特許第6961432号(P6961432)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧

特許6961432電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体
<>
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000004
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000005
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000006
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000007
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000008
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000009
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000010
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000011
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000012
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000013
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000014
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000015
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000016
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000017
  • 特許6961432-電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体 図000018
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6961432
(24)【登録日】2021年10月15日
(45)【発行日】2021年11月5日
(54)【発明の名称】電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体
(51)【国際特許分類】
   H01M 4/86 20060101AFI20211025BHJP
   H01M 4/92 20060101ALI20211025BHJP
   H01M 8/00 20160101ALI20211025BHJP
   H01M 8/10 20160101ALN20211025BHJP
【FI】
   H01M4/86 M
   H01M4/92
   H01M8/00 Z
   !H01M8/10 101
【請求項の数】15
【全頁数】17
(21)【出願番号】特願2017-181751(P2017-181751)
(22)【出願日】2017年9月21日
(65)【公開番号】特開2019-57443(P2019-57443A)
(43)【公開日】2019年4月11日
【審査請求日】2019年8月8日
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(74)【代理人】
【識別番号】100119035
【弁理士】
【氏名又は名称】池上 徹真
(74)【代理人】
【識別番号】100141036
【弁理士】
【氏名又は名称】須藤 章
(74)【代理人】
【識別番号】100088487
【弁理士】
【氏名又は名称】松山 允之
(72)【発明者】
【氏名】深沢 大志
(72)【発明者】
【氏名】梅 武
(72)【発明者】
【氏名】金井 佑太
【審査官】 藤原 敬士
(56)【参考文献】
【文献】 米国特許出願公開第2016/0133944(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86 − 4/98
H01M 8/00
H01M 8/10
(57)【特許請求の範囲】
【請求項1】
厚さが5μm以上50μm以下の水分管理層と、
前記水分管理層上に空孔を有する触媒層と、を有し、
前記空孔のモード径は、10μm以上100μm以下であり、
前記触媒層は多孔体構造又は積層型構造を有する貴金属の担体レスの触媒ユニットを含み、
前記空孔の面積比率は、20%以上60%以下である電極。
【請求項2】
前記触媒層の厚さは、0.05μm以上3.0μm以下である請求項1に記載の電極。
【請求項3】
前記空孔のモード径の数値は、前記触媒層の厚さの数値の3倍以上である請求項1又は2に記載の電極。
【請求項4】
前記空孔のモード径の数値は、前記触媒層の厚さの数値の10倍以上である請求項1ないし3のいずれか1項に記載の電極。
【請求項5】
前記空孔のモード径は、10μm以上50μm以下である請求項1ないし4のいずれか1項に記載の電極。
【請求項6】
前記空孔の面積比率は、30%以上40%以下である請求項1ないし5のいずれか1項に記載の電極。
【請求項7】
ガス拡散層をさらに含み、
前記水分管理層は、前記触媒層と前記ガス拡散層の間に配置される請求項1ないし6のいずれか1項に記載の電極。
【請求項8】
前記触媒層は前記空孔を複数含む請求項1ないし7のいずれか1項に記載の電極。
【請求項9】
前記複数の空孔の一部はクラックで連結している請求項8に記載の電極。
【請求項10】
請求項1ないしのいずれか1項に記載の電極を用いた膜電極接合体。
【請求項11】
請求項10に記載の膜電極接合体を用いた電気化学セル。
【請求項12】
請求項10に記載の膜電極接合体又は請求項11に記載の電気化学セルを用いたスタック。
【請求項13】
請求項10に記載の膜電極接合体、請求項11に記載の電気化学セル、又は、請求項12に記載のスタックを用いた燃料電池。
【請求項14】
請求項13に記載の燃料電池を用いた車両。
【請求項15】
請求項13に記載の燃料電池を用いた飛翔体。
【発明の詳細な説明】
【技術分野】
【0001】
実施形態は、電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体に関するものである。
【背景技術】
【0002】
固体高分子型燃料電池(PEFC:Polymer Electrolyte Membrane Fuel Cell)はプロトン伝導性の高分子電解質膜を用い、この電解質膜の両側のうち、アノード側に供給される燃料である水素と、カソード側供給される酸化剤である酸素(若しくは空気)を電気化学的に反応させることにより発電させる装置である。他の燃料電池と比較して100℃以下の低温で作動可能である。さらに、PEFCの反応生成物が水であり、環境への負荷が少ないことから、家庭用定置電源や燃料電池自動車(FCV)として実用化が急がれている。しかし、本格普及には、各電極の触媒層に含まれる貴金属触媒の量の大幅削減が必要である。
【0003】
PEFCの触媒層には、一般的に、カーボンブラック担体に貴金属触媒材料を担持させたカーボン担持触媒が使用されている。例えば、FCVとして使用した場合、起動及び停止によって、触媒層に含まれるカーボン担体が腐食し、それにより、貴金属触媒層、さらに膜電極接合体(MEA:Membrane Electrode Assembly)の劣化が促進される。そのため、高耐久性かつ、高反応面積を持つ貴金属触媒層の開発は貴金属触媒使用量の大幅削減に不可欠である。スパッタリングまたは蒸着によって形成したカーボンレス触媒層を開発し、担体の腐食による劣化が回避できる。そして、造孔材料と貴金属触媒材料を含む触媒層前駆体を形成し、その後造孔材料を除去して空孔を含んだ積層貴金属触媒構造を有する触媒層を作製し、高反応面積を持つ触媒を達成しようとしている。しかし、同様な触媒量で、この構造の厚みは従来のカーボンブラック担持貴金属触媒の厚みの1/10〜1/100であり、水の影響を受けやすい。従って、発電環境によって、セルの起電力が低下することがあり、触媒のロバスト性を向上する必要である。
【0004】
固体電解質膜のプロトン伝導度は膜内の水分によって変化し、水分量が少ないとプロトンの伝導度が下がってしまう。つまり、高い電池特性を得るためには、電解質膜を飽和状態あるいは飽和に近い状態に含水させることが重要とされている。一方、カソード側で生成した水が滞留し、触媒層が水で埋まってしまうと、酸化ガスの拡散が阻害されるフラッディングにより発電性能が低下する。したがって、燃料電池において、水の管理は非常に重要であり、水の排出および電解質膜の保湿を両立させる必要がある。
【0005】
従来、PEFCのガス拡散層(GDL: Gas Diffusion Layer)としては、高温でグラファイト化させたカーボンペーパーやカーボン繊維を編んで作られるカーボンクロスにフッ素樹脂で撥水化処理した導電性多孔シートに、フッ素樹脂とカーボンブラック粒子の混合インクを塗布して作成した撥水マイクロポーラス層(MPL: Micro Porous Layer)などが用いられてきた。しかし、この撥水MPLにより、電池反応により生じた生成水の一部が撥水されて触媒側に押戻され、フラッディングを起こし、電池反応が妨げられ、起電力を低下させる要因になる。
【0006】
燃料電池の水分管理層(撥水MPL)の表面に水の膜が形成されることを防止することを目的として、燃料電池の酸化極(カソード)において、水分管理層と触媒層との間に中間層を配置し、この中間層は撥水剤と親水剤とを有し、水分管理層側から触媒層に向けて撥水性材料の濃度が小さくなる撥水剤濃度に勾配を設けることが知られている。
【0007】
また、ガス拡散層上に、吸水性コアと撥水性多孔シェルからなるコア-シェル構造を有する粉体からなるMPLを形成することで、MPL内の液水によるフラッディングを回避し、高いロバスト性を持つ燃料電池も知られている。
【0008】
また、撥水性を持つ水分管理層は生成水の一部を触媒側に押し戻す場合があり、担体を用いない多孔体構造を持つ積層貴金属触媒構造を有する触媒を用いた場合は、その薄さに起因して触媒層での水のフラッティングが更に発生しやすい。特に、高電流密度(例えば、1A/cm以上)で運転するときに、水の効率的な排出が燃料電池の性能を十分に発揮するための極めて重要なポイントである。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2012−204221号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
そこで、実施形態は、多孔体構造を持つ積層貴金属触媒を用いた燃料電池の運転環境温湿度に対するロバスト性を向上させるために、十分なガス拡散性を確保しつつ、耐フラッディング性を向上させた電極、膜電極接合体、電気化学セル、スタック、燃料電池、車両及び飛翔体を提供する。
【課題を解決するための手段】
【0011】
実施形態の電極は、厚さが5μm以上50μm以下の水分管理層と、前記水分管理層上に空孔を有する触媒層と、を有し、空孔のモード径は、10μm以上100μm以下であり、触媒層は多孔体構造又は積層型構造を有する貴金属の担体レスの触媒ユニットを含み、空孔の面積比率は、20%以上60%以下である。
【図面の簡単な説明】
【0012】
図1】実施形態の電極の模式図。
図2】実施形態の触媒層の上面図。
図3】実施形態の触媒ユニットの低倍率透過型顕微鏡写真。
図4】実施形態の触媒層の撮影領域を示す模式図。
図5】実施形態の空孔の形状を示す模式図。
図6】実施形態の触媒層の上面図。
図7】実施形態の膜電極接合体の模式図。
図8】実施形態の電気化学セルの模式図。
図9】実施形態のスタックの模式図。
図10】実施形態の燃料電池の模式図。
図11】実施形態の車両の模式図。
図12】実施形態の飛翔体の模式図。
図13】実施例1のカソードの触媒層のSEM像
図14】比較例2の電極のSEM像
図15】実施例1と比較例1のI−V特性評価結果を示すグラフ
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明の実施形態について詳細に説明する。
(第1の実施形態)
第1の実施形態は、触媒層を有する電極に関する。図1に電極100の模式図を示す。図1の電極100は、触媒層10と支持層20を有する。支持層20は、例えば、水分管理層21とガス拡散層22である。水分管理層21は、触媒層10とガス拡散層22の間に配置される。実施形態の電極100は、燃料電池用の電極として好適である。水分管理性とガス拡散性を兼ね備えた層は、水分管理層21とガス拡散層22の代わりに用いることができる。
【0014】
触媒層10は、触媒ユニットを含み、触媒層10中には空孔1が存在する。触媒ユニットは、多孔体構造又は積層型構造を有する。層状の触媒層10に空孔1が存在する。図2に触媒層10の上面模式図を示す。図2の触媒層10に示すように、触媒層10中には径の大きな空孔1、つまり、触媒層10には、空孔1として確認されるように触媒ユニットが存在しない空隙領域が点在する。
【0015】
図3(A)と図3(B)に多孔体構造を持つ触媒ユニットと空隙層を含む積層構造を持つ触媒ユニットの低倍率透過型顕微鏡写真をそれぞれ示す。図3Aは多孔体構造の触媒ユニットであり、図3(B)は空隙層を含む積層構造を持つ触媒ユニットをそれぞれ示した。触媒材料が担体に担持された場合は、触媒は一般的にナノサイズの粒子状であるが、多孔体構造を持つ触媒ユニットの場合は触媒自体が2nm以上100nm以下の微細な空隙を含むスポンジ状である。空隙層を含む積層構造を持つ触媒ユニットの場合は、触媒はナノシート状になる。スポンジ状またはナノシート状の触媒を用いることによって電気化学セルの特性を向上させることが可能である。
【0016】
電極触媒反応は触媒の表面において生じるため、触媒の形状は触媒表面の原子配列、電子状態に影響を及ぼす。空隙層を含む積層構造を持つ触媒ユニットの場合は、隣接のナノシート同士は部分的に一体化することが望ましい。メカニズムはまだ完全に解明されていないが、電極反応のためのプロトン伝導または水素原子伝導をよりスムーズに達成できると考えられるためである。
【0017】
また、図3(C)の低倍率透過型顕微鏡写真に示したように積層構造内部のナノシートを多孔質化することによってより高い特性が得られる。ガス拡散と水管理を向上できるためである。積層構造内部のナノシートの間に繊維状カーボンを含む多孔質ナノカーボン層(図3(D)の低倍率透過型顕微鏡写真)またはナノセラミックス材料層を配置した方が、耐久性、ロバスト性をより向上できる。主要な電極反応を寄与する触媒は多孔質ナノカーボン層に含有される繊維状カーボンに殆ど担持されていないため多孔質ナノカーボン層を含む積層構造ユニットは担体レスと考えている。ここで、水分の排出など物質の移動がよりスムーズになるため、触媒層の空孔率は、50Vol.%以上90Vol.%以下であることが好ましい。また、触媒層の空孔率がこの範囲内であれば、貴金属の利用効率を低下させることなく、物質を十分に移動させることができる。
【0018】
本実施形態に係る担体レスの触媒層に採用される所定の触媒材料は、例えば、Pt、Ru、Rh、Os、Ir、PdおよびAuなどの貴金属元素からなる群より選択される少なくとも1種を含む。このような触媒材料は、触媒活性、導電性および安定性に優れている。前述の金属は、酸化物として用いることもでき、2種以上の金属を含む複合酸化物または混合酸化物であってもよい。
【0019】
最適な貴金属元素は、電極100が使用される反応に応じて適宜選択することができる。例えば、燃料電池用の場合、Pt1−uで示される組成を有する触媒が望ましい。ここで、uは、0<u≦1であり、元素Mは、Co、Ni、Fe、Mn、Ta、W、Hf、Si、Mo、Ti、Zr、Nb、V、Cr、AlおよびSnよりなる群より選択される少なくとも1種である。この触媒は、0原子%より多く90原子%以下のPt、および10原子%以上100原子%未満の元素Mを含んでいる。
【0020】
触媒金属層の平均厚さは、典型的には、4nm以上30nm以下である。空隙層の厚さは、典型的には、4nm以上30nm以下である。触媒ユニットの厚さ方向の長さ長辺とし、触媒ユニットの長辺の1/2の高さの長辺方向に対して垂直方向の長さを短辺とする。この長辺と短辺の比率(長辺:短辺)の平均は、1:1以上10:1以下である。
【0021】
空孔1は、触媒層10の表面である主面に複数存在する。触媒層10の主面とは、触媒層10の厚さ方向に対向する2つの面である。空孔1の直径は、5μm以上のものを含む。空孔1のモード径(直径の最頻値)は、10μm以上100μm以下であることが好ましい。より好ましい空孔1のモード径は、10μm以上50μm以下である。さらにより好ましい空孔1のモード径は、10μm以上45μm以下である。最も好ましい空孔1のモード径は、15μm以上30μm以下である。実施形態の空孔1のモード径の数値は、触媒層10の厚さの数値よりも大きい。実施形態の空孔1のモード径の数値は、触媒層10の厚さの数値よりも3倍以上又は5倍以上であることがより好ましい。実施形態の空孔1のモード径の数値は、触媒層10の厚さの数値よりも10倍以上であることがより好ましい。なお。触媒層10には、数百ナノメートル以下(例えば、300nm)以下の空隙も含まれる。かかる空隙や空孔1は、ガスの流路となる。数多くの微細な空隙が触媒層10に存在する。
【0022】
このような大きな空孔1が触媒層10において水の排出経路として機能する。厚さが0.05μm以上3.0μm以下といった薄い触媒層10では、上述の通り、水のフラッディングが起きやすい。1μm以下程度の空孔だけでは、空孔の水の排出機能が高くないため、薄い触媒層におけるフラッディンを防ぐ機能は十分ではない。空孔2のモード径が大きすぎると、触媒層10上に、不活性な領域が多くなり、触媒層10の面積当たりの反応効率が低下することが好ましくない。
【0023】
空孔1の直径は、SEM(Scanning Electron Microscope)像から求める。触媒層10の中央部から7.1mm×7.1mmに切断する。図4の触媒層10の撮影領域を示す模式図のように、縦に3分割し、横に3分割して真ん中の領域Aを撮影する。撮影する面は、触媒層10の主面である。撮影の倍率は倍率250倍で、領域Aの中心の1.0mm×1.0mmの領域を観察する。観察した画像を画像処理・画像計測・データ処理ソフトWinROOF(三谷商事株式会社)を使用して白黒で2値化する。2値化後の白色は触媒金属で黒色は空孔1である。空孔1の直径は、空孔1の図4に示すx方向の最長弦長とy方向の最長弦長のうちの大きい方とする。図5に空孔1の形状の一例の模式図を示す。空孔1の形状が図5の模式図に示す形である場合、x方向の最大弦長Lxがy方向の最大弦長Lyよりも長いため、Lxを当該空孔1の直径(実測値)とする。なお、触媒層10の主面に別の層が接している場合は、層を研磨するか焼いて除去するなどしてから触媒層10を観察すればよい。なお、空孔1の外接円直径と内接円直径の比(外接円直径/内接円直径)が10倍以上である場合は、空孔1ではなく、後述するクラックとして取り扱う。
【0024】
なお、空孔1の直径は、5μmごとに区切る。実測の直径(小数点第2位で四捨五入して得られた小数点1桁の値)が0.0μm以上4.9μm以下の空孔1の直径は0μmとする。直径が5.0μm以上9.9μm以下の空孔1の直径は、5μmとする。10.0μm以上の直径の空孔1も同様に5μmごとに区切った値とする。これを一般化すると、実測の各空孔1の直径をRn(小数点第2位で四捨五入して得られた小数点1桁の値)とするとき、実施形態の空孔1の直径は、Rn(μm)−4.9μmの小数点1桁を切り捨てた値である。以下、実測値と明記しない空孔1の直径は、5μmごとに区切った直径を表している。
【0025】
空孔1の平均直径(5μmごとに区切った直径の平均値)は、5μm以上150μm以下が好ましい。平均値が小さすぎると触媒層10から水が排出されにくいため好ましくない、また、平均値が大きすぎると、触媒ユニットが存在しない領域が多くなり、触媒層10の面積当たりの反応効率が低下してしまうことが好ましくない。空孔1の平均直径のより好ましい範囲は、8μm以上120μm以下、10μm以上70μm以下である。
【0026】
空孔1のモード径(5μmごとに区切った直径の最頻値)は、以下のようにして求める。空孔1の直径の大きいものから5つ選び、そのうちの最頻値を空孔1のモード径とする。なお、最頻値が2つ以上ある場合は、最頻値の最大値を空孔1のモード径とする。また、空孔1の5つの直径がいずれも異なるときは、5つの直径の値のうちの3番目に大きい値をモード径とする。
【0027】
空孔1は、触媒層10を貫通する空隙であることがより好ましい。貫通する空孔1は、水の排出機能が高い点で好適である。すべての空孔1が触媒層10を貫通しているとは限らないが、直径が10μmを超える空孔1の50%以上が触媒層10を貫通していることが好ましい。直径が10μmを超える空孔1の80%以上が触媒層10を貫通していることがより好ましい。
【0028】
空孔1の面積比率(%)は、触媒層10(主面)に占める空孔1の実測の面積(各空孔1の面積の和)の比率である。空孔1の面積比率は、20%以上60%以下であることが好ましい。空孔1の面積比率が高すぎると、触媒層10の面積当たりの反応効率が低下するため好ましい。また、空孔1の面積比率が低すぎると触媒層10に水が溜まりやすいため好ましくない。より好ましい空孔1の面積比率は、20%以上50%以下であり、20%以上45%以下がさらにより好ましい。空孔1の面積比率は、30%以上40%以下がこれらの範囲よりもさらに好ましい。
【0029】
空孔1の面積比率は、空孔1の直径を求める際に用いた2値化したSEM像から求められる。2値化したSEM像に占める黒色の面積比率である。
【0030】
触媒層10(主面)に占める直径が10μm以上である空孔1の面積(直径が10μm以上である各空孔1の面積の和)の比率が10%以上55%以下であることが好ましい。微細な空孔1は、水の排出能があまりないため、微細な空孔が多いために空孔1の面積比率が高いだけでは、触媒層10でフラディングが起きやすい。そこで、直径が10μm以上である空孔1の面積比率が10%以上であると、水の排出の観点からより好ましい。直径が10μm以上である空孔1のより好まし面積比率は、15%以上55%以下であり、20%以上55%以下がさらにより好ましい。空孔1の面積比率は、25%以上35%以下がこれらの範囲よりもさらに好ましい。
【0031】
触媒層10(主面)に占める直径が10μm以上である空孔1の面積比率は、空孔1の直径を求める際に用いた2値化したSEM像から求められる。2値化した黒色領域のうち、SEM像に占める直径が10μm以上と判定された空孔1の黒色領域の面積比率である。
【0032】
触媒層10には、任意に親水性剤などの添加物を含む。該貴金属触媒に、親水性の材料を導入して親水性を持つ貴金属触媒を形成してもよい。親水性の材料は親水性のポリマーであることが好ましく、更に、プロトン伝導性を持つアイオノマーであることがより好ましい。親水性アイオノマーを付与することによって、前記の貴金属触媒のプロトン伝導性を促進し、または触媒と他部材との密着性を促進することができる。
【0033】
支持層20は、触媒層10を支持する層である。支持層20は、水分管理性とガス拡散性に優れた材料であることが好ましい。典型的には、支持層は、水分管理層21とガス拡散層22で構成される。例えば、触媒層10の水排出性が十分な場合は、水分管理層21を省略することができる。
【0034】
水分管理層21は、多孔質で触媒層10から水を排出する部材である。水分管理層21は、導電性を有する。水分管理層21は、触媒層10に対して隣接して配置し、触媒層10に含まれる水分を受け取って排出することで、触媒層10の水分量を管理することができる。つまり、水分管理層21は、触媒層10のからみて高排水性を有する部材である。水分管理層21によって、特に薄い触媒層10でのフラッディングを抑制することができる。
【0035】
水分管理層21は、例えば、撥水性材料及び導電性材料を含む撥水性の多孔質な層又は親水性材料及び導電性材料を含む親水性の多孔質な層である。より具体的には、多孔質な撥水性ポリマーと炭素微粒子を含む。水分管理層21は、触媒層10から水分を受け取るために親水性材料をさらに含んでもよい。
【0036】
水分管理層21は、高排水性を維持するために、水分管理層21の厚さが2μm以上70μmの範囲内であることが好ましい。水分管理層21の厚さが薄すぎる場合、作製工程のコントロールをしにくい。水分管理層21の厚みが5μm以上50μmの間では、酸素拡散性と、水排出のバランスがとりやすいので好ましい。また、水分管理層21の厚さが50μmを超えると、ガス拡散性能が低下し、排水機能が低下する傾向があるため、フラッディングが発生する恐れがある。
【0037】
水分管理層21の空隙率は、30%以上80%以下であることが好ましい。空隙率が30%未満の場合、ガス拡散性が低く、水分の効率的な排出もできない。一方で、空隙率が80%を超える場合、多孔質水分管理層2としての機械的強度が低く、水分管理層の形態保持性が悪くなる傾向がある。
【0038】
ガス拡散層22は、導電性の多孔質層である。ガス拡散層22の厚さは、5μm以上30μm以下好ましい。ガス拡散層22の気体透過性は、1000ml・mm/(cm・hr・mmAq)以上が好ましい。ガス拡散層22の空隙率は、ガス拡散性と構造維持の観点から50%以上90%以下であることが好ましい。ガス拡散層22としては、典型的には、多孔質のカーボン基材が用いられる。カーボンフェルト、カーボンペーパーおよびカーボンクロスを好適に用いることができる。
【0039】
ガス拡散層22の触媒層10を向く面は、撥水剤で一部被覆されている。撥水剤としては、化学的に安定でかつ高い撥水性を有するポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、4フッ化エチレン・6フッ化プロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。
【0040】
また、第1の実施形態の触媒層には、図6の上面模式図に示す触媒層11のように、細長い形状の空隙であるクラック2を含む実施形態が含まれる。クラック2の幅は、10.0μm以下が好ましい。クラック2は、細長い形状で、空孔1を接続する空隙である。クラック2のアスペクト比である長さ/幅は、10以上である。クラック2は、2以上の空孔1を連結する空隙であることが好ましい。クラック2は、空孔1を連結することで、触媒層10中の反応ガスの拡散性を向上し、さらに水の排出性を向上させる観点で好ましい。クラック2だけでは、水の排出性を高める効果は少ないが、空孔1とクラック2を組み合わせることでより、水を排出させやすくなる。クラック2の形状は、空孔1の形状等を求める際に用いた2値化したSEM像を用いる。
【0041】
実施形態の電極100、101の作製方法の一例を示す。撥水処理したガス拡散層22上に、PTFEなどの撥水性のポリマーと、カーボン粒子と、グリセリン、ジグリセロール、エチレングリコール、プロピレングリコール、ブチレングリコール、ポリエチレングリコールなどからなる粘性がある有機造孔溶剤と、水と、アルコールなどを含むスラリーを塗り、加熱乾燥させて、水分管理層21を形成する。このとき、スラリーの塗布と乾燥を繰り返すことが好ましい。そして、水分管理層21上にPtと造孔剤としての金属Mを交互又は同時にスパッタして、金属Mを除去することで、実施形態の電極100、101を得ることができる。金属Mは、一部残存させることで、Ptの助触媒として機能させることができる。
【0042】
実施形態の電極100によれば、空孔1を有した触媒層10を用いた燃料電池の環境温湿度に対するロバスト性を大きく向上することができる。一般的に、触媒金属層と空隙層を含む積層構造や多孔体構造を持つ触媒層10、11を用いた燃料電池は、触媒層の担体がないため、触媒層の厚さが非常に薄く、高湿の環境で発電するとき、特に高電流密度で運転するときに、生成水が排出し難いので、セル内に生成水が滞留する。そのため、酸素(空気)の取り込みが困難となりフラッディングと呼ばれる出力低下現象を引き起こす。本発明におけるロバスト性とは、燃料電池に供給される酸化ガスの湿度が上昇したときに、上記のような現象による出力変動が起こることであり、この変動を小さく抑制し、安定運転できることを目指している。本発明におけるロバスト性の向上によって、セル電圧(例えば、@1.0A/cm、V@1.0A/cm)が向上し、燃料電池の発電効率が向上する。
【0043】
(第2の実施形態)
第2の実施形態は、膜電極接合体(MEA:Membrane Electrode Assembly)に関する。第2の実施形態のMEAは、第1の実施形態の電極を用いている。図7に実施形態のMEA200の模式図を示す。MEA200は、カソード201と、アノード202と電解質膜203を有する。電解質膜203は、カソード201とアノード202の間に設けられている。アノード202及びカソード201は、触媒層と支持層が積層した構造を有する。カソード201及びアノード202の触媒金属を含む触媒層が電解質膜側に存在する。MEA200の電極の空孔1が存在する触媒層10は、電解質膜203側を向いている。
【0044】
MEA200が燃料電池に使用される場合、アノード202には水素が供給され、カソード201には空気が供給される。カソード201では、空気中の酸素を原料として、燃料電池反応により水が発生する。そこで、少なくともカソード201に第1の実施形態の電極100、101を用いることが、MEA200を用いた燃料電池において、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性を向上させる観点から好ましい。アノード202も第1の実施形態の電極100、101を用いることが好ましい。また、第1の実施形態の電極100、101において空孔1が無い形態の電極をアノード202として用いてもよい。
【0045】
電解質膜203は、イオン伝導性が要求される膜である。電解質膜203は、スルホン酸基を有するフッ素樹脂、タングステン酸とリンタングステン酸からなる群のうちのいずれか1種以上の電解質材料を含む。スルホン酸基を有するフッ素樹脂としては、例えば、ナフィオン(商標、デュポン)、フレミオン(商標、旭硝子)、およびアシプレック(商標、旭化成)などを用いることが好ましい。タングステン酸やリンタングステン酸などの無機物も電解質材料として好ましい。実施形態の膜電極接合体100を水電解に用いる場合は、電解質膜203には、さらに、過酸化水素分解剤、ラジカル補足剤と補強材からなる群のうちのいずれか1種以上を含むことが、膜の劣化を抑制するため好ましい。
【0046】
電解質膜4の厚さは、MEA1の特性を考慮して適宜決定することができる。強度、耐溶解性およびMEAの出力特性の観点から、電解質膜の厚さは、好ましくは5μm以上300μm以下、より好ましくは5μm以上200μm以下である。
【0047】
なお、第1の実施形態の電極100、101をMEA200の電極として用いると空孔1内に電解質膜203が存在することがあるが、研磨もしくは焼くなどして電解質膜203を除去することで、電極の空孔1の観察をすることができる。電極の空孔1に電解質膜203が部分的に含まれている場合は、電解質膜203を除去した電極において空孔1を評価すればよい。
【0048】
MEA200は、カソード201とアノード202のどちらか一方又は両方に電解質膜203を形成し、重ね合わせて加熱及び加圧することによって作製される。例えば、ホットプレス機を用いて行うことができる。その際、プレス温度は、電極と電解質膜との結着剤として使用する高分子電解質膜のガラス転移温度以上であればよく、例えば、100℃以上400℃以下とすることができる。プレス圧は、使用する電極および高分子電解質膜6の硬さに依存するが、例えば、5kg/cm以上200kg/cm以下とすることができる。
【0049】
(第3の実施形態)
第3の実施形態は、電気化学セルに関する。第3の実施形態の電気化学セルは、第2の実施形態のMEAを用いている。本実施形態にかかる電気化学セルの構成を、図8の電気化学セル300の模式図を用いて簡単に説明する。図8に示す電気化学セル300は、MEA200のカソード201、アノード202及び電解質膜203と、MEA200の両側に、ガスケット301、302を介して、集電板303、304と締め付け板305、306が取り付けられている。実施形態の電極100、101を用いることで実施形態の電気化学セル300は、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性が向上する。
【0050】
(第4の実施形態)
第4の実施形態はスタックに関する。第4の実施形態のスタックは、第2の実施形態の膜電極接合体又は第3の実施形態の電気化学セルを用いている。本実施形態にかかるスタックの構成を、図9のスタック400の模式図を用いて簡単に説明する。スタック400は、MEA200又は電気化学セル300を複数個、直列に接続した構成である。電気化学セルの両端に締め付け板401、402が取り付けられている。実施形態の電極100、101を用いることで実施形態のスタック400は、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性が向上する。
【0051】
(第5の実施形態)
第5の実施形態は燃料電池に関する。第5の実施形態の燃料電池は、第2の実施形態の膜電極接合体、第3の実施形態の電気化学セル、又は、第4の実施形態のスタックを用いている。本実施形態にかかる燃料電池の構成を、図10の燃料電池500の模式図を用いて簡単に説明する。燃料電池500は、MEA200と、燃料供給ユニット501と、酸化剤供給ユニット502とを有する。燃料電池500のアノードには、図示しない水素燃料タンクが接続し、水素が供給される。燃料電池500で用いられる。MEA200の代わりに、電気化学セル300又はスタック400を用いてもよい。実施形態の電極100、101を用いることで実施形態の燃料電池500は、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性が向上する。ロバスト性が向上することにより、燃料電池の出力が安定する。燃料電池500で発電した電力は、図示しない蓄電池に蓄えることもできる。
【0052】
(第6の実施形態)
第6の実施形態は車両に関する。第6の実施形態の車両は、第5の実施形態の燃料電池を用いている。本実施形態にかかる車両の構成を、図11の車両600の模式図を用いて簡単に説明する。車両600は、燃料電池500、車体601、モーター602、車輪603と、制御ユニット604を有する。燃料電池500、モーター602、車輪603と、制御ユニット604は、車体601に配置されている。燃料電池500のカソードとアノードは、負荷制御ユニット604を介して、負荷であるモーター602とつながっている。制御ユニット604は、燃料電池の500から出力した電力を変換したり、出力調整したりする。モーター602は燃料電池500から出力された電力を用いて、車輪603を回転させる。実施形態の電極100、101を用いることで実施形態の燃料電池500は、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性が向上する。ロバスト性が向上することにより、燃料電池500の出力が安定する。したがって、かかる燃料電池500を用いた車両600の運転が安定する。
【0053】
(第7の実施形態)
第7の実施形態は飛翔体(例えば、マルチコプター)に関する。第7の実施形態の飛翔体は、第5の実施形態の燃料電池を用いている。本実施形態にかかる飛翔体の構成を、図12の飛翔体(クアッドコプター)700の模式図を用いて簡単に説明する。飛翔体700は、燃料電池500、機体骨格701、モーター702、回転翼703と制御ユニット704を有する。燃料電池500、モーター702、回転翼703と制御ユニット704は、機体骨格701に配置している。燃料電池500のカソードとアノードは、負荷制御ユニット704を介して、負荷であるモーター702とつながっている。制御ユニット704は、燃料電池の500から出力した電力を変換したり、出力調整したりする。モーター702は燃料電池500から出力された電力を用いて、回転翼703を回転させる。実施形態の電極100、101を用いることで実施形態の燃料電池500は、フラッディングを回避しつつ、適度な相対湿度を維持することでロバスト性が向上する。ロバスト性が向上することにより、燃料電池500の出力が安定する。したがって、かかる燃料電池500を用いた飛翔体700の運転が安定する。
【0054】
以下に、具体的な実施例により、本発明の実施形態の電極、膜電極接合体の製造方法を説明する。なお、後述する実施例は本発明の有数の実施形態の実施例であり、本発明は以下の実施例のみに限定されるものではない。
【実施例】
【0055】
(実施例1)
ガス拡散層として、表面が撥水処理された不織布(ドイツFreudenberg H23 I2)を用い、不織布の表面に、水分管理層を形成する。水分管理層は、カーボンスラリーを不織布の表面にスプレーで塗布と加熱乾燥を繰り返し行うことで形成した。カーボンスラリーは、カーボン粒子(Cabot Vulcan XC 72)、水、2−プロパノール、エタノール、グリセリン、ポリテトラフルオロエチレンをそれぞれ、約1:30:25:25:3:1の割合で混合して調整する。充分に乾燥させた後、360℃、10分アルゴン雰囲気下で熱処理を行いポリテトラフルオロエチレンによる撥水性を水分管理層に付与させた。そして、荷重12kgf/cm、室温3分の条件で水分管理層の表面を平滑化する処理を行った。水分管理層の厚さは30μmであった。Pt量が0.2mg/cmとなるようにPtとCo、Niを交互(Pt/CoNiを交互)にスパッタリングした。酸処理で、CoとNiを溶解させで触媒層を水分管理層上に形成させた。ついで、フォーミングガス(5%−H、95%−Ar)中で2時間、380℃で熱処理を行って、実施例1のカソードを得た。CoとNiの一部は、触媒層に残存していた。
【0056】
実施例1のカソードの触媒層を250倍で観察したSEM像を図13に示す。図13に示すように、孔径が10μmを超える複数の空孔が触媒層の主面に存在していることが確認された。また、空孔をつなぐクラックも確認された。このSEM像から、上述の方法で、空孔のモード径(μm)、空孔の面積率(μm)を求めた。カソードに0.1%のナフィオン含む溶剤をスプレー塗布して電解質膜を形成した。そして、カソードと同様に作製したもう一方の電極をアノードとして電解質膜をアノードとカソードで挟み込み熱プレスを行って実施例1の膜電極接合体を作製した。
【0057】
<発電特性評価>
続いて、作製した膜電極接合体の発電特性を評価する。膜電極接合体(単セル)を電子負荷装置を搭載した評価装置に設置したのちに、セル温度80℃、燃料(水素、利用率70%、100%RH)をアノード側に供給した。また、酸化剤(空気、利用率40%、100%RH)をカソード側に供給した。次に、電子負荷装置を用いて電流密度1A/cmで24時間保持し、コンディショニングを行った。そして、セル温度80℃、燃料(水素、利用率70%、100%RH)をアノード側に供給し、酸化剤(空気、利用率40%、100%RH)をカソード側に供給し、I−V測定を評価した。実施例及び比較例の空孔のモード径(μm)と空孔の面積率(%)、電流密度が1A/cmのときの燃料電池のセル電圧(V@1.0A/cm及びV@1.0A/cm)空孔直径(μm)大きい方から5つ、水分管理層の厚さ(μm)、触媒層の厚さ(μm)、クラックの有無、触媒層構造、直径が10μm以上である空孔の面積比率(%)を表1、表2にまとめて示す。
【0058】
(実施例2)
実施例2の膜電極接合体は、水分管理層の厚みを50μmとし、実施例1と同様の手順で作製した。作製した実施例2の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。
【0059】
(実施例3)
実施例3の膜電極接合体は、水分管理層の厚みを20μmとし、実施例1と同様の手順で作製した。作製した実施例3の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。
【0060】
(実施例4)
実施例4の膜電極接合体は、水分管理層の厚みを10μmとし、実施例1と同様の手順で作製した。作製した実施例4の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。
【0061】
(実施例5)
実施例5の膜電極接合体は、水分管理層の厚みを5μmとし、実施例1と同様の手順で作製した。作製した実施例5の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。
【0062】
(実施例6)
実施例6の膜電極接合体は、Pt/Niの交互スパッタでCoは常にスパッタし、そして、水分管理層の厚みを5μmとして実施例1と同様の手順で作製した。作製した実施例6の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。
【0063】
(比較例1)
比較例1の膜電極接合体は、水分管理層の厚みを1μmとし、実施例1と同様の手順で作製した。作製した比較例1の電極をSEMで観察した。また、作製した膜電極接合体の発電特性を評価した。また、実施例1と比較例1のI−V特性評価結果を図15のグラフに示す。
【0064】
(比較例2)
比較例2の膜電極接合体は、水分管理層の厚みを80μmとし、実施例1と同様の手順で作製した。作製した比較例2の電極をSEMで観察した。比較例2のSEM像を図14に示す。また、作製した膜電極接合体の発電特性を評価した。
【0065】
【表1】
【0066】
【表2】
【0067】
実施例1及び実施例6の水分管理層の厚みが30μmの場合、高特性である。実施例2のように水分管理層を厚くすると空孔モード径が減少し、空孔面積比率も低下するため特性低下する。また、実施例3から5のように水分管理層を薄くすると空孔モード径は増加し空孔面積比率も増加するが、反応効率低下した。これは、水分管理ができにくくなりフラッディングが発生しやすいため、実施例1や実施例6に比べると特性が、低いが比較例と比べるといずれも高い特性が確認される。比較例では、実施例6では、多孔体構造の触媒層を作製しため、ガス拡散性が良く、実施例1と比べて少し高特性である。実施例においては、いずれも空孔のモード径及び面積比率が好適な範囲内である。実施例では、空孔の大きさや比率を制御するために、例として水分管理層の厚さを変えている。空孔の大きさや比率を制御するためには、他にも触媒層の作製条件などを調整して好適な空孔を有する触媒層を得ることができる。
明細書中、一部の元素は、元素記号のみで表している。
【0068】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない上述したこれら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0069】
100…電極、10…触媒層、1…空孔、2…クラック、20…支持層、21…水分管理層、22…ガス拡散層、
200…膜電極接合体、201…カソード、202…アノード、203…電解質膜
300…電気化学セル、301…ガスケット、302…ガスケット、303…集電板、304…集電板、305…締め付け板、306…締め付け板
400…スタック、401…締め付け板、402…締め付け板
500…燃料電池、501…燃料供給ユニット、502…酸化剤供給ユニット
600…車両、601…車体、602…モーター、603…車輪、604…制御ユニット
700…飛翔体、701…機体骨格、702…モーター、703…回転翼、704…制御ユニット

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15