特許第6961535号(P6961535)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工サーマルシステムズ株式会社の特許一覧

<>
  • 特許6961535-車載空調機制御装置及び車両 図000002
  • 特許6961535-車載空調機制御装置及び車両 図000003
  • 特許6961535-車載空調機制御装置及び車両 図000004
  • 特許6961535-車載空調機制御装置及び車両 図000005
  • 特許6961535-車載空調機制御装置及び車両 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6961535
(24)【登録日】2021年10月15日
(45)【発行日】2021年11月5日
(54)【発明の名称】車載空調機制御装置及び車両
(51)【国際特許分類】
   B60H 1/22 20060101AFI20211025BHJP
   H05B 3/00 20060101ALI20211025BHJP
【FI】
   B60H1/22 611Z
   B60H1/22 671
   H05B3/00 310E
【請求項の数】4
【全頁数】12
(21)【出願番号】特願2018-108747(P2018-108747)
(22)【出願日】2018年6月6日
(65)【公開番号】特開2019-209884(P2019-209884A)
(43)【公開日】2019年12月12日
【審査請求日】2021年2月19日
(73)【特許権者】
【識別番号】516299338
【氏名又は名称】三菱重工サーマルシステムズ株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【弁理士】
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【弁理士】
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【弁理士】
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【弁理士】
【氏名又は名称】鎌田 康一郎
(74)【代理人】
【識別番号】100210572
【弁理士】
【氏名又は名称】長谷川 太一
(72)【発明者】
【氏名】佐藤 秀隆
(72)【発明者】
【氏名】大崎 智康
(72)【発明者】
【氏名】永坂 圭史
(72)【発明者】
【氏名】小島 遼太
【審査官】 安島 智也
(56)【参考文献】
【文献】 特開2014−46735(JP,A)
【文献】 特開2010−261913(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60H 1/00−3/06
H05B 3/00
(57)【特許請求の範囲】
【請求項1】
高電圧系回路に含まれ、高電圧バッテリから供給される電力によって発熱するヒータ素子と、
前記高電圧系回路に含まれ、前記高電圧バッテリから前記ヒータ素子へ供給される電力を制御するマイコンと、
低電圧系回路に含まれ、温水の温度に応じた電圧信号を出力する水温センサと、
前記低電圧系回路に含まれ、前記水温センサが出力する電圧信号を周波数信号に変換する水温検出用V/f変換部と、
前記水温検出用V/f変換部と前記マイコンとの間の電気的絶縁を保ちながら、前記周波数信号を前記マイコンに伝送する水温検出用デジタルアイソレータと、
を備える車載空調機制御装置。
【請求項2】
前記水温検出用V/f変換部は、
設定端子と、出力端子と、を有するシリコン発振器を備え、
前記シリコン発振器は、
前記設定端子から出力される電流に対応する周波数の前記周波数信号を、前記出力端子から出力する
請求項1に記載の車載空調機制御装置。
【請求項3】
前記低電圧系回路に含まれ、低電圧バッテリからの入力電圧に応じた電圧信号を出力する低電圧側電圧センサと、
前記低電圧系回路に含まれ、前記低電圧側電圧センサが出力する電圧信号を周波数信号に変換する低電圧側電圧検出用V/f変換部と、
前記低電圧側電圧検出用V/f変換部と前記マイコンとの間の電気的絶縁を保ちながら、前記周波数信号を前記マイコンに伝送する低電圧側電圧検出用デジタルアイソレータと、
を備える請求項1又は請求項2に記載の車載空調機制御装置。
【請求項4】
請求項1から請求項3の何れか一項に記載の車載空調機制御装置を備える
車両。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車載空調機制御装置及び車両に関する。
【背景技術】
【0002】
電気自動車、ハイブリッド車等に搭載される空調機の技術分野において、車両に搭載された高電圧バッテリからの通電によりPTCヒータを加熱させ、これによって生成した温水を巡らせる車載空調機制御装置が知られている(例えば、特許文献1参照)。
【0003】
このような車載空調機制御装置は、一般に、マイコン(マイクロコントローラ)を具備し、このマイコンが、上位装置からの指令、及び、センサからの各種検出値に基づいてPTCヒータへの通電(加熱)を適切に制御する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2014−108770号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した車載空調機制御装置は、低電圧バッテリ(一般的な12V車載バッテリ)から電力の供給を受けて動作する低電圧系回路と、モータ駆動用の高電圧バッテリから電力の供給を受けて動作する高電圧系回路と、に分けて構成される。電気的な安全を確保するため、高電圧系回路と低電圧系回路との間は、電気的に絶縁される。
【0006】
一態様として、上述したマイコンは、高電圧バッテリから出力される電圧や、高電圧バッテリからPTCヒータに流れる電流をモニタリングしながら制御を行う必要があるため、PTCヒータと共に高電圧系回路に配置される。
【0007】
しかしながら、マイコンは、PTCヒータへの通電制御のために、更に、PTCヒータによって温められた水の温度(水温)を取得する必要がある。そのため、水温センサも、マイコンとともに高電圧系回路に配置することが考えられる。しかしながら、水温センサは、本体に流入出する水の温度を検出すべく、低電圧系回路のグランドとなる筐体フレームに取り付けられるものである。そうすると、水温センサを高電圧系回路に配置した場合、当該水温センサと筐体フレーム(低電圧系回路のグランド)との絶縁耐圧を十分に確保できない可能性がある。
【0008】
本発明の目的は、低電圧系回路と高電圧系回路との間の絶縁耐圧を十分に確保できる車載空調機制御装置及び車両を提供することにある。
【課題を解決するための手段】
【0009】
本発明の第1の態様によれば、車載空調機制御装置は、高電圧系回路に含まれ、高電圧バッテリから供給される電力によって発熱するヒータ素子と、前記高電圧系回路に含まれ、前記高電圧バッテリから前記ヒータ素子へ供給される電力を制御するマイコンとを備える。また、車載空調機制御装置は、低電圧系回路に含まれ、温水の温度に応じた電圧信号を出力する水温センサと、前記低電圧系回路に含まれ、前記水温センサが出力する電圧信号を周波数信号に変換する水温検出用V/f変換部とを備える。更に、車載空調機制御装置は、前記水温検出用V/f変換部と前記マイコンとの間の電気的絶縁を保ちながら、前記周波数信号を前記マイコンに伝送する水温検出用デジタルアイソレータと、を備える。
【0010】
また、本発明の第2の態様によれば、前記水温検出用V/f変換部は、設定端子と、出力端子と、を有するシリコン発振器を備え、前記シリコン発振器は、前記設定端子から出力される電流に対応する周波数の前記周波数信号を、前記出力端子から出力する。
【0011】
また、本発明の第3の態様によれば、上述の車載空調機制御装置は、前記低電圧系回路にも含まれ、低電圧バッテリからの入力電圧に応じた電圧信号を出力する低電圧側電圧センサを備える。また、車載空調機制御装置は、前記低電圧系回路に含まれ、前記低電圧側電圧センサが出力する電圧信号を周波数信号に変換する低電圧側電圧検出用V/f変換部を備える。更に、車載空調機制御装置は、前記低電圧側電圧検出用V/f変換部と前記マイコンとの間の電気的絶縁を保ちながら、前記周波数信号を前記マイコンに伝送する低電圧側電圧検出用デジタルアイソレータと、を備える。
【0012】
また、本発明の第4の態様によれば、車両は、上述の車載空調機制御装置を備える。
【発明の効果】
【0013】
上記態様のうち少なくとも1つの態様によれば、低電圧系回路と高電圧系回路との間の絶縁耐圧を十分に確保できる。
【図面の簡単な説明】
【0014】
図1】第1の実施形態に係る車載空調機制御装置の全体構成を示す図である。
図2】第1の実施形態に係るV/f変換部の詳細な回路構成を示す第1図である。
図3】第1の実施形態に係るV/f変換部の機能を説明するための第1図である。
図4】第1の実施形態に係るV/f変換部の詳細な回路構成を示す第2図である。
図5】第1の実施形態に係るV/f変換部の機能を説明するための第2図である。
【発明を実施するための形態】
【0015】
<第1の実施形態>
以下、第1の実施形態に係る車載空調機制御装置について、図1図5を参照しながら説明する。
【0016】
(車載空調機制御装置の全体構成)
図1は、第1の実施形態に係る車載空調機制御装置の全体構成を示す図である。
図1に示す車載空調機制御装置1は、電気自動車、ハイブリッド車等の車両に搭載される空調機制御装置である。車載空調機制御装置1は、電気自動車、ハイブリッド車等に搭載される高電圧バッテリB2(モータ駆動用高電圧バッテリ)からの通電によりPTCヒータHを発熱させ、車内空調のために必要な温水を生成する。
【0017】
図1に示すように、車載空調機制御装置1は、低電圧系回路LVと、高電圧系回路HVとを有してなる。低電圧系回路LVのグランドGND1と高電圧系回路HVのグランドGND2との間は絶縁されている。また、低電圧系回路LVのグランドGND1は、筐体フレームFと電気的に接続されている。低電圧系回路LVには、車載される低電圧バッテリB1(例えば、DC12V出力の車載バッテリ)が接続される。高電圧系回路HVには、車載される高電圧バッテリB2(例えば、DC300V出力の車載バッテリ)が接続される。高電圧電源B2は、主に、車両駆動用のモータを回転駆動させるための電力供給源となる。
【0018】
車載空調機制御装置1の高電圧系回路HVは、マイコン10と、ゲートドライバ11と、スイッチング素子12と、高電圧側電圧センサ13と、電流検出センサ14と、を備えている。また、車載空調機制御装置1の低電圧系回路LVは、CANトランシーバ150と、入口側水温センサ151と、出口側水温センサ152と、低電圧側電圧センサ153と、V/f変換部161、162、163と、レギュレータ18と、を備えている。
また、車載空調機制御装置1は、低電圧系回路LVと高電圧系回路HVとの境界に跨って配置される、デジタルアイソレータ170、171、172、173と、DC/DCコンバータ19と、を備えている。
【0019】
以下、高電圧系回路HVに含まれる各種回路構成について詳しく説明する。
【0020】
マイコン10は、車載空調機制御装置1の動作全体を司るプロセッサである。マイコン10は、予め用意されたプログラムに従って各種処理を実行する。具体的には、マイコン10は、上位装置から受け付けた指令値(温水の温度指令値等)と、PTCヒータHによって温められる温水の入口温度と出口温度との検出結果等に基づいて、PTCヒータHへ通電を制御する。また、マイコン10は、低電圧バッテリB1からの入力電圧、高電圧バッテリB2からの入力電圧を常時監視し、低電圧バッテリB1、高電圧バッテリB2についての異常検出等を行う。
図1に示すように、マイコン10は、例えば、グランドGND2を基準とするDC5Vの電源電圧で駆動する。また、マイコン10のグランド端子は、高電圧系回路HVのグランドGND2に接続される。
【0021】
ゲートドライバ11は、マイコン10からの制御信号に基づいて、スイッチング素子12のON/OFFを制御する。ゲートドライバ11は、例えば、グランドGND2を基準とするDC15Vの電源電圧で駆動する。また、ゲートドライバ11のグランド端子は、高電圧系回路HVのグランドGND2に接続される。
【0022】
スイッチング素子12は、高耐圧半導体スイッチング素子(いわゆるパワートランジスタ)であって、例えば、IGBT(Insulated Gate Bipolar Transistor)などである。スイッチング素子12は、ゲートドライバ11からのゲート信号に基づいてON/OFF制御される。スイッチング素子12がONすると、高電圧バッテリB2(DC300V)からPTCヒータHへ電流が流れ、PTCヒータHが加熱される。
【0023】
高電圧側電圧センサ13は、高電圧バッテリB2からの入力電圧を検出するためのセンサである。具体的には、高電圧側電圧センサ13は、抵抗素子R5、R6からなる分圧器である。高電圧バッテリB2からの入力電圧(例えば、DC300V)は、高電圧側電圧センサ13(分圧器)によって分圧される。このような構成により、高電圧側電圧センサ13は、高電圧バッテリB2からの入力電圧に対応する電圧信号(アナログ信号)を、マイコン10に向けて出力する。
【0024】
電流検出センサ14は、PTCヒータHに流れる電流を検出するセンサである。具体的には、電流検出センサ14は、シャント抵抗である抵抗素子RSと増幅器OPからなる。このような電流検出センサ14によれば、PTCヒータHに流れる電流の量に応じて抵抗素子RSに電圧降下が発生する。そして、抵抗素子RSにおける電圧降下が増幅器OPにて増幅されて、マイコン10に入力される。
【0025】
PTCヒータHは、高電圧バッテリB2から供給される電力によって発熱するヒータ素子である。
【0026】
次に、低電圧系回路LVに含まれる各種回路構成について詳しく説明する。
【0027】
CANトランシーバ150は、CANバスに接続されるとともに、当該CANバスを介して接続される上位装置(図示せず)とマイコン10との間の双方向通信を実現する。例えば、CANトランシーバ150は、上位装置から受け付けた、マイコン10に対する指令信号(デジタル信号)を、後述するデジタルアイソレータ170a、170bを介してマイコン10に伝送する。
CANトランシーバ150は、例えば、グランドGND1を基準とするDC5Vの電源電圧で駆動する。また、CANトランシーバ150のグランド端子は、低電圧系回路LVのグランドGND1に接続される。
また、他の実施形態においては、CANトランシーバ150は、その他の通信ドライバIC(LINトランシーバ等)であってもよい。
【0028】
入口側水温センサ151、出口側水温センサ152は、それぞれ、PTCヒータHによって加熱される温水の温度を検出する温度センサである。具体的には、入口側水温センサ151は、筐体フレームFのうち、温水の流路(図示せず)の入口付近に設置され、温水入口温度を検出する。また、出口側水温センサ152は、筐体フレームFのうち、温水の流路の出口付近に設置され、温水出口温度を検出する。
入口側水温センサ151、出口側水温センサ152は、例えば、グランドGND1を基準とするDC5Vの電源電圧で駆動する。また、入口側水温センサ151、出口側水温センサ152のグランド端子は、低電圧系回路LVのグランドGND1に接続される。
入口側水温センサ151は、電源とグランドとの間に直列に接続される抵抗素子R1と温度センサ素子T1とを有してなる。温度センサ素子T1は、検出温度に対応する抵抗値となる。このような構成により、入口側水温センサ151は、入口温度に応じた電圧信号(アナログ信号)を出力する。
出口側水温センサ152は、電源とグランドとの間に直列に接続される抵抗素子R2と温度センサ素子T2とを有してなる。温度センサ素子T2は、検出温度に対応する抵抗値となる。このような構成により、出口側水温センサ152は、出口温度に応じた電圧信号(アナログ信号)を出力する。
【0029】
低電圧側電圧センサ153は、低電圧バッテリB1からの入力電圧を検出するためのセンサである。具体的には、低電圧側電圧センサ153は、抵抗素子R3、R4からなる分圧器である。低電圧バッテリB1からの入力電圧(例えば、DC12V)は、低電圧側電圧センサ153(分圧器)によって分圧される。このような構成により、低電圧側電圧センサ153は、低電圧バッテリB1からの入力電圧に対応する電圧信号(アナログ信号)を出力する。
低電圧側電圧センサ153のグランド端子は、低電圧系回路LVのグランドGND1に接続される。
【0030】
V/f変換部161、162、163は、それぞれ、入口側水温センサ151、出口側水温センサ152及び低電圧側電圧センサ153から出力される電圧信号(アナログ信号)を受信して、当該電圧信号に対応する周波数で発振する周波数信号に変換する。
V/f変換部161、162(水温検出用V/f変換部)は、水温センサ151、152が出力する電圧信号を周波数信号に変換する。また、V/f変換部163(低電圧側電圧検出用V/f変換部)は、低電圧側電圧センサ153が出力する電圧信号を周波数信号に変換する。
【0031】
デジタルアイソレータ170a、171、172、173は、例えば、フォトカプラ等であって、1次側(低電圧系回路LV)と2次側(高電圧系回路HV)との間の電気的絶縁を保ったまま、1次側から入力されるデジタル信号を2次側へ伝送可能とする素子である。また、デジタルアイソレータ170bは、同じく1次側と2次側との間の電気的絶縁を保ったまま、2次側から入力されるデジタル信号を1次側へ伝送可能とする素子である。
デジタルアイソレータ170a、170bは、CANトランシーバ150とマイコン10との間の電気的絶縁を保ちながら、当該CANトランシーバ150から入出力されるデジタル信号をマイコン10に伝送する。これにより、マイコンとCANトランシーバ150との間の双方向通信が実現される。
デジタルアイソレータ171、172(水温検出用デジタルアイソレータ)は、それぞれ、V/f変換部161、162とマイコン10との間の電気的絶縁を保ちながら、V/f変換部161、162から出力される周波数信号をマイコン10に伝送する。
デジタルアイソレータ173(低電圧側電圧検出用デジタルアイソレータ)は、V/f変換部163とマイコン10との間の電気的絶縁を保ちながら、V/f変換部163から出力される周波数信号をマイコン10に伝送する。
【0032】
レギュレータ18は、低電圧バッテリB1からの入力電圧(例えば、DC12V)に基づいて、それよりも低い定電圧(例えば、DC5V)を出力する。レギュレータ18が生成する定電圧は、低電圧系回路LVに属するCANトランシーバ150、入口側水温センサ151、出口側水温センサ152等の電源電圧となる。
【0033】
DC/DCコンバータ19は、いわゆる絶縁型のDC/DCコンバータであって、1次側(低電圧系回路LV)と2次側(高電圧系回路HV)との間の電気的絶縁を維持しながら、1次側から入力されるDC電圧を、所望のDC電圧に変換して2次側へ出力する。具体的には、DC/DCコンバータ19は、1次側(低電圧系回路LV)のグランドGND1を基準とする低電圧バッテリB1からの入力電圧(例えば、DC12V)を入力し、これを2次側(高電圧系回路HV)のグランドGND2を基準とする定電圧(例えば、DC5V、DC15V)に変換する。DC/DCコンバータ19が生成する定電圧は、高電圧系回路HVに属するマイコン10、ゲートドライバ11等の電源電圧となる。
【0034】
(水温検出用V/f変換部の回路構成及び機能)
図2は、第1の実施形態に係るV/f変換部の詳細な回路構成を示す第1図である。
また、図3は、第1の実施形態に係るV/f変換部の機能を説明するための第1図である。
以下、図2図3を参照しながら、V/f変換部161、162(水温検出用V/f変換部)の回路構成及びその機能について詳細に説明する。なお、図2には、V/f変換部161の回路構成のみを図示しているが、V/f変換部162の回路構成は、V/f変換部161の回路構成と実質的に同一であるため、図示を省略する。
【0035】
図2に示すように、V/f変換部161は、シリコン発振器1610と、抵抗素子RVCO、RSETと、を有してなる。また、シリコン発振器1610は、電源電圧5Vが入力され、グランドGND1に接地される。
【0036】
シリコン発振器1610は、設定端子SETと、出力端子OUTとを有する。シリコン発振器1610の設定端子SETは、当該端子に接続される設定ノードVSETの電位が所定値で一定となるように電流Iを流す。そして、シリコン発振器1610の出力端子OUTは、設定端子SETから流れる電流Iの量に応じた周波数の周波数信号FOUTを出力する。
設定ノードVSETと、温水の入口温度に応じた電圧信号(アナログ信号)が出力される出力ノードVCTRL(直列に接続される抵抗素子R1と温度センサ素子T1との間の中間電位)との間には、抵抗素子RVCOが接続される。また、設定ノードVSETとグランドGND1との間には、抵抗素子RSETが接続される。
【0037】
以上のような構成によれば、図3に示すように、例えば、温水の入口温度が相対的に低い温度Taであった場合、温度センサ素子T1の抵抗値が低くなって出力ノードVCTRLの電位が低下する。そうすると、設定ノードVSETで所定電位を維持するためには、設定端子SETから相対的に大きな電流Iを流す必要がある。したがって、この場合、シリコン発振器1610は、出力端子OUTから、相対的に高い周波数faの周波数信号FOUTを出力する。
他方、図3に示すように、温水の入口温度が相対的に高い温度Tbであった場合、温度センサ素子T1の抵抗値が高くなって出力ノードVCTRLの電位が上昇する。そうすると、設定ノードVSETで所定電位を維持するためには、設定端子SETから相対的に小さな電流Iを流す必要がある。したがって、この場合、シリコン発振器1610は、出力端子OUTから、相対的に低い周波数fbの周波数信号FOUTを出力する。
図3に示すような関係により、マイコン10は、デジタルアイソレータ171を経て入力される周波数信号FOUT(デジタル信号)の発振周波数を通じて、温水の入口温度を把握することができる。
【0038】
(低電圧側電圧検出用V/f変換部の回路構成及び機能)
図4は、第1の実施形態に係るV/f変換部の詳細な回路構成を示す第2図である。
また、図5は、第1の実施形態に係るV/f変換部の機能を説明するための第2図である。
以下、図4図5を参照しながら、V/f変換部163(低電圧側電圧検出用V/f変換部)の回路構成及びその機能について詳細に説明する。
【0039】
図4に示すように、V/f変換部163は、シリコン発振器1630と、抵抗素子RVCO、RSETと、を有してなる。また、シリコン発振器1630は、電源電圧5Vが入力され、グランドGND1に接地される。
【0040】
シリコン発振器1630は、シリコン発振器1610と同様に、設定端子SETと、出力端子OUTとを有する。シリコン発振器1630の設定端子SETは、当該端子に接続される設定ノードVSETの電位が所定値で一定となるように電流Iを流す。そして、シリコン発振器1630の出力端子OUTは、設定端子SETから流れる電流Iの値に応じた周波数の周波数信号FOUTを出力する。
設定ノードVSETと、低電圧バッテリB1からの入力電圧に応じた電圧信号(アナログ信号)が出力される出力ノードVCTRL(直列に接続される抵抗素子R3と抵抗素子R4との間の中間電位)との間には、抵抗素子RVCOが接続される。また、設定ノードVSETとグランドGND1との間には、抵抗素子RSETが接続される。
【0041】
以上のような構成によれば、図5に示すように、例えば、低電圧バッテリB1からの入力電圧が相対的に低い電圧Vaであった場合、低電圧側電圧センサ153の出力ノードVCTRLの電位が低下する。そうすると、設定ノードVSETで所定電位を維持するためには、設定端子SETから相対的に大きな電流Iを流す必要がある。したがって、この場合、シリコン発振器1610は、出力端子OUTから、相対的に高い周波数faの周波数信号FOUTを出力する。
他方、図5に示すように、低電圧バッテリB1からの入力電圧が相対的に高い電圧Vbであった場合、低電圧側電圧センサ153の出力ノードVCTRLの電位が上昇する。そうすると、設定ノードVSETで所定電位を維持するためには、設定端子SETから相対的に小さな電流Iを流す必要がある。したがって、この場合、シリコン発振器1630は、出力端子OUTから、相対的に低い周波数fbの周波数信号FOUTを出力する。
図5に示すような関係により、マイコン10は、デジタルアイソレータ173を経て入力される周波数信号FOUTの発振周波数を通じて、低電圧バッテリB1からの入力電圧を把握することができる。
【0042】
(作用・効果)
以上のとおり、第1の実施形態に係る車載空調機制御装置1は、高電圧系回路HVにおいて、高電圧バッテリB2から供給される電力によって発熱するPTCヒータHと、高電圧バッテリB2からPTCヒータHに供給される電力を制御するマイコン10とを備える。また、車載空調機制御装置1は、低電圧系回路LVにおいて、温水の温度に応じた電圧信号を出力する水温センサ151、152と、水温センサ151、152が出力する電圧信号を周波数信号に変換する水温検出用V/f変換部(V/f変換部161、162)とを備える。更に、車載空調機制御装置1は、V/f変換部161、162とマイコン10との間の電気的絶縁を保ちながら、V/f変換部161、162が出力する周波数信号をマイコン10に伝送する水温検出用デジタルアイソレータ(デジタルアイソレータ171、172)を備える。
【0043】
ここで、高電圧系回路HVに属するマイコン10との通信を容易化する目的で、入口側水温センサ151、出口側水温センサ152を高電圧系回路HVに接続した場合、以下のような懸念点が生じる。即ち、入口側水温センサ151、出口側水温センサ152の温度センサ素子T1、T2は、いずれも筐体フレームFに取り付けて使用されるものであるため、この場合、高電圧系回路HVのグランドGND2と低電圧系回路LVのグランドGND1との間に、温度センサ素子T1、T2の絶縁被膜が挟まれる状態となる。そうすると水温センサが高耐圧仕様ではない物を使用した場合に低電圧系回路LVと高電圧系回路HVとの間での絶縁耐圧が十分に確保されないことが想定される。通常の水温センサは熱伝導特性を良化及び低コスト化の為、高耐圧の絶縁性能を有していない場合が多い。
【0044】
また、高電圧系回路HV、低電圧系回路LVのそれぞれに一つずつマイコンを設置して、両マイコンとの間の通信(デジタル信号のやり取り)を、デジタルアイソレータを介して行うことも考えられる。しかしながら、このようにすると、車載空調機制御装置1に2つのマイコンを搭載させる必要があるため、高コストとなる。
【0045】
第1の実施形態のような構成とすることで、マイコン10は、高電圧系回路HVに属しながらも、V/f変換部161、162及びデジタルアイソレータ171、172を介して、低電圧系回路LVに含まれる入口側水温センサ151及び出口側水温センサ152からの温度検出信号を取得することができる。したがって、低電圧系回路と高電圧系回路との間の絶縁耐圧を十分に確保することができるとともに、高コスト化を抑制することができる。
【0046】
また、第1の実施形態に係るV/f変換部161〜163は、設定端子SETと、出力端子OUTとを備えるシリコン発振器1610等を備えている。このシリコン発振器1610は、設定端子SETから出力される電流に対応する周波数の周波数信号を、出力端子OUTから出力する。
【0047】
このような構成とすることで、出力する信号の発振周波数を所望に設定可能な機能を有するシリコン発振器1610を通じて、電圧信号を周波数信号に変換させることができる。これにより、V/f変換部161、162、163を安価な構成とすることができる。
【0048】
また、第1の実施形態に係る車載空調機制御装置1は、更に、低電圧系回路LVにおいて、低電圧バッテリB1からの入力電圧に応じた電圧信号を出力する低電圧側電圧センサ153と、低電圧側電圧センサ153が出力する電圧信号を周波数信号に変換する低電圧側電圧検出用V/f変換部(V/f変換部163)とを備える。そして、車載空調機制御装置1は、低電圧側電圧検出用V/f変換部とマイコン10との間の電気的絶縁を保ちながら、周波数信号をマイコン10に伝送する低電圧側電圧検出用デジタルアイソレータ(デジタルアイソレータ173)を備える。
【0049】
このようにすることで、高電圧系回路HVに配置されたマイコン10は、V/f変換部163及びデジタルアイソレータ173を介して、低電圧バッテリB1からの入力電圧をモニタリングすることができる。これにより、マイコン10は、高電圧バッテリB2のみならず、低電圧バッテリB1についての異常検知も可能となる。
【0050】
以上のとおり、本発明に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。上述の実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。上述の実施形態及びその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0051】
1 車載空調機制御装置
10 マイコン
11 ゲートドライバ
12 スイッチング素子
13 高電圧側電圧センサ
14 電流検出センサ
150 CANトランシーバ
151 入口側水温センサ
152 出口側水温センサ
153 低電圧側電圧センサ
161、162、163 V/f変換部
1610、1630 シリコン発振器
170a、170b、171、172、173 デジタルアイソレータ
18 レギュレータ
19 DC/DCコンバータ
H PTCヒータ
R1、R2、R3、R4、R5、R6、RS、RVCO、RSET 抵抗素子
OP 増幅器
T1、T2 温度センサ素子
F 筐体フレーム
B1 低電圧バッテリ
B2 高電圧バッテリ
図1
図2
図3
図4
図5