成形機によってレンズ形状に射出成形することによって好適に得られる。光学レンズを得る際には異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス1000以下であることが好ましく、より好ましくはクラス100以下である。
【0108】
本発明の光学レンズは、必要に応じて非球面レンズの形で用いることで特に好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要がなく、軽量化及び生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。非球面レンズの非点収差は0〜15mλであることが好ましく、より好ましくは0〜10mλである。
【0109】
本発明の光学レンズの厚みは、用途に応じて広範囲に設定可能であり特に制限はないが、好ましくは0.01〜30mm、より好ましくは0.1〜15mmである。
【0110】
本発明の光学レンズの表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていても良い。反射防止層は、単層であっても多層であっても良く、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。
【0111】
本発明の光学レンズは、ピックアップレンズ、f−θレンズ、メガネレンズ等の各種レンズに使用する事が出来る。具体的には、一眼レフカメラ、デジタルスチルカメラ、ビデオカメラ、カメラ付携帯電話、レンズ付フィルム、望遠鏡、双眼鏡、顕微鏡、液晶表示装置、光ディスク装置、プロジェクター、車載用カメラ等のレンズとして好適に使用される。また、本発明の光学レンズが凸レンズである場合には、他の凹レンズと組み合わせて使用でき、凹レンズである場合には、他の凸レンズと組み合わせて使用でき、それぞれ色収差の少ない光学系として用いることができる。
【実施例】
【0112】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。
【0113】
〔ポリエステル樹脂の評価法〕
(1)共重合組成
ポリエステル樹脂の共重合組成は、
1H−NMR及び
13C−NMRを測定し、各構成単位由来のピーク面積比から算出した。測定装置は核磁気共鳴装置(ブルカー・バイオスピン(株)製、商品名:AVANCE III 500/Ascend 500)を使用し、500MHzで測定した。溶媒には重クロロホルムを用いた。
【0114】
(2)ガラス転移温度(Tg)
ポリエステル樹脂のガラス転移温度は、示差走査熱量計((株)島津製作所製、商品名:DSC−60/TA−60WS)を使用して測定した。ポリエステル樹脂5〜10mgをアルミニウム製非密封容器に入れ、窒素ガス(50mL/分)気流中、昇温速度20℃/分で280℃まで昇温後、急冷して測定用試料とした。該試料を同条件で再度昇温し、DSC曲線が転移前後における基線の差の1/2だけ変化した際の温度(中間点ガラス転移温度)をガラス転移温度とした。
【0115】
(3)降温時結晶化発熱量(ΔHc)
ポリエステル樹脂の降温時結晶化発熱量は、上記Tgを測定後280℃で1分間保持した後、5℃/分の速度で降温した際に現れる発熱ピークの面積から算出した。
【0116】
(4)吸水率(%)
ポリエステル樹脂の吸水率は、後述の方法にて作製した直径40mmφ、厚さ3mmの円盤形プレス成形体を測定用試料として測定した。試料をガラス転移温度より30℃低い温度に設定した真空乾燥機で48時間乾燥した後、23℃の水中に24時間浸漬した。24時間経過後に試料を取り出し、吸水前後の試料の重量から、下記式(2)を用いて吸水率を算出した。
【0117】
式(2)ΔW=(W−W
0)/W
0×100
(式(2)中、ΔWは吸水率[%]、Wは吸水後の重量[g]、W
0は吸水前の重量[g]を示す)。
【0118】
(5)屈折率(nd)及びアッベ数(νd)
ポリエステル樹脂の屈折率及びアッベ数は、後述の方法にて作製した直径40mmφ、厚さ3mmの円盤形プレス成形体を中央から直角に切出して測定用試料とし、該試料を乾燥機にてガラス転移温度より20℃低い温度で10時間アニール処理した後、精密屈折計(カルニュー光学工業(株)製、KPR−200)を用いて測定した。屈折率は波長587.6nm(d線)で測定し、アッベ数は波長486.1nm(F線)、587.6nm(d線)、及び656.3nm(C線)で測定した屈折率から下記式(1)を用いて算出した。
【0119】
式(1)νd=(nd−1)/(nF−nC)
(式(1)中、νdはアッベ数、nFは波長486.1nmにおける屈折率、ndは波長587.6nmにおける屈折率、nCは波長656.3nmにおける屈折率を示す)。
【0120】
(6)円盤形プレス成形体(直径40mmφ、厚さ3mm)の作製
金型に樹脂を6.0〜6.5g乗せ、樹脂のガラス転移温度より40〜50℃高い温度(比較例2のみ、樹脂の融点より100℃高い温度)に設定したプレス成形機にて、100kgf/cm
2の圧力下、2分間プレスを行った。所定時間経過後、冷却水を通水した冷却用プレス成形機に速やかに金型を移動し、100kgf/cm
2の圧力下、2分間プレスを行った。所定時間経過後、冷却用プレス成形機から金型を取り出し、プレス成形体を得た。
【0121】
(7)光弾性係数
後述の方法にて作製したフィルムから1cm×5cmの試験片を切出し、測定用試料とした。エリプソメーター(日本分光(株)製、商品名:M220)を使用し、波長632.8nmにおける荷重変化に対する複屈折測定から算出した。
【0122】
(8)光弾性係数測定用フィルムの作製
<実施例1〜5及び比較例4>
溶液キャスト法にて厚さ約100μmのフィルムを作製した。具体的には、樹脂をジクロロメタンに5wt%濃度となるように溶解させ、水平を確認した金型に樹脂溶液を流し込み、徐々にジクロロメタンを揮発させて、金型上にフィルムを作製した。得られた光学フィルムは、金型から剥離した後、乾燥機にてガラス転移温度より20℃低い温度で十分に乾燥を実施した。
【0123】
<比較例1〜3及び比較例5>
熱プレス成形にて厚さ150〜250μmのフィルムを作製した。具体的には、金型に樹脂を3g乗せ、樹脂のガラス転移温度より120〜140℃高い温度(比較例2のみ、樹脂の融点より100℃高い温度)に設定したプレス成形機にて、50〜100kgf/cm
2の圧力下、2分間プレスを行った。所定時間経過後、冷却水を通水した冷却用プレス成形機に速やかに金型を移動し、100kgf/cm
2の圧力下、2分間プレスを行った。所定時間経過後、冷却用プレス成形機から金型を取り出し、フィルムを得た。
なお、得られたフィルムは、乾燥機にてガラス転移温度より20℃低い温度で10時間アニール処理を実施した。
【0124】
製膜時における白化現象の進行、金型からの離型不良、又は溶媒への溶解性不足により、溶液キャスト法でのフィルム作製が不可だったものについては、熱プレス成形にてフィルムを作製した。
【0125】
<モノマー合成例>
500mLステンレス製反応器にアクリル酸メチル173g(2.01mol)、ジシクロペンタジエン167g(1.26mol)を仕込み195℃で2時間反応を行った。上記反応により、下記式(4a)で表されるモノオレフィン96gを含有する反応液を取得し、これを蒸留精製した後、一部を以下の反応に供した。
【0126】
300mLステンレス製反応器を使用し、蒸留精製した式(4a)で表されるモノオレフィンのヒドロホルミル化反応をCO/H
2混合ガス(CO/H
2モル比=1)を用いて行った。反応器に式(4a)で表されるモノオレフィン70g、トルエン140g、亜リン酸トリフェニル0.50g、別途調製したRh(acac)(CO)
2のトルエン溶液550μL(濃度0.003mol/L)を加えた。窒素及びCO/H
2混合ガスによる置換を各々3回行った後、CO/H
2混合ガスで系内を加圧し、100℃、2MPaにて5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(3a)で表される化合物76g、式(4a)で表されるモノオレフィン1.4gを含む反応液(転化率98%、選択率97%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
【0127】
300mLステンレス製反応器に蒸留精製した式(3a)で表される化合物54g、スポンジコバルト触媒(日興リカ株式会社製:R−400)7mL、トルエン109gを添加し、水素ガスで系内を加圧し、3MPa、100℃で9時間反応を行った。反応後、得られたスラリーから、孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、ガスクロマトグラフィー及びGC−MSで分析し、分子量250の式(2a)で表される主生成物51gを含有することが確認された(主生成物収率93%)。これを更に蒸留精製し、主生成物(D−NHEs)を取得した。
【0128】
【化9】
【0129】
<生成物の同定>
モノマー合成例で取得した成分のNMR分析を行った。NMRスペクトルを
図1〜3に示す。以下に示すGC−MS分析、及び
図1〜3のNMR分析の結果から、モノマー合成例で得られた主生成物は、前記式(2a)で表される化合物であることが確認された。
【0130】
<分析方法>
1)ガスクロマトグラフィー測定条件
・分析装置 :株式会社島津製作所製 キャピラリガスクロマトグラフGC−2010 Plus
・分析カラム :ジーエルサイエンス株式会社製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm
・オーブン温度:60℃(0.5分間)−15℃/分−280℃(4分間)・検出器 :FID、温度280℃
【0131】
2)GC−MS測定条件
・分析装置 :株式会社島津製作所製、GCMS−QP2010 Plus
・イオン化電圧:70eV
・分析カラム :Agilent Technologies製、DB−1(30m、0.32mmI.D.、膜厚1.00μm)
・オーブン温度:60℃(0.5分間)−15℃/分−280℃(4分間)
【0132】
3)NMR測定条件
・装置 :日本電子株式会社製,JNM−ECA500(500MHz)
・測定モード :
1H−NMR、
13C−NMR、COSY−NMR
・溶媒 :CDCl
3(重クロロホルム)
・内部標準物質:テトラメチルシラン
【0133】
〔ポリエステル樹脂の合成〕
<実施例1〜5>
撹拌機、加熱装置、窒素導入管、及びコールドトラップを備えた小型ポリエステル製造装置に、表1に記載の量の原料モノマー及びチタン(IV)テトラブトキシドを仕込み、窒素雰囲気下、240〜250℃まで昇温し、撹拌した。該温度にて5時間以上保持した後、昇温と減圧を徐々に行い、最終的に260〜270℃、0.1kPa以下で保持した。適度な溶融粘度となった時点で装置内に窒素を吹き込んで常圧とし、生成したポリエステル樹脂を回収した。
ポリエステル樹脂の評価結果を表1に示す。
【0134】
<比較例1>
撹拌機、加熱装置、窒素導入管、分縮器、全縮器、及びコールドトラップを備えたポリエステル製造装置に、表1に記載の量の原料モノマー及びオクチル酸スズ(II)を仕込み、窒素雰囲気下、240〜250℃まで昇温し、撹拌した。該温度にて5時間以上保持した後、昇温と減圧を徐々に行い、最終的に260〜270℃、0.1kPa以下で保持した。適度な溶融粘度となった時点で装置内に窒素を吹き込んで常圧とし、生成したポリエステル樹脂を回収した。
ポリエステル樹脂の評価結果を表1に示す。
【0135】
<比較例2〜5>
比較例2〜比較例5は、下記の市販品を購入し、評価を行った。
・比較例2:ユニペット(登録商標) RT−553C(日本ユニペット(株)製)
・比較例3:Eastar(登録商標) 5011(Eastman Chemical社製)
・比較例4:アクリペット(登録商標) VH000(三菱ケミカル(株)製)
・比較例5:ユーピロン(登録商標) S−2000(三菱エンジニアリングプラスチックス(株)製)
【0136】
【表1】
【0137】
なお、表中の略記の意味は下記の通りである。
D−NHEs:デカヒドロ−1,4:5,8−ジメタノナフタレン−2−メトキシカルボニル−6(7)−メタノール
DMCD:1,4−シクロヘキサンジカルボン酸ジメチル(シス体/トランス体=7/3)
DMT:テレフタル酸ジメチル
CHDM:1,4−シクロヘキサンジメタノール(シス体/トランス体=3/7)
EG:エチレングリコール
BPEF:9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(「ビスフェノキシエタノールフルオレン」ともいう)
PMMA:ポリメチルメタクリレート
BPA−PC:ビスフェノールAからなるポリカーボネート樹脂
【0138】
本出願は、2016年9月28日出願の日本特許出願(特願2016−190229号)に基づくものであり、その内容はここに参照として取り込まれる。